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ABSTRACT

We propose a density-based estimator for weighted geodesic distances suitable for
data lying on a manifold of lower dimension than ambient space and sampled from
a possibly nonuniform distribution. After discussing its properties and implemen-
tation, we evaluate its performance as a tool for clustering tasks. A discussion on
the consistency of the estimator is also given.

1 INTRODUCTION

In most unsupervised learning tasks such as clustering, classification, recommendation, or dimen-
sionality reduction, a notion of similarity between points is both crucial and usually not directly
available as an input, Shaw et al. (2011). Instead, this distance has to be guessed or inferred from
the data itself. This is the case when the data is in fact on an unknown manifold with lower dimen-
sion, which is a typical situation in most applications, Bengio et al. (2013). In these situations, the
Euclidean distance is typically misleading; this effect, being more dramatic as dimension increases,
Aggarwal et al. (2001).

Learning based on similarity has been considered in diverse applications: time series, Morse & Patel
(2007), clustering of chemical structures, Barnard & Downs (1992), genetic data, Lawson & Falush
(2012) and documents or texts, Wang et al. (2011).

Some historical linear methods as Principal Component Analysis can actually be thought as a first
attempt to do this, Wall et al. (2003). More advanced powerful nonlinear procedures have also been
developed to perform dimensionality reduction of the data by representing them in a lower dimen-
sional space. Examples of such methods are Multidimensional scaling (MDS) Borg & Groenen
(2003), t-distributed stochastic distance embedding (t-SNE) van der Maaten & Hinton (2008), Spec-
tral embedding Belkin & Niyogi (2003) and Isometric mapping (Isomap) and C-Isomap Tenenbaum
et al. (2000); de Silva & Tenenbaum (2002).

A particular feature of Isomap and C-Isomap is that they implement a distance estimator before
performing the dimensionality reduction, building up a bridge between geodesic estimation and un-
supervised learning. The seminal paper introducing Isomap, Tenenbaum et al. (2000) underlines
the improved efficiency in dimensionality reduction and classification when considering adequate
notions of distances. Particularly in the context of image analysis. However, Isomap is designed
to deal with data with constant density and C-Isomap is designed to estimate the distance in the
preimage for conformal embeddings, which could not be the case in many transformations. Neither
of them takes into account the underlying density from which the points are sampled to define the
geodesic estimator. In the sequel, we propose a new method to estimate distances in high dimen-
sional non-uniform datasets that attacks this two issues.
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2 d-DISTANCE ESTIMATOR

Let M ⊆ RP be a D-dimensional manifold. That is, M can be locally transformed into RD.
Typically we have D � P , but this is not required. Consider a sample of N points XN ⊂ M. Let
`(·, ·) be a distance defined onM×M (a typical choice could be Euclidean distance in RP , but
other choices are allowed). For d ≥ 1 and given two points p,q ∈ M we define the d-distance
estimator as

DXN (p,q) = min
(x1,...,xK)∈XKN

K−1∑
i=1

` (xi,xi+1)
d
. (1)

The minimization is done over all K ≥ 2 and all finite sequences of data points with x1 =
argminx∈XN `(x,p) and xK = argminx∈XN `(x,q). Note that the curse of dimensionality effects,
Aggarwal et al. (2001) are much stronger on the distance between those points that are faraway to
each other than on those which are close to each other. With this in mind, for d > 1, the d-distance
discourages consecutive points with large `. Also observe thatDXN verifies triangular inequality and
so, it is indeed a distance. When d = 1, we recover the distance `(·, ·), but if d > 1, the d−distance
tends to follow more closely the manifold structure and regions with high density values. We con-
jecture that for given p,q ∈ M, if XN is an i.i.d. sample with density f : M → R, the estimator
DXN (p,q) converges in the following sense:

lim
N→∞

NαDXN (p,q) = cd,D inf
Γ⊂M

ˆ
Γ

1

fα
. (2)

Here α = d−1
D and cd,D is a constant that depends only on d and D. The optimization is performed

over all continuous rectifiable paths Γ contained in the manifold that start at p and end at q. In other
words, we expect NαDXN (p,q) to be a consistent estimator of the right hand side of (2), which
turns out to be a distance inM if f is positive. Observe that this distance is a weighted geodesic
distance in which paths are adjusted according to the value of 1/fα.

We proved this fact in the simplest case in which f is constant in a compact set. Since the strength
of our estimator lies in the fact that it can deal with non-constant f , this result is not meaningful by
itself. But we think it is a first step towards a full proof of (2). We can also observe that (2) holds in
simulations. See supplementary material.

For d > 1, the d-distance is indeed taking into account the density f imitating Fermat’s principle
for the light path1, with f−α playing the role of the refraction index.

2.1 ALGORITHM AND IMPLEMENTATION

In practice, the computation of the d-distance relies on local estimations. Although the optimization
is defined on all possible paths using data points, we show in supplementary material that if d > 1, it
can be restricted to local paths. Let Nk(x) be the set of k-nearest neighbors of x and let D̂XN (p,q)
be a new estimator defined as in (1) but with the additional constrain that xi+1 ∈ Nk(xi) for each
i ≤ K − 1. Then it holds that given ε > 0 there is k = O(log(N/ε)) such that DXN (p,q) =

D̂XN (p,q) with probability 1 − ε. In this way, the complexity can be reduced to O(N2(logN)2)
without modifying the asymptotic properties of the estimator.

3 CLUSTERING PROPERTIES

We compare the performance of the d-distance estimator for various values of d and Isomap/C-
Isomap for clustering tasks. We use the well-known example coined “Swiss roll”, Figure 1(a) and
1(b). We consider a dataset composed of 4 subsets steaming from independent Normal distributions
(restricted to the unit square) with mean µ1 = (.3, .3), µ2 = (.3, .7), µ3 = (.7, .3), µ4 = (.7, .7)
respectively and constant variance, Figure 1(a). Then, we apply the Swiss Roll transformation,
Figure 1(b). Observe that the transformed data set is not Gaussian and each subset of transformed
data has different variance. We then compute the d-distance between all pair of points and run (1000

1In optics, Fermat’s principle states that the optical length of the path followed by light between two fixed
points, p and q, is a local minimum of the functional Γ 7→

´
Γ

n dl. Here n is the refractive index of the medium
and the integral represents the time required by light to do the path Γ.
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(a) Data distribution in 2D (c) Adjusted mutual information (e) Adjusted Rand index

(b) Data distribution in 3D (d) Accuracy (f) F1 score

Figure 1: Clustering the non-uniform Swiss Roll data.

iterations with different initial conditions) the classical K-medoids clustering algorithm, Friedman
et al. (2001), using this matrix of d-distances as input. To evaluate the clustering results, we compute
the median (green line), the mean (blue line) and the inter-quantile range (gray) for the adjusted
mutual information, Meilă (2007); Vinh et al. (2010), 1(c); the adjusted Rand index, Hubert &
Arabie (1985), 1(e); the accuracy, 1(d), and the F1 score Powers (2011), 1(f) for different values
of d and with k = 300. The case d = 1 corresponds to Euclidean distance and the dashed line
corresponds to best output among Isomap and C-Isomap, for which the nearest-neighbors parameter
was selected to maximize the performance of each index. For all performance criteria employed,
there is a large range of the parameter d where the d-distance behaves significantly better than
Isomap. For the adjusted mutual information and adjusted Rand index we observe an optimal region
for 1.8 ≤ d ≤ 3.2, while for the accuracy and F1 score this region is limited to 1.7 ≤ d ≤ 2.2.

4 CONCLUSIONS

We proposed a new estimator for distances between points on an unknown manifold which takes into
account the intrinsic density f in order to bring closer two points if there is a (short) path between
them lying on a region with high density values. This distance can be then used as an input for
dimensionality reduction or clustering algorithms.

The choice of the parameter d might depend on the specific application the d-distance is used for,
but it has a clear meaning. It measures how we decide to weight the density values f . Observe that
d is not a parameter of the algorithm but of the macroscopic distance we want to estimate. Similar
to the parameter p in p-norms.

We evaluated its performance for clustering tasks in the classical Swiss Roll example with non-
uniform distribution. In this case, we have shown that the use of the d-distance improves the clus-
tering. In future work, we plan to study convergence properties of our estimator in more detail; to
establish criteria to choose the value of d and to use this criteria to perform dimensionality estimation
in real data.
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Supplementary Material

A RINGS DATA SET

Let us illustrate further how the d-distance operates on the following simple example. Consider
a set of points made of concentric rings of different radius with or without bridges, Figures 2(a)
and 2(c). Consider first the data without bridges. The macroscopic d-distance (right hand side of
(2)) between two points in different connected components is infinity, while two points in the same
connected component have a finite distance. Computing the d-distance and representing this distance
(for instance with t-SNE), we retrieve the connected sets, of course distorted in terms of Euclidean
distance. Note that the distance relation between the rings is lost, as expected (Figure 2(b)). The
fact that rings well separate in the absence of bridges sheds light on the d-distance leverages that can
be used for clustering. When we consider the rings with bridges data we see that the d-distance can
recover the geometric structure of the data as well (Figure 2(d)).

(a) Rings data set (b) t-SNE representation of Rings dataset with 2-
distance as input.

(c) Rings with bridges data set (d) t-SNE representation of Rings dataset with
1.2-distance as input.

Figure 2: The d-distance enlarges the distance between points in different connected components.
If we take into account the normalization factor Nα, from (2) it can be seen that points separated
from a region where the density f is close to zero have large d-distance. While points that can be
connected by a path lying in a region with high density, are close to each other.

B CONSISTENCY OF THE d-DISTANCE ESTIMATOR

In this section we prove the macroscopic limit of the d-distance estimator for the simple case in
which f is constant in a compact set C ⊂ RD.
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B.1 POISSON POINT PROCESSES

We start with the following results from Howard & Newman (1997). For a Borel set A ⊂ RD,
denote |A| its Lebesgue measure and #A the number of points in A. We also denote with ‖ · ‖ the
Euclidean norm.

Let X be a locally finite subset of RD. We are going to be mainly interested in the case in which
X is a Poisson Point Process in RD, Kallenberg (2002) but other cases are going to be treated as
well. We refer to points in X as particles, to distinguish them from other points in RD. For any point
p ∈ RD, define the center of its Voronoi cell as

y(p) = argmin
yi∈X

‖p− yi‖.

For any p,q ∈ RD, a finite sequence y1, . . . ,yK of particles with y1 = y(p),yK = y(q) is called
a path (or an X-path if necessary) from p to q. Given a parameter d > 1 we define the d-distance
between p,q ∈ RD with respect to X by

DX(p,q) = inf


k∑
j=1

‖yi+1 − yi‖d : k ≥ 2, and (y1, . . . ,yk) is an X-path from p to q

 .

Given a Borel set C ⊂ RD, a random locally finite configuration of points X ⊂ C is said to be a
Poisson point process with intensity λ > 0 if for any pair of disjoint Borel sets A,B ⊂ C, we have

P(#(X ∩A) = k,#(X ∩B) = j) =
e−(λ|A|+λ|B|)(λ|A|+ λ|B|)k+j

k! j!
.

We observe that if X turns out to be a Poisson process, {DX(p,q)} is a family of random variables
indexed by (p,q) ∈ R2D and almost surely, for any two points p,q there is a unique path along
which DX(p,q) is realized. Let 0 be the origin of RD, then
Proposition B.1 (Howard & Newman (1997), Lemma 3 and Lemma 4). Let X be an intensity one
Poisson process. There exists 0 < µ <∞ such that

lim
‖q‖→∞

DX(0,q)

‖q‖
= µ, almost surely. (3)

B.2 RANDOM NUMBER OF POINTS IN A COMPACT SET

We use a scaling argument to export the above result to our setting, in which we have an i.i.d sample
in a compact set and the number of points goes to infinity. Let C ⊂ RD be a convex compact set
and let XN = {x1, . . . ,xMN

} be a Poisson process in C with intensity N . So that, MN is a Poisson
random variable with parameter |A|N and conditionally on MN = K, XN is a uniform i.i.d sample
in A of size K. Call λ = 1/|C| the density.
Proposition B.2. Let α = (d− 1)/D. For p,q in the interior of C we have

lim
N→∞

NαDXN (p,q) = µλ−α‖p− q‖, in probability. (4)

Proof. We first observe that, since the limit is deterministic, it is enough to prove convergence in
distribution in (4). So, all the limits in this proof are in that sense. By translating, rotating and scaling
C, we can assume without loss of generality that p = 0 and q = e1 = (1, 0 . . . , 0). For every N ,
the distribution of XN coincides with the distribution of 1

(λN)1/D
X ∩ C. So (4) is equivalent to

lim
N→∞

λαNα

(λN)d/D
D

X∩(λN)
1
D C

(0, (λN)1/De1) = µ.

The only difference between (4) and (3) is that in (3) the distance is minimized among X−paths
while in (4) the distance is minimized among X ∩ (λN)1/DC-paths. For any two points p̃ and q̃
and a > 0, consider the a−dilation of the segment from p̃ to q̃

Jp̃, q̃Ka := {x : ‖x− y‖ ≤ a for some y in segment between p̃ and q̃}.
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We will show the stronger result that, for every a > 0

lim
N→∞

DX(0, Ne1)

N
= lim
N→∞

DX∩J0,Ne1KaN (0, Ne1)

N
. (5)

Assume there is an infinite sequence (Nk)k≥1 such that the minimizing path in DX(0, Nke1) con-
tains at least one particle qk in the complement of J0, Ne1KaN . For a such values of k we have

DX(0, Nke1)

Nk
=
DX(0,qk)

Nk
+
DX(qk, Nke1)

Nk
.

By Proposition B.1, as k →∞ we have

lim inf
k→∞

DX(0, Nke1)

Nk
≥ µ lim inf

k→∞

‖qk‖
Nk

+
‖qk −Nke1‖

Nk
≥ µ
√

1 + 2a > µ.

A contradiction with (3) that proves (5) and hence the proposition.

B.3 N POINTS IN A COMPACT SET

First observe that given two locally finite configurations X and X̂, if X ⊆ X̂, then

DX(p,q) ≤ DX̂(p,q).

Lemma B.1 (Coupling, Kallenberg (2002)). Let X and X̂ be Poisson point processes with intensities
0 < λ1 < λ2 respectively. Then both processes can be constructed in the same probability space
(Ω,F ,P) in such a way that with probability one X ⊆ X̂.
Proposition B.3. Let C ⊂ RD be a compact set and Xn = {x1, . . . ,xN} i.i.d random variables
with uniform distribution in C. Call λ = 1/|C|. Then

lim
N→∞

NαDXN (p,q) =
µ

λα
‖p− q‖.

Proof. For ε > 0, let X+
N , X

−
N be Poisson point processes in C with intensities N(1 + ε), N(1− ε)

respectively and denote M+
N = #(X+

N ∩ C), M−N = #(X−N ∩ C). Then,

lim
N→∞

M+
N

N
= 1 + ε, lim

N→∞

M−N
N

= 1− ε, a.s.

In particular, with probability one, for N large enough,

M−NN ≤
(

1− ε

2

)
N <

(
1 +

ε

2

)
N ≤M+

NN.

Due to Lemma B.1, we can construct X+
N ,X

−
N and XN in the same probability space in such a way

that in the event ΩN = {M−N ≤ N ≤ M+
N} we have X−N ⊆ XN ⊆ X+

N . Since P(ΩN ) → 1, by
Proposition B.2 we have for ω ∈ ΩN ,

NαDX+
N

(p,q) ≤ NαDXN (p,q) ≤ NαDX−
N

(p,q).

But the left hand side converges to µλ−α

1+ε ‖p−q‖ and the right hand side converges to µλ−α

1−ε ‖p−q‖.
This implies that for every ε > 0

µλ−α

1 + ε
‖p− q‖ ≤ lim inf

N→∞
NαDXN (p,q) ≤ lim sup

N→∞
NαDXN (p,q) ≤ µλ−α

1− ε
‖p− q‖.

We conclude
lim
N→∞

NαDXN (p,q) = µλ−α‖p− q‖.

To be more precise, for δ > 0, call NαDXN (p,q) =: ξN and L := µλ−α‖p− q‖. Then

P(|ξN − L| > δ) ≤ P(|ξN − L| > δ|ΩN )P(ΩN ) + P(ΩcN )→ 0, N →∞.
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C BEHAVIOR OF THE d-DISTANCE FOR NON-CONSTANT DENSITIES:
FERMAT’S PRINCIPLE

In this section we present synthetic data as additional evidence for the asymptotic behavior of
our estimator as N → ∞. Figure 3 shows different optimal paths for the d-distance for dif-
ferent values of d. Points are sampled from a bi-dimensional distribution with density given by
f(x) = λ11A1

(x) + λ21A2
(x), with λ1 > λ2 > 0. In this case, Fermat’s principle is equivalent to

Snell’s law: when the path crosses from one region to the other, since they have different densities,
the path breaks (black line).

Figure 3: Optimal paths for the d-distance. The black line corresponds to the theoretical calculation
of the macroscopic optimal path (equation (2)).

D RESTRICTION TO k-NEAREST NEIGHBORS

In this section we prove that the d-distance estimator does not change significantly if the mini-
mization is performed over paths in wich consecutive particles are choosen among the k-nearest
neighbors. The parameter k depends on N and the precision ε.

Let Nk(x) be the set of k-nearest neighbors of x and define

D̂XN (p,q) = min
(x1, . . . ,xK) ∈ XKN ,

,x1 = argminx∈XN `(x,p)
xK = argminx∈XN `(x,q)

xi+1 ∈ Nk(xi)

K−1∑
i=1

` (xi+1,xi)
d
. (6)

Proposition D.1. For every ε > 0 and k = O(log(N/ε)), with probability 1 − ε we have that
D̂XN (p,q) = DXN (p,q). More precisely, the minimizing path y∗1, . . . ,y

∗
K verifies y∗i+1 ∈ Nk(y∗i )

for all i = 1, . . . ,K − 1 with probability 1− ε.

The following lemma gives a upper bound for the probability that two consecutive particles in the
path are k-nearest neighbors. Proposition D.1 follows easily from that. DenoteB(x, r) = {y : ‖y−
x‖ < r} the open ball centered at x with radius r and ωD = |B(0, 1)|.
Lemma D.1. Let k0 ∈ N. Let KN be the length of the optimal, path and for each i ∈ N, let
Fi = {KN ≥ i} be the event that the optimal path has at least i particles. Then, there exists
c1, δ > 0 such that,

P
(
y∗i+1 6∈ Nk0(y∗i ), Fi

)
≤ c1
δ2

(1− δ)k0+1
, (7)

8
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Proof of Lemma D.1. For k ∈ N, denote with k(y∗i ) the k-nearest neighbor of y∗i and consider the
event

Eki =
{
y∗i+1 = k(y∗i )

}
∩ Fi.

Since there is no particle in the optimal path between y∗i and y∗i+1, in the region defined by

Bi =
{
x : ‖y∗i − x ‖d + ‖y∗i+1 − x ‖d < ‖y∗i+1 − y∗i ‖d

}
,

we haveBi∩XN = Ø. Define ri = ‖y∗i+1−y∗i ‖. It is easy to see thatBi∩B(y∗i , ri) has non-empty
interior and that there is a deterministic constant δ > 0, such that Bδri(x) ⊂ Bi for some x ∈ Bi.
Furthermore, {y∗i+1 = k(y∗i )} = {#(B(y∗i , ri) ∩ XN ) = k − 1}. Then

Eki ⊂{
i ≤ KN , |B(y∗i , ri) ∩ XN | = k − 1,

there isx ∈ Bi : B(x, δri) ⊂ B(y∗i , ri),

#(B(x, δri) ∩ XN ) = 0
}

⊂{
there is r > 0: #(B(y∗i , r) ∩ XN ) = k − 1,

there is x with B(x, δr) ⊂ B(y∗i , r),

#(B(x, δr) ∩ XN ) = 0, i ≤ KN

}
.

Let us consider a family {Ci}i≤Ntot
where each Ci is a open D-hypercube with length δr/

√
D that

satisfies

C ⊂
Ntot⋃
i=1

Ci , Ci ∩ Cj = ∅ i 6= j

Then, it is clear that any ball of radius r has non empty intersection with as much

Ncub =
ωD(2r)D

(δr)DD−D/2
=

2DωDD
D/2

δD

cubes and that any ball of radius δr contains at least one cube. Then there is p > 0, which depends
linearly only on δD such that, regardless the value of r, we have P(Eki ) ≤ Ncub(1− p)k. Then,

P
(
y∗i+1 6∈ Nk0(y∗i ), Fi

)
=

∞∑
k=k0+1

P(Eki ) ≤ c1
δ2

(1− δ)k0+1

Notice that the events {y∗i+1 ∈ Nk0(y∗i )} and {y∗i+2 ∈ Nk0(y∗i+1)} are not independent. However,
it is possible to bound the event that all consecutive particles in the optimal path are k-nearest
neighbors, for Nok large enough.

Proof of Proposition D.1. For fixed k0, the probability that for all pairs of consecutive particles are
k0-nearest neighbors is

P

(
K−1⋂
i=1

{
y∗i+1 ∈ Nk0(y∗i )

})
= 1− P

(
K−1⋃
i=1

{
y∗i+1 6∈ Nk0(y∗i )

}
∩ Fi

)

≥ 1−
K−1∑
i=1

P
(
y∗i+1 6∈ Nk0(y∗i ), Fi

)
≥ 1− Nc1

δ2
(1− δ)k0+1

≥ 1− ε,

if k0 is chosen in order to satisfy Nc1
δ2 (1− δ)k0+1 ≤ ε. That is, k0 = O(log(N/ε)).
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