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Abstract

Future neural interfaces will read and write population neural activity with high
spatial and temporal resolution, for diverse applications. For example, an artificial
retina may restore vision to the blind by electrically stimulating retinal ganglion
cells. Such devices must tune their function, based on stimulating and recording, to
match the function of the circuit. However, existing methods for characterizing the
neural interface scale poorly with the number of electrodes, limiting their practical
applicability. This work tests the idea that using prior information from previous
experiments and closed-loop measurements may greatly increase the efficiency of
the neural interface. Large-scale, high-density electrical recording and stimulation
in primate retina were used as a lab prototype for an artificial retina. Three key
calibration steps were optimized: spike sorting in the presence of stimulation arti-
facts, response modeling, and adaptive stimulation. For spike sorting, exploiting
the similarity of electrical artifact across electrodes and experiments substantially
reduced the number of required measurements. For response modeling, a joint
model that captures the inverse relationship between recorded spike amplitude and
electrical stimulation threshold from previously recorded retinas resulted in greater
consistency and efficiency. For adaptive stimulation, choosing which electrodes to
stimulate based on probability estimates from previous measurements improved ef-
ficiency. Similar improvements resulted from using either non-adaptive stimulation
with a joint model across cells, or adaptive stimulation with an independent model
for each cell. Finally, image reconstruction revealed that these improvements may
translate to improved performance of an artificial retina.

1 Introduction

Recent advances in large-scale electrical and optical recording have made it possible to record and
stimulate neural circuits at unprecedented scale and resolution [Jun et al., 2017, [Kipke et al., 2008}
Kerr and Denk, [2008|, Stosiek et al.l | 2003]]. These advances suggest the possibility of using electronic
devices to restore functions lost to disease, or to augment human capacities [Wilson et al., [1991|,
Schwartz, [2004]]. One such application is an artificial retina, which can provide a treatment for
incurable blindness by electrically stimulating retinal ganglion cells, the output neurons of the retina
[Stingl et al.,[2013| Humayun et al.,|2012} [Lorach et al., 2015]]. A high-fidelity device must encode a
visual scene by electrically stimulating retinal neurons in a way that produces accurate and useful
visual perception (Figure[TJA).
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However, to achieve this goal, the device must control the precise, asynchronous patterns of activity
transmitted by multiple ganglion cell types to the brain. This will require first identifying the location
and type of many individual ganglion cells in the patient’s retina, then characterizing their responses
to electrical stimulation. Previously, it has been shown that the location and types of individual retinal
ganglion cells can be identified using recorded activity [Richard et al., [2015]]. However, efficient
characterization of electrical responses remains unsolved.

For example, in ex vivo experiments with primate retina, intended as a lab prototype for an artificial
retina, characterization of neural response to stimulation of each of 512 electrodes individually
(to avoid nonlinear interactions) requires about an hour, and scales linearly with the number of
electrodes. Thus, with the advent of arrays that can stimulate thousands of electrodes [Dragas et al.,
2017] with multi-electrode current patterns [Fan et al.,|2018]], naive response calibration may be too
time-consuming for the clinic.

A B
encoding electrical responses decoding response adaptive

/_\‘ modeling > stimulation
4 BTy [Cont \ /

spike sorting

target electrical stimulation neural responses perception

Figure 1: (A) Functional components of a retinal prosthesis. (B) Different steps in adaptive character-
ization of electrical response properties.

In the present work, new methods are proposed to efficiently characterize the electrical stimulation
properties of a retinal interface, in a manner that may extend to other neural systems. Three novel
steps are presented to calibrate the interface, based on the voltage recorded in response to electrical
stimulation (Figure[IB):

o Spike sorting in the presence of electrical artifact: We develop a novel approach to
estimate electrical artifacts, a key hurdle in spike sorting [Mena et al.,[2017]], in a subspace
identified from past experimental data.

e Response modeling: We develop a model of electrical response properties of the target
cells; this model incorporates as a prior the observed relationship between recorded spike
amplitude and the threshold for electrical stimulation of a cell on a given electrode, from
past experimental data.

o Adaptive stimulation: Inspired by previous work [Lewi et al.,[2009, Shababo et al., 2013]],
we develop a method to exploit the data already recorded from a retina to optimize the
choice of stimulation patterns for the next batch of measurements.

Finally, to make these methods most relevant for artificial vision, a modification is presented that
minimizes error in the reconstructed visual stimulus, a more meaningful indicator of performance
than the recorded spike counts.

Below, each algorithm is described separately in detail, with the results presented in aggregate after.
Note that for simplicity, distinct notation is used for each algorithm; this notation is defined in the
beginning of each section.

2 Spike sorting in the presence of stimulation artifacts

The goal of spike sorting is to identify spikes fired in response to electrical stimulation, and to distin-
guish spikes produced by different neurons. Spike sorting in the presence of electrical stimulation
is difficult because the recorded spike voltages are corrupted by large stimulation artifacts with
magnitude and duration comparable to those of the spike waveforms (see for [Mena et al., 2017 for
examples). Hence, artifacts must be subtracted before identifying spikes. After artifact subtraction,
spikes are identified based on waveforms previously recorded in the absence of electrical stimulation.

Previous work from [[O’Shea and Shenoy, 2018]] estimated the stimulation artifact by exploiting
the artifact similarity for a given stimulation electrode, across different pulses, trials and recording



electrodes, but did not assign spikes to cells. [Mena et al., 2017] used previously recorded spike
waveforms to jointly estimate the cellular activity and artifacts, assuming a smooth change in artifact
with increasing currents. In comparison, this work identifies spikes by exploiting artifact similarity
across stimulating electrodes and experiments, eliminating the need to track and separate spikes and
artifact over a range of current levels, substantially reducing data requirements.

Let §o,r € RE be the L dimensional recorded data on electrode r when the stimulating electrode
has amplitude a (L is the number of timesteps considered following the electrical stimulus). Using
the artifacts estimated by applying the algorithm in [Mena et al.l [2017]] on previous experiments,
an n dimensional subspace A, 4(r.c) € RE*" is estimated for each stimulation amplitude (@) and
distance d(r, ¢) between the recording and stimulating electrodes. Hence the artifact is modeled as

Aa’d(r’e)gw., with I;W. € R"™ estimated from the recorded data.

Let Z., € {0,1} be the spiking activity of cell ¢ and W,, € RL*L be the Toeplitz matrix
consisting of shifted copies of a previously identified spike waveform on electrode . Each neuron has
at most one spike during the recording interval after stimulation, and the amplitude is exactly 1 when
it spikes. This constraint is incorporated approximately by a softmax parameterization of Z. , with
an auxillary parameter g, , allowing for the possibility of no spike and temperature 7 determining the
quality of approximation. Since neurons fire sparsely, an L1 norm penalty is applied on z.. , as well.

The artifact parameters b and spike assignments & are estimated by minimizing the penalized
reconstruction error (Lgpike-sort) for a particular stimulating electrode e, the recorded voltage traces on
multiple recording electrodes, and all the stimulating amplitudes simultaneously:

Lspike—sort = Z Z ||27a,r - (Aa,d(r,e)ga,r + Z Wc,rfc,a)”g + >\L1 Z ||fc,a||1- (1)

For the results presented here, L. = 55, n = 9, and cells with large amplitude on the stimulating
electrode were used for spike sorting (roughly 10 cells per electrode). See Results and Appendix for
details.

3 Response modeling

Given the spikes recorded in response to electrical stimulation, the goal of response modeling is
to estimate the activation probability for each cell and electrode pair. The standard method, which
involves estimating the response probability for each cell-electrode pair independently is presented
first, followed by a joint model that incorporates priors from previous experiments.

For estimating these models, /N samples of electrical stimulus-response pairs {en, A, Cr YN are
given, with stimulating electrode e,, € {1,---, N.}, activated cell ¢,, € {1,--- , N.}, and current
level a,, € {1,--- , N, }.

3.1 Independent model

This model assumes that there is no consistent relationship between recorded spikes and stimulation
threshold across cell-electrode pairs. Thus, for each sample, the sp1k1ng probability is modeled as
a Bernoulli distribution P(R,, = 1) := Ye, a,.c,, = e C"(an s Where pe, ., e, e,
are the parameters of the sigmoidal activation curve for the stimulating electrode en and cell c,,.
The parameters are inferred independently by using standard methods for maximizing the logistic
log-likelihood for each cell electrode pair.

3.2 Joint model

Using prior data on the relationship between recording and stimulation from previously recorded
retinas could lead to more efficient characterization of activation probabilities. Previous work
[Madugula et al.,|2017] suggests that for a given electrode, the recorded spike amplitude and the
stimulation threshold are inversely related. The inverse relationship lies on different curves for axonal
and somatic activation due to differences in channel density and geometry (Figure[3]A). This section
presents a model that jointly models this relationship across multiple cell-electrode pairs.

In the model, the activation threshold ¢, .. is related to the spike amplitude (F ) using a reciprocal
relationship, different for somatic or axonal activation (7 .) but common for all cell-electrode pairs



in a given retina (Equation[2)). A Gaussian prior on the parameters of the reciprocal relationship (z, y)
is derived from previously recorded retinas (Equation 3] see Results):

Qoo ~ N(ar,  + ?ZT ) @)
{zr,y7} ~ N(ur,27); T € {soma,axon}. (3)
Hence, the parameters of the model are given by
O = {{Pec dec o1 o1 V1 {5, U5 } e fsomaaxon} > V} 4)
and the resulting model likelihood (L 04e1) given by
Linodel = I P(Ry|an; pe,, cns Qen,cn ) e, e P(Ge,c|Be,c; 1. . YT, > VT ) )

Hie{soma,axon}P(xiv Yi |,Ui7 Zz)

The goal is to estimate the posterior over the parameters P(O|{ R, €5, an, cn }J7=Y). v is learned but
non-random, and other parameters are estimated by variational approximation of the posterior [Blei
et al.,[2017, [Wainwright et al.l [2008]]. The posterior is approximated using a Gaussian mean-field
variational distribution. This approximation is estimated by maximizing the evidence lower bound
(ELBO) on the log-likelihood using the reparametrization trick [Kingma and Welling, [2013]]. See
Appendix for details.

4 Adaptive stimulation

In this section, the goal is to develop an algorithm that uses responses from prior stimulation within
a retina to choose subsequent stimulation patterns, in closed loop. Since real-time closed loop
experiments are generally not feasible using existing hardware, the experiment is assumed to run in
multiple phases, with the algorithm choosing the entire collection of current patterns to stimulate in
the next phase. The first phase is non-adaptive: each electrode and amplitude is stimulated 7" times,
for a total of N, N,T. In subsequent phases, parameter estimates from earlier phases are used to
allocate a total of N, N,T stimuli unevenly across electrodes and amplitudes.

The number of stimuli for each electrode and amplitude, T, , € Z, is computed by minimizing a loss
function £, that depends on the estimation accuracy of the stimulation probabilities. In this paper, the
loss function is chosen as total variance in the estimate of response probability across electrodes and
amplitudes £ = Zeﬂ’c var(Ye,a,c), where var(ve,q,c) denotes the variance in estimate of activation
probability. This condition is identical to A-optimality in optimal design literature [[Atkinson et al.,
2007]], departing from the commonly used information-theoretic methods in neuroscience [Lewi
et al., 2009 [Paninski et al.| [2007]]; since the stimulation algorithms considered here choose only
one electrode-amplitude combination at a time (Section [3)), it is not necessary to account for the
dependence of estimation error between different probabilities as in D-optimality.

For adaptively choosing the stimulations, the estimation error in response probabilities . , after
T, . additional stimulations must be computed. Given the variance in estimate of the sigmoid
parameters (6., .), the error in probabilities at individual current levels is given using Taylor expansion
as var(Ye,a,c) ~ f;?;’cvar(Oe}c)féAa’C, where f’ is the sigmoid derivative. If T} , are the number
of previous stimulations, the variance of sigmoid parameters after (7. , + T, ,) stimulations is
approximated using the inverse of the resulting Fisher information I(#)~!. More concretely, the
asymptotic variance of maximum likelihood estimate d is related to the inverse Fisher information
computed using true parameter §. However as 6 is unknown, the inverse Fisher information is

approximated using the estimated parameters I (0, ). The resulting optimization problem is:

minimize  Loapistim = 3 Fom el (e.c)] ™ fl e

Te,a
e,a,c

subjectto > Too < NeNJT,  Tow >0 Ve,a

e,a

(6)

A soft-max representation of T , is used to minimize the unconstrained problem and the final
approximate solution is quantized to give an exact (integer) solution (full details in Appendix).



5 Evaluation for artificial retina application

To optimize and evaluate these techniques in a manner that most accurately captures the function of
an artificial retina, a metric for approximating the expected impact on visual function is developed.

Recent work [Shah et al., [2019] proposed that the perception from a collection of current patterns
may be added linearly when they are combined by sequential stimulation at a rate faster than visual
integration times. The stimulation sequence is chosen such that the response to each stimulation
pattern is independent, and the final perception depends only on the total number of spikes generated in
a temporal integration window. In this framework, the contribution of response probability estimation
error from each cell-electrode pair to the accuracy of perception is estimated. Let 2, denote the

observed spike response, given that the spiking probability is v. When cfc denotes the linear decoding
filter associated with activation of cell ¢, the cell’s contribution to perception is given by JcR’w The
expected change in perception when the cell response is generated by estimated probability 4 instead
of the true probability  is given by B4, g||d.(Ry — R,)||? = ||d.||?(var(Rs) + var(R,) + var (%)),
assuming ., and R are independent. The effect of inaccurate response probability estimation is
mainly accounted for by the last term: ||d,||2var(5).

In section [6.4] the performance for the retinal prosthesis application is evaluated using the above mea-
sure. The variance is either computed from the independent response model or the variational approx-
imation of the joint response model. For adaptive stimulation, the optimization problem in Equation
E]is modified by weighing each term by the strength of the decoder Y, >, > [|dc|[3var(§e,q,c)-

6 Results

Extracellular recording and stimulation of primate retinal ganglion cells ex vivo using a 512-electrode
technology [Litke et al., 2004, |[Frechette et al.l | 2005] were used to evaluate the performance of the
algorithms. First, recorded voltages from 30 minutes of visual stimulation were spike sorted using
custom software. The estimated spatio-temporal spike waveform for each cell was identified by
averaging the recorded voltage waveforms over thousands of recorded spikes. Spike amplitude was
measured on each electrode as the maximum negative voltage deviation, and spike shape was used
to determine if the electrode was recording from the soma (biphasic waveform) or axon (triphasic
waveform). Subsequently, electrical stimulation experiments were performed [Jepson et al., [ 2013]
by passing brief (~ 0.1ms), weak (~ 1uA)) current pulses repeatedly through each electrode
individually to identify the probability of eliciting a spike.
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Figure 2: Spike sorting (A) Artifact recorded for a 0.68uA triphasic current pulse, on electrodes at
different distances on a 60pm hexagonal grid. Lines in same column correspond to artifacts from
different retinal preparations but the same electrode, lines with the same color indicate recordings
from different pieces of retina from the same animal. (B) Comparison of estimated current index
for 50% spiking probability for the algorithm (y-axis) and manual analysis (x-axis) for the new
method (red) and the simplified method from Mena et al.|[2017] (baseline, blue). Each of the 241
dots represents a cell-electrode pair. (C) Comparison of spike sorting results on 5 trials, when the
5 trials were analyzed independently, and as part of a total of 24 trials. Histogram across multiple
cell-electrode pairs for the new method (red) and a simple form of a previous approach (blue) [Mena
et al.,[2017].



6.1 Spike sorting in the presence of stimulation artifacts

The performance of spike sorting was evaluated with voltage traces recorded in response to repeated
electrical stimulation. For each of the recorded traces, stimulation artifacts were estimated by applying
the simplified algorithm previously proposed in [Mena et al.,|2017]). Briefly, the artifact estimate is
initialized to the results obtained with a lower current amplitude, and then is updated by iterating
between greedy spike estimation and artifact estimation. The estimated artifacts for different relative
locations of stimulating and recording electrodes, across multiple experiments, are shown in Figure
2A. For a given stimulation current and a fixed distance between stimulating and recording electrodes,
the artifact was similar across different stimulating electrodes, and across recordings.

Improved spike sorting was therefore implemented using the reduced space to regularize the artifact
estimates. Performance was tested on the responses of one retina, with the artifact waveform
basis estimated from a 9-dimensional approximation of data from 22 recordings (>99% of variance
explained; see Appendix, Figure [6). Analysis of 24 repetitions for each electrode and amplitude
revealed that the estimated activation threshold (current value that elicits a spike with probability
0.5) matched the value obtained with human analysis to within 67% in 161/ 241 of cell-electrode
pairs (Figure 2B, left). In some cases the algorithm produced higher thresholds than the human, and
vice-versa, but no large overall bias was observed. These results were comparable to the value of
173/241 of pairs obtained with the baseline method (Figure 2B, right). Thus, the new and baseline
methods exhibited similar accuracy. To test whether the new method showed improved efficiency,
both algorithms were applied in two cases: using 5 trials, or 24 trials, per stimulation pattern. The
new approach resulted in greater consistency: spike times identified using fewer trials matched the
spike times identified using more trials more closely than with the baseline method (Figure [fC) Thus,
incorporating priors on artifact waveforms across recordings can allow for effective spike detection
with limited data.

6.2 Response modeling
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Figure 3: Response models (A) Relationship between observed spike amplitude (horizontal axis) and
activation threshold (vertical axis) for electrodes recording from soma (blue) or axon (red). Each dot
corresponds to a cell-electrode pair. Thin lines indicate fits obtained by different random samplings
of a subset of cells (B) Squared error in probability estimates, averaged over multiple cell-electrode
pairs (vertical axis) with different number of measurements using different methods. Measurements
are done in batches, with a total of 2N, N, measurements per batch. (C) Estimated spike probability
for a few cell-electrode pairs, showing improvement using the proposed methods.

To improve the efficiency of response model estimation, the effect of imposing priors on electrical
properties of cells was examined. To test the impact of priors with ground truth and separately from
spike sorting, neural responses were simulated based on activation probabilities estimated from a
previously recorded retina. Two models were compared: (a) an independent model, in which spike
probabilities are estimated without priors; (b) a joint model, in which spike probabilities are estimated
with priors.

The key concept used for priors is that electrical stimulation thresholds for a cell on different electrodes
should bear some relationship to the magnitude of the spike recorded on those electrodes, because
both threshold and spike amplitude should depend inversely on the physical distance to the spike
initiation region of the cell. Thus, for the joint model, the relationship between threshold and spike
amplitude for both axonal and somatic activation was learned from a set of 199 cell-electrode pairs
across 3 data sets (Figure[3]A), using the spike sorting algorithm in [Mena et al.| 2017]. The mean and
variance of the parameters of the inverse relationship were identified by fitting curves with randomly
sampled cell-electrode pairs.



The impact of using this prior was evaluated by measuring the responses from the simulated retina in
batches, where an average of 2 measurements per electrode and amplitude were delivered in each
batch. As the number of measurements increased, the joint model (green, Figure 3B, examples
in Figure [3C and additional data set in Figure[7JA) produced estimates of spike probability which
were more accurate than estimates made by the independent model (black curve). Thus, a prior
capturing the inverse relationship between spike amplitude and threshold can improve estimation of
the response model.

6.3 Adaptive stimulation
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Figure 4: Adaptive stimulation (A) Adaptive stimulation with different batch sizes (red lines) and
non-adaptive stimulation (black), both with the independent response model. Subsequent panels
indicate spatial distribution of the electrodes selected by the adaptive algorithm. (B) First phase: All
electrodes and amplitudes are selected uniformly (2 times each). Cell soma (red circle) and axon
direction (red lines) are estimated from detected spike waveform across electrodes. (C) Second phase:
The increase (yellow) and decrease (blue) in number of measurements in second (first adaptive) phase
compared to the first (non-adaptive) phase. Size of circle indicates the magnitude of deviation. (D, E)
Successive difference in the number of measurements for each electrode.

An alternative to regularizing based on previous retinas is to use feedback from measurements already
made in the target retina to select the next electrical stimulus, and thus potentially improve estimation
in closed loop. The effectiveness of this approach was tested using simulated data, to allow for
more repetitions of electrical stimulation than were present in recorded data. An adaptive algorithm
was developed using two stimuli on average per electrode and amplitude for each batch (2N N,
measurements in total). After the first non-adaptive phase, the adaptive algorithm divides all the
available capacity in the next batch across stimulations to minimize estimation error. With the simpler
independent model, adaptive stimulation gave lower estimation error compared to the non-adaptive
method (Figure 3B, red). The adaptive method with the independent model and the non-adaptive
method with the joint model exhibited similar performance, suggesting that, with sufficient data, the
computationally expensive adaptive stimulation can be replaced with better priors in non-adaptive
stimulation. The adaptive method with the joint model performed similarly to the adaptive model
with the independent model (not shown), possibly because the contribution of prior from previous
experiments is reduced with better stimulus selection. The estimated response probabilities as a
function of stimulation current for a few cell-electrode pairs after three phases of each approach are
shown in Figure [3IC, again showing similar performance of the two approaches.

In any adaptive method, a reduction in the number of adaptive phases reduces the computational
burden, but could also reduce performance. To explore this tradeoff, the algorithm was tested with a
smaller number of adaptive phases, and a corresponding increase in stimulation capacity per phase. A
small number of adaptive phases typically yielded high estimation accuracy; for example, two phases
with batch size 5 each yielded similar accuracy as 10 phases with batch size 1 each (Figure dA).

Adaptive stimulation also revealed systematic spatial structure in the electrodes selected for stim-
ulation. Compared to the uniform stimulation in the first (non-adaptive) phase, the electrodes on
lower left side of the array were stimulated more frequently in the second (adaptive) phase (Figure
HIC). This could potentially be explained by the geometry of the axons in the recording, which cross
the array in a particular direction as they head toward the optic nerve (Figure @B). Since cells could
either be stimulated directly at the soma or indirectly at the axon, electrodes on the side of the array



with more axons would potentially stimulate more cells on average. Thus, these electrodes would
contribute more to reducing error in estimation of response probabilities, and the adaptive algorithm
preferentially selects them. However, in the third (adaptive) phase, the algorithm corrects itself and
selects electrodes with fewer stimulated cells, presumably because estimation error remains high
in those cells (Figure D). For subsequent phases, there is no obvious spatial structure in selected
electrodes, presumably because the residual estimation is now similar across electrodes (Figure GE).
These observations were replicated in another retina (Figure |’Z|B,C,D,E).

6.4 Performance for neural interface
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Figure 5: Impact of electrical calibration on decoded stimulus (A) Contribution of imperfect prob-
ability estimates to error in linear decoding (y-axis), measured by variance in estimated probabilities,

2 A\2
weighted by decoder norm (%) as a function of the average number of stimulation pulses

(per electrode and amplitude, x-axis) for the three methods presented in the text. Independent and
joint model same as Figure [3] but stimuli for adaptive method chosen using the modified objective.
Black arrow indicates the trials at which the estimates are compared in (B). (B) Expected mean
squared error of linearly decoded stimulus when probabilities from different methods are used for
choosing the stimulation pattern. Each dot corresponds to a different white noise image. (C, D, E)
The improvement in the expected linearly decoded stimulus using different probability estimates
(over the independent model).

While the above techniques improve spike identification, response model estimation, and stimulus
selection, a larger issue is how effective these improvements are for the function of the neural
interface. In the case of vision restoration, performance ultimately depends on how each targeted cell
contributes to vision, and on how well an actual image can be represented in the collection of cells.

To test functional impact in a way that accounts for how cells contribute to perception, the adaptive
method was used with a modified error metric. Previous work proposes that
an artificial retina could linearly combine the expected perception from stimulation of different
electrodes by temporally multiplexing within the integration time of the brain. Expected perception
is inferred by assuming that the brain performs optimal linear reconstruction of the visual stimulus
from retinal inputs. When electrode e is stimulated at amplitude a, the change in perception due to
error in the estimate of response probability is given by > ||dc||*var(Ye,qc), Where d.. is the optimal
linear reconstruction filter for cell c. To evaluate adaptive estimation in this framework, the adaptive
algorithm was modified to minimize the error in visual stimulus reconstruction, across electrodes
and amplitudes (see Section[3). Applying the modified algorithm to simulated data revealed a faster
decrease in the stimulus reconstruction error that is attributable to response probability estimation,
compared to non-adaptive stimulation (Figure [5]A). As before, the joint model with non-adaptive
stimulation also outperformed the independent model.

To test functional impact in a way that captures variation in visual image structure, the spatial
reconstruction of 20 different target images based on electrical stimulation was examined. Optimizing
the electrical stimulation using estimated response probabilities for both the adaptive and joint



calibration algorithms (using the method in [Shah et al.,2019]) resulted in more accurate stimulus
reconstruction compared to the independent model (Figure [5B,C,D). Thus, the gains from efficient
characterization of electrical response properties are likely to translate into improved artificial vision.

7 Summary

This paper presents three novel methods to optimize the function of a neural interface, specifically, an
artificial retina for treating blindness. Using large scale multi-electrode recordings from primate retina
as a lab prototype, prior information and closed-loop approaches improved the accuracy and efficiency
of spike sorting, response modeling, and stimulus selection. Notably, the computationally expensive
closed-loop stimulation approach exhibited similar performance to a much simpler non-adaptive
approach that uses prior information from previous experiments, highlighting the value of using
large data sets to improve device function. Evaluation of image reconstruction revealed that these
approaches improved overall function in terms of the quality of the visual image transmitted to the
brain.

In principle, similar approaches may be useful in other neural systems (e.g. intra-Cortical micro-
stimulation [Salzman et al.,|1990] for proprioceptive feedback in motor prostheses [Salas et al., 2018]])
and in other neural interfaces (e.g. optical recording and stimulation [Shababo et al., 2013]]). With the
advent of large-scale data sets, as well as the availability of motor and visual prosthesis technologies
in many subjects, the methods developed here may be helpful in capturing similarities and differences
among individuals and experiments.

8 Future work

Future improvements in electrical response calibration are possible by addressing current technical
limitations and incorporating additional priors. For spike sorting, prior information about monotonic
increase of activation probabilities with increasing currents could be incorporated. For wider ap-
plicability, the artifact estimation method should be extended to stimulation patterns that were not
delivered in previous experiments. For response modeling, priors on the relationship between spike
amplitude on multiple electrodes and activation threshold/slope differences between soma and axon
may be useful [Jepson et al., 2013} [Fan et al., [2018]].

Several enhacements may be important in future work. First, for understanding the impact on artificial
retina, analysis of linear image reconstruction [Warland et al.l 1997, [Stanley et al.l | 1999] could be
extended to exploit more powerful nonlinear methods [Parthasarathy et al.,2017]]. Second, it may be
useful to evaluate response modeling, adaptive stimulation, and spike sorting together rather than
independently. Finally, future work could focus on reducing computational cost in addition to the
duration of electrical calibration.
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9 Appendix

9.1 Details on spike sorting in the presence of stimulation artifacts

Here, the spike sorting procedure presented in Section [2]is discussed in detail.

Let ¢, € R” be the recorded waveform of length L. The artifact is approximated in a subspace
learned from previous experiments. For a given amplitude a, and relative distance to recording
electrode d(s, ), an n dimensional basis is learned A, A(s.r)- The artifact is thus reconstructed using

an n dimensional learned parameter beR"as Agd(s, T)ba -
Let 7., € {0,1} be the spiking activity and W, ,, € RE*Z be the matrix consisting of shifted

copies of a previously identified spike waveform recorded on electrode 7. The contribution of neural
activity from cell c to the recorded data is given by W, ,Z¢ 4.

Each cell has at most one spike during this recording interval, and when it spikes the amplitude is
exactly 1. This constraint is incorporated by parameterizing ., as a softmax function of real valued
Ze,q With temperature 7 :

eZe.at/T

f, =
c,a,t Zt eZc.at/T L elde,a/T

where ¢, is an auxiliary parameter. Since only a few cells are activated in response to electrical
stimulation, a sparsity enforcing L1 norm penalty is applied on Z.

The artifact parameters b and spike assignments & are estimated by minimizing the penalized
reconstruction error (Lgpike-sort) for a particular stimulating electrode e, the recorded voltage traces on
multiple recording electrodes and all the stimulating amplitudes simultaneously:

['spike—sorl = Z Z ||37a,r - (Aa,d(r,e)ga,r + Z Wc,rfcﬁa)”% + >\L1 Z ch,a”l
a r c c

Optimization is performed using Adam (learning rate = 0.01), with Az, chosen using cross-validation
and temperature 7 is reduced to 0.8 times its previous value every time the loss converges.

9.2 Details on the joint response model

Here, the joint response modeling procedure presented in Section [3.2]is discussed in detail.

9.2.1 Model

The responses are denoted by R,, € {0, 1}. Similar to the independent model,

1

P(R,=1) = 1+ e~ Penon (@n—Gercn))

(7

where pe., ¢, s Ge,,,c, are the parameters of the sigmoidal activation curve for the stimulating electrode
e, and cell ¢,,.

For each cell ¢ and electrode e, F. . € R denotes the recorded spike amplitude and 7 . denotes
whether the electrode e is recording from the soma or axon, as determined by the spike shape. The
spike threshold g, .. is modeled as a Gaussian distribution, with a separate relationship for soma and
axons:

~N(zr, .+ Tere , v?) (8)
Ee C
Further, the prior for {z, y} is modeled with a two dimensional Gaussian
{z7,yr} ~ N(ur,Xr); T € {soma,axon} 9)
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The parameters for prior distribution (u7, ¥7) are estimated from stimulated electrode and cell pairs
in previous experiments.

Hence, the parameters of the model for electrically evoked responses are given by © =

{{pe,c, qeyc}zjl\fzﬁl:NC; {;,9;} je{soma,axon}s ¥} and the resulting model likelihood (Lmeqer) is

HnP(Rn‘an;pen,cn7Qen,cn)He,CP(Qe,clEe,dxTe’UyTe,mVTe,c)Hie{soma,axon}P(xhyi|M7L7Zi)-
9.2.2 Inference

The goal is to estimate the posterior distribution of model parameters given the recorded data
P(O|{R,, en,an,c,}"=N). During inference, v is treated as non-random and other parame-
ters are estimated by variational approximation [Blei et al.l 2017, Wainwright et al.l 2008]. Let
ZPee zdec z%i Ui represent the variational parameters corresponding to parameters in ©. A mean-

field variational approximation of the posterior is learned

P(@|{Rn7 €n, an,Cn Zi{v) ~ He,CQ(zpe‘c)q(zqevc)Hie{soma,azon}Q(zmi)Q(Zyi)- (10)

The parameters of the variational distribution (¢) are estimated by maximizing the evidence lower
bound (ELBO) on the log-likelihood (— log Loger):

- log ‘Cmodel Z ]Eq(z) IOg P(Ra Z) + H(q(z)) (11)

As shown below, the first term of the joint probability corresponds to modeling electrically evoked
spikes, the second term corresponds to modeling spike threshold from spike amplitudes, and the
third term corresponds to the relationship between spike threshold and spike amplitude for all the
cell-electrode pairs within a retina:

n=N
Eq()l0g P(R, Z) = ) Eqy(arencn ) gy (ztencn) 10g P(Rn, 2Pomen 20emen|ay,)
n=1
S By ey o P, £ 0| Bo 5, ) 3 B sy o P ),
| (12)
The variational distributions are parameterized as Gaussians: gg(zPec) = N(¢)"°, ¢75°);
qp(29°) = N (i, 925°)s qp(2™) = N'(¢57, ¢%) and g4 (2¥) = N'(%, 91 ), with H (q) being

the sum of Gaussian entropy corresponding to each variational parameter.

For maximizing the ELBO, the variational parameters are sampled using the re-parametrization
trick [Kingma and Welling, 2013]: z = ¢, + ¢,2¢, € ~ N (0, I). The empirical approximation of
ELBO is computed by averaging 10 samples for p, ¢ and one sample for z, y. This approximation is
maximized by stochastic gradient descent with norm clipping. At each step of the stochastic gradient
descent, the objective function is evaluated over all samples, resulting in randomness only due to
sampling of variational parameters. Finally, the posterior activation probabilties are estimated by
averaging over 1000 random samples of 2% z9.

9.3 Details on adaptive stimulation

Here, adaptive stimulus selection procedure presented in Sectiond]is described in detail.

The goal is to minimize the total uncertainty in activation probability estimates over all electrodes,
amplitudes and cells (7e,q4,c). The adaptive stimulation proceeds in batches, where a total of N, N,T
stimulations must be unevenly divided across electrodes and amplitudes. Let T, , € Z, denote
the number of stimulations for electrode e and amplitude a in the next phase of the closed loop
experiment. Hence, the optimization problem to be solved after each batch is given by :

minimize  Lagapt-sim = E var(Ye,a,c)

e,a,c

subjectto > Too < NeNJT,  Tog >0 Ve,a.

e,a

13)
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Define X, = [a,1], 0c ¢ = [De,c, —Pe,cqe.c]. Under this notation, the activation probability e 4. =

Wm =f (—GZCX a)- Let T, , denote the previous number of measurements for electrode

e and amplitude a. The Fisher information of 6. . after (Te,a + Te,,a) stimulations is computed using
the chain rule as

I(Ge c) == Z(Te,a + T;a)"}/e,a,c(l - PYc,a,c)XaX21~ (14)

)

a

The asymptotic variance of the maximum likelihood estimate € is given by the inverse Fisher
information at the true parameter values /(6. ) ~*. Finally, the first-order expansion of 7, , . gives the
variance of individual parameter estimates as var (Ye,a,c) ~ (f')*var(fe.c) = QL , ;var(be.c)Qe,a,c,
where Qe q.c = Ye,a,c(1 — Ye,a,c)Xq. Normalizing the current levels a between —1 and 1 leads
to better condition number for Fisher information and better approximation of the variance. After
relaxing the integer constraint on T, ,, the optimization problem is:

minimize Eadapt—stim = Z Qé,a,c[Z(TE,a’ + Te/,a’)q/e,a’,c(l - 'Ye,a’,c)Xa’X;’]_lQe,a,c

e,a
e,a,c a’

subjectto > Toq < NeNJT,  Teg >0 Ve,a.

e,a

5)

As the true parameter values are not unknown, the estimated probabilities in Equation [I3] are
used instead. These are estimated either by maximum likelihood on the independent model, or
performing variational inference on the joint model. Re-parameterization of T, , converts the
constrained optimization problem into an unconstrained optimization problem. Specifically, a

ote,alT

S, etC/TG//T—’—eée//T
the temperature parameter and . is an auxillary parameter to allow for loose constraints. After
minimizing the unconstrained problem using Adam optimization [[Kingma and Ba, [2014], the exact
integer solution for T , is obtained by rounding.

is used, where 7 = 1000 is

soft-max representation of T, , = (N.N,T)

9.4 Approximation of artifacts in low dimensional space

A original artifacts B projected artifacts
distances distances
0 microns 60 microns 120 microns 0 microns 60 microns 120 microns

=T
sl
dids
P

<ids
gids
ail
=TT T
ddds
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Sode
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electelec2 elec1elec2 elec1 elec?2 elec1 elec2 | elec1 elec2| elec1 elec?2

Figure 6: (A) Recorded artifacts (same as Figure 2A), (B) Reconstruction of artifacts from a 9
dimensional subspace. The projection retains most of the structure in the variation of artifacts.
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9.5 Additional dataset

performance spatial pattern of selected electrodes

A B phase 1: uniform C phase 2 - phase 1

0.14

0.12 — independent
A — joint
I o0 — adaptive
Ro0s

phase 4 - phase 3
L]

5 10 15 20
average number of trials

Figure 7: Results for another retina. (A) Conventions as in Figure 3B. (B-E) Conventions as in Figure
4(B-E).
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