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ABSTRACT

We show that simple spatial transformations, namely translations and rotations
alone, suffice to fool neural networks on a significant fraction of their inputs in
multiple image classification tasks. Our results are in sharp contrast to previous
work in adversarial robustness that relied on more complicated optimization ap-
proaches unlikely to appear outside a truly adversarial context. Moreover, the
misclassifying rotations and translations are easy to find and require only a few
black-box queries to the target model. Overall, our findings emphasize the need to
design robust classifiers even for natural input transformations in benign settings.

1 INTRODUCTION

Neural networks are now widely embraced as dominant solutions in computer vision (Krizhevsky
et al., 2012; He et al., 2016), speech recognition (Graves et al., 2013), and natural language pro-
cessing (Collobert & Weston, 2008). While their accuracy scores often match (and sometimes go
beyond) human-level performance on key benchmarks (He et al., 2015; Taigman et al., 2014), we
still do not understand how robust neural networks are. A prominent issue in this context is the ex-
istence of so-called adversarial examples, i.e., inputs that are almost indistinguishable from natural
data to a human but cause state-of-the-art classifiers to make incorrect predictions with high confi-
dence (Szegedy et al., 2013; Goodfellow et al., 2014). This raises concerns about the use of neural
networks in contexts where reliability, dependability, and security are important desiderata.

There is a long line of work on methods for constructing adversarial perturbations in various set-
tings (Szegedy et al., 2013; Goodfellow et al., 2014; Kurakin et al., 2016a;b; Sharif et al., 2016;
Moosavi-Dezfooli et al., 2016; Carlini & Wagner, 2016; Papernot et al., 2017; Madry et al., 2017;
Athalye et al., 2017). However, these methods are quite sophisticated and the resulting perturbations
tend to be fairly contrived since they often rely on fine-tuned control over a large number of input
pixels or audio samples. So one may suspect that adversarial examples constitute a problem only in
the presence of a truly malicious attacker and are unlikely to arise in more benign environments. In
particular, the focus on intricate worst-case attacks so far raises a natural question:

Are neural networks robust to simple, naturally-occurring transformations of their input?

We address this question by studying two basic image transformations: translations and rotations.
While these transformations appear natural to a human, we show that small rotations and translations
alone (i.e., without any additional fine-tuned perturbation) can cause a significant drop in the model’s
performance. This holds even when the model has been trained using appropriate data augmentation
and no visual information is lost due to these transformations (e.g. due to cropping, see Figure 1).

1.1 OUR METHODOLOGY AND RESULTS

We start with standard image classifiers for the MNIST (LeCun et al., 1998), CIFAR10 (Krizhevsky
& Hinton, 2009), and ImageNet (Russakovsky et al., 2015) datasets. The classifiers achieve close to
state-of-the-art performance on the respective benchmarks. Nevertheless, we demonstrate that small
transformations can cause a significant drop in classification accuracy for these models. Depending
on dataset and model, this drop ranges from 34% to as high as 90% for the worst combination of
rotation angle and translation shift. Even for a small random transformation, the accuracy can drop
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Figure 1: Examples of adversarial transformations and their predictions in the standard, ”black
canvas”, and reflection padding setting.

by up to 30%. These results demonstrate that robustness to rotations and translations should also be
a concern in standard classification problems outside an adversarial security context.

Moreover, we show that direct access to the model (or a surrogate) is not necessary to find such
misclassifying transformations. Choosing the worst out of 10 random transformations suffices to
reduce the accuracy of these models by 26% on MNIST, 72% on CIFAR10, and 28% on ImageNet
(top 1 accuracy). Hence our results also give a strong baseline for fooling classifiers with a small
number of non-adaptive queries.

Finally, we examine possible ways to alleviate these vulnerabilities. A natural first step is to augment
the training procedure with rotations and translations. While this does largely mitigate the problem
on MNIST, the models trained on CIFAR10 and ImageNet are still far from robust. We thus propose
two natural methods for further increasing the robustness of these models. These methods are based
on robust optimization and aggregation of random input transformations. They offer significant
improvements in classification accuracy but also come with considerable computational overhead.
Even then, they are still not sufficient to completely mitigate the vulnerability. This suggests that
obtaining models robust to spatial transformations of their inputs remains a challenge.

Finally, we examine the interplay between rotations / translations and the widely used `∞-based ad-
versarial examples. We observe that robustness to these two classes of input perturbations is largely
orthogonal to each other. In particular, pixel-based robustness does not imply spatial robustness,
while combining spatial and `∞-bounded transformations seems to have a cumulative effect in re-
ducing classification accuracy. This emphasizes the need to broaden the notions of image similarity
in the adversarial examples literature beyond the common `p-balls.

1.2 SUMMARY OF CONTRIBUTIONS

We perform extensive experiments that provide a fine-grained understanding of rotation / translation
robustness on a wide spectrum of datasets and training regimes. In summary, we show that:

• A simple attack based solely on rotations and translations is effective against state-of-the-
art neural networks. This holds even when the model has been trained with appropriate
data augmentation and no image information is lost during the spatial transformation.

• Rotation / translation attacks are easy to execute, requiring only a few black-box queries.

• It is possible to increase a model’s robustness to rotations and translations at the cost of
increased training and / or inference time. However, these methods are still not sufficient
to fully recover the accuracy on unmodified images.

• Robustness to `∞-bounded perturbations does not significantly affect spatial robustness.
Instead, these two notions appear orthogonal to each other.

• First-order methods are significantly less effective for finding adversarial transformations
than an exhaustive search over a fine grid of transformations. This is in stark contrast to
`p-bounded perturbrbations where first-order methods have been very successful (Carlini &
Wagner, 2016; Madry et al., 2017). Hence rigorous evaluation of model robustness in this
spatial setting requires techniques that are different from `p-bounded adversarial examples.
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2 ADVERSARIAL ROTATIONS AND TRANSLATIONS

Recall that in the context of image classification, an adversarial example for a given input image x
and a classifier C is an image x′ that satisfies two properties: (i) on the one hand, the adversarial
example x′ causes the classifier C to output a different label on x′ than on x, i.e., we have C(x) 6=
C(x′). (ii) On the other hand, the adversarial example x′ is “visually similar” to x.

Clearly, the notion of visual similarity is not precisely defined here. In fact, providing a precise
and rigorous definition is extraordinarily difficult as it would require formally capturing the notion
of human perception. Consequently, previous work largely settled on the assumption that x′ is a
valid adversarial example for x if and only if ‖x − x′‖p ≤ ε for some p ∈ [0,∞] and ε small
enough. This convention is based on the fact that two images are indeed visually similar when they
are close enough in some `p norm. However, the converse is not necessarily true. A small rotation
or translation of an image usually appears visually similar to a human, yet can lead to a large change
when measured in an `p norm. We aim to expand the range of similarity measures considered in the
adversarial examples literature by investigating robustness to small rotations and translations.

Attack methods. Our first goal is to develop sufficiently strong methods for generating adversarial
rotations and translations. In the context of pixel-wise `p perturbations, the most successful approach
for constructing adversarial examples so far has been to employ optimization methods on a suitable
loss function (Szegedy et al., 2013; Goodfellow et al., 2014; Carlini & Wagner, 2016). Following
this approach, we parametrize our attack method with a set of tunable parameters and then optimize
over these parameters. We perform this optimization in three distinct ways:

• First-Order Method (FO): Starting from a random choice of parameters, we iteratively
take steps in the direction of the gradient of the loss function. This is the direction that
locally maximizes the loss of the classifier (as a surrogate for misclassification probability).
Note that unlike the `p-norm case, we are not optimizing in the pixel space but in the latent
space of rotation and translation parameters.
• Grid Search: We discretize the parameter space and exhaustively examine every possible

parametrization of the attack to find one that causes the classifier to give a wrong pre-
diction (if such a parametrization exists). Since our parameter space is low-dimensional
enough, this method is computationally feasible (in contrast to a grid search for `p-based
adversaries).
• Worst-of-k: We randomly sample k different choices of attack parameters and choose the

one on which the model performs worst. As we increase k, this attack interpolates between
a random choice and grid search.

While a first-order attack requires full knowledge of the model to compute the gradient of the loss
with respect to the input, the other two attacks do not. They only require the outputs corresponding
to chosen inputs, which can be done witho only query access to the target model.

Next, we need to define the exact range of attacks we want to optimize over. For the case of rotation
and translation attacks, we wish to find parameters (δu, δv, θ) such that rotating the original image
by θ degrees around the center and then translating it by (δu, δv) pixels causes the classifier to
make a wrong prediction. Formally, the pixel at position (u, v) is moved to the following position
(assuming the point (0, 0) is the center of the image):[

u′

v′

]
=

[
cos θ − sin θ
sin θ cos θ

]
·
[
u
v

]
+

[
δu
δv

]
.

We implement this transformation in a differentiable manner using the spatial transformer blocks
of (Jaderberg et al., 2015). In order to handle pixels that are mapped to non-integer coordinates,
the transformer units include a differentiable bilinear interpolation routine. Since our loss function
is differentiable with respect to the input and the transformation is in turn differentiable with re-
spect to its parameters, we can obtain gradients of the model’s loss function w.r.t. the perturbation
parameters. This enables us to apply a first-order optimization method to our problem.

By defining the spatial transformation for some x as T (x; δu, δv, θ), we construct an adversarial
perturbation for x by solving the problem

max
δu,δv,θ

L(x′, y), for x′ = T (x; δu, δv, θ) , (1)
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where L is the loss function of the neural network1, and y is the correct label for x. Since this is a
non-concave maximization problem, there are no guarantees for the global optimality of a general
first order method.

3 IMPROVING INVARIANCE TO SPATIAL TRANSFORMATIONS

As we will see in Section 4, augmenting the training set with random rotations and translations
does improve the robustness of the model against such random transformations. However, data aug-
mentation does not significantly improve the robustness against worst-case attacks and sometimes
leads to a drop in accuracy on unperturbed images. To address these issues, we explore two simple
baselines that turn out to be surprisingly effective.

Robust Optimization. Instead of performing standard empirical risk minimization to train the
classification model, we utilize ideas from robust optimization. Robust optimization has a rich
history (Ben-Tal et al., 2009) and has recently been applied successfully in the context of defending
neural networks against adversarial examples (Madry et al., 2017; Sinha et al., 2017; Raghunathan
et al., 2018; Kolter & Wong, 2017). The main barrier to applying robust optimization for spatial
transformations is the lack of an efficient procedure to compute the worst-case perturbation of a
given example. Performing a grid search (as described in Section 2) is prohibitive as this would
increase the training time by a factor close to the grid size, which can easily be a factor 100 or 1,000.
Moreover, the non-convexity of the loss landscape prevents potentially more efficient first-order
methods from discovering (approximately) worst-case transformations (see Section 4 for details).

Given that we cannot fully optimize over the space of translations and rotations, we instead use a
coarse approximation provided by the worst-of-10 adversary (as described in Section 2). So each
time we use an example during training, we first sample 10 transformations of the example uni-
formly at random from the space of allowed transformations. We then evaluate the model on each
of these transformations and train on the one perturbation with the highest loss. This corresponds
to approximately minimizing a min-max formulation of robust accuracy similar to (Madry et al.,
2017). Training against such an adversary increases the overall time by a factor of roughly six.2

Aggregating Random Transformations. As Section 4 shows, the accuracy against a random
transformation is significantly higher than the accuracy against the worst transformation in the al-
lowed attack space. This motivates the following inference procedure: compute a (tyipcally small)
number of random transformations of the input image and output the label that occurs most common
in the resulting set of predictions. We constrain these random transformations to be within 5% of
the input image size in each translation direction and up to 15◦ of rotation. 3 The training procedure
and model can remain unchanged while the inference time is increased by a small factor (equal to
the number of transformations we evaluate on).

Combining Both Methods. The two methods outlined above are orthogonal and in some sense
complementary. We can therefore combine robust training (using a worst-of-k adversary) and ma-
jority inference to further increase the robustness of our models.

4 EXPERIMENTS

We evaluate standard image classifiers for the MNIST (LeCun et al., 1998), CIFAR10 (Krizhevsky
& Hinton, 2009) and ImageNet (Russakovsky et al., 2015) datasets. In order to determine the extent
to which misclassification is caused by insufficient data augmentation during training, we examine
various data augmentation methods. We begin with a description of our experimental setup.

1The loss L of the classifier is a function from images to real numbers that expresses the performance of the
network on the particular example x (e.g., the cross-entropy between predicted and correct distributions).

2We need to perform 10 forward passes and one backwards pass instead of one forward and one backward
pass required for standard training.

3Note that if an adversary rotates an image by 30◦ (a valid attack in our threat model), we may end up
evaluating the image on rotations of up to 45◦.
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Model Architecture. For MNIST, we use a convolutional neural network derived from the Ten-
sorFlow Tutorial (tft). In order to obtain a fully convolutional version of the network, we replace
the fully-connected layer by two convolutional layers with 128 and 256 filters each, followed by
a global average pooling. For CIFAR10, we consider a standard ResNet (He et al., 2016) model
with 4 groups of residual layers with filter sizes [16, 16, 32, 64] and 5 residual units each. We use
standard and `∞-adversarially trained models similar to those studied by Madry et al. (2017).4,5 For
ImageNet, we use a ResNet-50 (He et al., 2016) architecture implemented in the tensorpack
repository (Wu et al., 2016). We did not modify the model architectures or training procedures.

Attack Space. In order to maintain the visual similarity of images to the natural ones we restrict
the space of allowed perturbations to be relatively small. We consider rotations of at most 30◦ and
translations of at most (roughly) 10% percent of the image size in each direction. This corresponds
to 3 pixels for MNIST (image size 28 × 28) and CIFAR10 (image size 32 × 32), and 24 pixels for
ImageNet (image size 299 × 299). For grid search attacks, we consider 5 values per translation
direction and 31 values for rotations, equally spaced. For first-order attacks, we use 200 steps of
projected gradient descent of step size 0.01 times the parameter range. When rotating and translating
the images, we fill the empty space with zeros (black pixels).

Data Augmentation. We consider five variants of training for our models.

• Standard training: The standard training procedure for the respective model architecture.

• `∞-bounded adversarial training: The classifier is trained on `∞-bounded adversarial ex-
amples that are generated with projected gradient descent.

• No random cropping: Standard training for CIFAR-10 and ImageNet includes data aug-
mentation via random crops. We investigate the effect of this data augmentation scheme by
also training a model without random crops.

• Random rotations and translations: At each training step, we perform a uniformly random
perturbation from the attack space on each training example.

• Random rotations and translations from larger intervals: As before, we perform uniformly
random perturbations, but now from a superset of the attack space (40◦, ± 13% pixels).

4.1 EVALUATING MODEL ROBUSTNESS

We evaluate all models against random and grid search adversaries with rotations and translations
considered both separately and together. We report the results in Table 1. We visualize a random
subset of successful attacks in Figures 3, 4, and 5 of Appendix A.

Despite the high accuracy of standard models on unperturbed examples and their reasonable per-
formance on random perturbations, a grid search can significantly lower the classifiers’ accuracy on
the test set. For the standard models, accuracy drops from 99% to 26% on MNIST, 93% to 3% on
CIFAR10, and 76% to 31% on ImageNet (Top 1 accuracy).

The addition of random rotations and translations during training greatly improves both the random
and adversarial accuracy of the classifier for MNIST and CIFAR10, but less so for ImageNet. For
the first two datasets, data augmentation increases the accuracy against a grid adversary by 60% to
70%, while the same data augmentation technique adds less than 3% accuracy on ImageNet.

In Appendix A, we perform a fine-grained investigation of our findings:

• In Figure 8 we examine how many examples can be fooled by (i) rotations only, (ii) trans-
lations only, (iii) neither transformation, or (iv) both.

• We visualize the set of fooling angles for a random sample of the rotations-only grid in
Figure 9. We observe that the set of fooling angles is not contiguous.

• To investigate how many transformations are adversarial per image, we analyze the per-
centage of misclassified grid points for each example in Figure 10. While the majority of

4https://github.com/MadryLab/cifar10_challenge
5https://github.com/MadryLab/mnist_challenge
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images has only a small number of adversarial transformations, a significant fraction of
images is fooled by 20% or more of the transformations.

Table 1: Accuracy of different classifiers against rotation and translation adversaries on MNIST,
CIFAR10, and ImageNet. The allowed transformations are translations by (roughly) 10% of the
image size and ±30◦ rotations. The attack parameters are chosen through random sampling or grid
search with rotations and translations considered both together (“Rand.”, “Grid”) and separately
(“Rand. T.” and “Grid T.” for transformations, “Rand R.” and “Grid R.” for rotations). We consider
networks that are trained with (i) the respective standard setup, (ii) no data augmentation (if data
augmentation is present in standard setup), (iii) with an `∞ adversary, (iv) with data augmentation
corresponding to the attack space (±3px,±30◦) and an enlarged space (±4px,±40◦), and (v) with
worst-of-10 training for both types of augmentations.

Model Nat. Rand. Grid Rand. T. Grid T. Rand. R. Grid R.

M
N

IS
T

Standard 99.31% 94.23% 26.02% 98.61% 89.80% 95.68% 70.98%
`∞-Adv 98.65% 88.02% 1.20% 93.72% 34.13% 95.27% 72.03%
Aug. 30 99.53% 99.35% 95.79% 99.47% 98.66% 99.34% 98.23%
Aug. 40 99.34% 99.31% 96.95% 99.39% 98.65% 99.40% 98.49%

W-10 (30) 99.48% 99.37% 97.32% 99.50% 99.01% 99.39% 98.62%
W-10 (40) 99.42% 99.39% 97.88% 99.45% 98.89% 99.36% 98.85%

C
IF

A
R

10

Standard 92.62% 60.93% 2.80% 88.54% 66.17% 75.36% 24.71%
No Crop 90.34% 54.64% 1.86% 81.95% 46.07% 69.23% 18.34%
`∞-Adv 80.21% 58.33% 6.02% 78.15% 59.02% 62.85% 20.98%
Aug. 30 90.02% 90.92% 58.90% 91.76% 79.01% 91.14% 76.33%
Aug. 40 88.83% 91.18% 61.69% 91.53% 77.42% 91.10% 76.80%

W-10 (30) 91.34% 92.35% 69.17% 92.43% 83.01% 92.33% 81.82%
W-10 (40) 91.00% 92.11% 71.15% 92.28% 82.15% 92.53% 82.25%

Im
ag

eN
et

Standard 75.96% 63.39% 31.42% 73.24% 60.42% 67.90% 44.98%
No Crop 70.81% 59.09% 16.52% 66.75% 45.17% 62.78% 34.17%
Aug. 30 65.96% 68.60% 32.90% 70.27% 45.72% 69.28% 47.25%
Aug. 40 66.19% 67.58% 33.86% 69.50% 44.60% 68.88% 48.72%

W-10 (30) 76.14% 73.19% 52.76% 74.42% 61.18% 73.74% 61.06%
W-10 (40) 74.64% 71.36% 50.23% 72.86% 59.34% 71.95% 59.23%

Padding Experiments. A natural question is whether the reduced accuracy of the models is due
to the cropping applied during the transformation. We verify that this is not the case by applying
zero and reflection padding to the image datasets. We note that the zero padding creates a “black
canvas” version of the dataset, ensuring that no information from the original image is lost after a
transformation. We show a random set of adversarial examples in this setting in Figure 6 and a full
evaluation in Table 4. We also provide more details regarding reflection padding in Section B and
provide an evaluation in Table 6. All of these are in Appendix A.

4.2 COMPARING ATTACK METHODS

In Table 2 we compare different attack methods on various classifiers and datasets. We observe that
worst-of-10 is a powerful adversary despite its limited interaction with the target classifier. The first-
order adversary performs significantly worse. While it is still better than a random transformation
, it fails to approximate the ground-truth accuracy of the models and performs significantly worse
than the grid adversary and even the worst-of-10 adversary.

Understanding the Failure of First-Order Methods. The fact that first-order methods fail
to reliably find adversarial rotations and translations is in sharp contrast to previous work on
`p-robustness (Carlini & Wagner, 2016; Madry et al., 2017). For `p-bounded perturbations
parametrized directly in pixel space, prior work found the optimization landscape to be well-behaved
which allowed first-order methods to consistently find maxima with high loss. In the case of spatial

6



Under review as a conference paper at ICLR 2019

Table 2: Comparison of attack methods across datasets and models. Worst-of-10 is very effective
and significantly reduces the model accuracy despite the limited interaction. The first-order (FO)
adversary performs poorly, despite the large number of steps allowed. We compare standard training
to Augmentation (±3px,±30◦). For the full table, see Figure 3 of Appendix A.

MNIST CIFAR-10 ImageNet
Standard Aug. Standard Aug. Standard Aug.

Natural 99.31% 99.53% 92.62% 90.02% 75.96% 65.96%
Worst-of-10 73.32% 98.33% 20.13% 79.92% 47.83% 50.62%
First-Order 79.84% 98.78% 62.69% 85.92% 63.12% 66.05%

Grid 26.02% 95.79% 2.80% 58.92% 31.42% 32.90%

perturbations, we observe that the non-concavity of the problem is a significant barrier for first-order
methods. We investigate this issue by visualizing the loss landscape. For a few random examples
from the three datasets, we plot the cross-entropy loss of the examples as a function of translation
and rotation. Figure 2 shows one example for each dataset and additional examples are visualized
in Figure 11 of the appendix. The plots show that the loss landscape is indeed non-concave and
contains many local maxima of low value. The low-dimensional problem structure seems to make
non-concavity a crucial obstacle. Even for MNIST, where we observe fewer local maxima, the large
flat regions prevent first-order methods from finding transformations of high loss.
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Figure 2: Loss landscape of a random example for each dataset when performing left-right transla-
tions and rotations. Translations and rotations are restricted to 10% of the image pixels and 30◦, re-
spectively. We observe that the landscape is significantly non-concave, rendering first-order methods
to generate adversarial example ineffective. Figure 11 in the appendix shows additional examples.

Relation to Black-Box Attacks. Given its limited interaction with the model, the worst-of-10
adversary achieves a significant reduction in classification accuracy. It performs only 10 random,
non-adaptive queries to the model and is still able to find adversarial examples for a large fraction of
the inputs (see Table 2). The low query complexity is an important baseline for black-box attacks on
neural networks, which recently gained significant interest (Papernot et al., 2017; Chen et al., 2017;
Bhagoji et al., 2017; Ilyas et al., 2017). Black-box attacks rely only function evaluations of the target
classifier, without additional information such as gradients. The main challenge is to construct an
adversarial example from a small number of queries. Our results show that it is possible to find
adversarial rotations and translations for a significant fraction of inputs with very few queries.

Combining Spatial and `∞-Bounded Perturbations Table 1 shows that models trained to be
robust to `∞ perturbations do not achieve higher robustness to spatial perturbations. This provides
evidence that the two families of perturbation are orthogonal to each other. We further investigate
this possibility by considering a combined adversary that utilizes `∞ bounded perturbations on top
of rotations and translations. The results are shown in Figure 12. We indeed observe that these
combined attacks reduce classification accuracy in an (approximately) additive manner.

7



Under review as a conference paper at ICLR 2019

4.3 EVALUATING OUR DEFENSE METHODS.

As we see in Table 1, training with a worst-of-10 adversary significantly increases the spatial robust-
ness of the model, also compared to data augmentation with random transformations. We conjecture
that using more reliable methods to compute the worst-case transformations will further improve
these results. Unfortunately, increasing the number of random transformations per training example
quickly becomes computationally expensive. And as pointed out above, current first-order methods
also appear to be insufficient for finding worst-case transformations efficiently.

Our results for majority-based inference are presented in Table 5 of Appendix A. By combining
these two defense, we improve the worst-case performance of the models from 26% to 98% on
MNIST, from 3% to 82% on CIFAR10, and from 31% to 56% on ImageNet (Top 1).

5 RELATED WORK

The fact that small rotations and translation can fool neural networks on MNIST and CIFAR10 was
first observed in (Fawzi & Frossard, 2015). They compute the minimum transformation required to
fool the model and use it as a measure for a quantitative comparison of different architectures and
training procedures. The main difference to our work is that we focus on the optimization aspect of
the problem . We show that a few random queries usually suffice for a successful attack, while first-
order methods are ineffective. Moreover, we go beyond standard data augmentation and evaluate
the effectiveness of natural baseline defenses.

The concurrent work of Kanbak et al. (2017) proposes a different first-order method to evaluate
the robustness of classifiers based on geodesic distances on a manifold. This metric is harder to
interpret than our parametrized attack space. Moreover, given our findings on the non-concavity of
the optimization landscape, it is unclear how close their method is to the ground truth (exhaustive
enumeration). While they perform a limited study of defenses (adversarial fine-tuning) using their
method, it appears to be less effective than our baseline worst-of-10 training. We attribute this
difference to the inherent obstacles first-order methods face in this optimization landscape.

Recently, Xiao et al. (2018) and Tramèr & Boneh (2017) observed independently that it is possible to
use various spatial transformations to construct adversarial examples for naturally and adversarially
trained models. The main difference from our work is that we show even very simple transformations
(translations and rotations) are sufficient to break a variety of classifiers, while the transformations
employed in (Xiao et al., 2018) and (Tramèr & Boneh, 2017) are more involved. The transformation
in (Xiao et al., 2018) is based on performing a displacement of individual pixels in the original image
constrained to be globally smooth and then optimized for misclassification probability. Tramèr &
Boneh (2017) consider an `∞-bounded pixel-wise perturbation of a version of the original image
that has been slightly rotated and in which a few random pixels have been flipped. Both of these
methods require direct access to the attacked model (or a surrogate) to compute (or at least estimate)
the gradient of the loss function with respect to the model’s input. In contrast, our attacks can be
implemented using only a small number of random, non-adaptive transformations of the input.

6 CONCLUSIONS

We examined the robustness of state-of-the-art image classifiers to translations and rotations. We
observed that even a small number of randomly chosen perturbations of the input are sufficient to
considerably degrade the classifier’s performance.

The fact that common neural networks are vulnerable to simple and naturally occurring spatial trans-
formations (and that these transformations can be found easily from just a few random tries) indi-
cates that adversarial robustness should be a concern not only in a fully worst-case security setting.
We conjecture that additional techniques need to be incorporated in the architecture and training
procedures of modern classifiers to achieve worst-case spatial robustness. Also, our results under-
line the need to consider broader notions of similarity than only pixel-wise distances when studying
adversarial misclassification attacks. In particular, we view combining the pixel-wise distances with
rotations and translations as a next step towards the “right” notion of similarity in the context of
images.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep
learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

9

https://www.tensorflow.org/versions/r0.12/tutorials/mnist/pros/
https://www.tensorflow.org/versions/r0.12/tutorials/mnist/pros/


Under review as a conference paper at ICLR 2019

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A simple and accurate
method to fool deep neural networks. In 2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 2574–2582, 2016.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, pp. 506–519. ACM, 2017.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial examples. Inter-
national Conference on Learning Representations, 2018. URL https://openreview.net/forum?
id=Bys4ob-Rb.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.
doi: 10.1007/s11263-015-0816-y.

Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K. Reiter. Accessorize to a crime: Real and
stealthy attacks on state-of-the-art face recognition. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October 24-28, 2016, pp. 1528–1540, 2016.

Aman Sinha, Hongseok Namkoong, and John Duchi. Certifiable distributional robustness with principled
adversarial training. arXiv preprint arXiv:1710.10571, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to human-level
performance in face verification. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1701–1708, 2014.
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Figure 3: MNIST. Successful adversarial examples for the models studied in Section 4. Rotations
are restricted to be within 30◦ of the original image and translations up to 3 pixels per direction
(image size 28 × 28). Each example is visualized along with its predicted label in the original and
perturbed versions.
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12



Under review as a conference paper at ICLR 2019

Original
Standard

Petri dish
Perturbed

tray
Original

Adv. Trained

Petri dish
Perturbed
bell pepper

Original
Data Aug. 30

Petri dish
Perturbed

tray
Original

Data Aug. 40

Petri dish
Perturbed
cucumber

boathouse guillotine boathouse umbrella boathouse guillotine boathouse plastic bag

totem pole wallet wallet envelope wallet envelope totem pole swimming trunks

golfcart trailer truck goblet red wine golfcart car mirror wallet refrigerator

goblet red wine toyshop perfume goblet red wine capuchin titi

toyshop confectionery garter snake alligator lizard garter snake African crocodile golfcart minivan

garter snake African crocodile hyena brown bear hyena platypus goblet red wine

hyena cheetah china cabinet thimble damselfly dragonfly toyshop face powder

damselfly dragonfly barrow barrel china cabinet golf ball water snake night snake

Figure 5: ImageNet. Successful adversarial examples for the models studied in Section 4. Rotations
are restricted to be within 30◦ of the original and translations up to 24 pixels per directions (image
size 299 × 299). Each example is visualized along with its predicted label in the original and
perturbed version.

13



Under review as a conference paper at ICLR 2019

Original
Cifar

airplane
Perturbed

ship
Original

ImageNet

harvester
Perturbed

screen

automobile horse vulture orangutan

airplane dog sea snake slug

dog cat crane pier

horse dog soup bowl eggnog

airplane bird bakery packet
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Figure 10: Cumulative Density Function plots. For each fraction of grid points p, we plot the per-
centage of correctly classified test set examples that are fooled by at least p of the grid points. For
instance, we can see from the first plot, MNIST Translations and Rotations, that approximately 10%
of the correctly classified natural examples are misclassified under 1/5 of the grid points transfor-
mations.
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Table 3: Comparison of attack methods across datasets and models.

Model Natural Worst-of-10 FO Grid

M
N

IS
T

Standard 99.31% 73.32% 79.84% 26.02%
`∞-Adversarially Trained 98.65% 51.18% 81.23% 1.20%

Aug. 30 (±3px,±30◦) 99.53% 98.33% 98.78% 95.79%
Aug. 40 (±4±,±40◦) 99.34% 98.49% 98.74% 96.95%

C
IF

A
R

10

Standard 92.62% 20.13% 62.69% 2.80%
No Crop 90.34% 15.04% 52.27% 1.86%

`∞-Adversarially Trained 80.21% 19.38% 33.24% 6.02%
Aug. 30 (±3px,±30◦) 90.02% 79.92% 85.92% 58.92%
Aug. 40 (±4px,±40◦) 88.83% 80.47% 85.48% 61.69%

Im
ag

eN
et Standard 75.96% 47.83% 63.12% 31.42%

No Crop 70.81% 35.52% 55.93% 16.52%
Aug. 30 (±24px,±30◦) 65.96% 50.62% 66.05% 32.90%
Aug. 40 (±32px,±40◦) 66.19% 51.11% 66.14% 33.86%

Table 4: Evaluation of a subset of Table 1 in the “black-canvas” setting (images are zero-padded to
avoid cropping due to rotations and translations). The models are trained on padded images.

Natural Random Worst-of-10 Grid Trans. Grid Rot. Grid

C
IF

A
R

10

Standard 91.81% 70.23% 25.51% 6.55% 83.38% 12.44%
No Crop 89.70% 52.86% 14.14% 1.17% 47.94% 9.46%

Aug. 30 (±3px,±30◦) 91.45% 90.82% 80.53% 63.64% 82.28% 76.32%
Aug. 40 (±4px,±40◦) 91.24% 91.00% 81.81% 66.64% 81.75% 78.57%

Im
ag

eN
et Standard 73.60% 46.59% 29.51% 15.38% 28.03% 23.81%

No Crop 66.28% 38.70% 14.17% 3.43% 8.87% 10.97%
Aug. 30 (±24px,±30◦) 64.60% 67.75% 47.32% 28.51% 45.33% 39.33%
Aug. 40 (±32px,±40◦) 49.20% 57.69% 38.36% 22.10% 32.84% 32.95%
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Figure 11: Loss landscape of 4 random examples for each dataset when performing left-right trans-
lations and rotations. Translations and rotations are restricted to 10% of the image pixels and 30◦

respectively. We observe that the landscape is significantly non-concave, making rendering FO
methods for adversarial example generation powerless.
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Figure 12: Accuracy of different classifiers against `∞-bounded adversaries with various values of
ε and spatial transformations. For each value of ε, we perform PGD to find the most adversarial `∞-
bounded perturbation. Additionally, we combine PGD with random rotations and translations and
with a grid search over rotations and translations in order to find the transformation that combines
with PGD in the most adversarial way.

B MIRROR PADDING

In the experiments of Section 4, we filled the remaining pixels of rotated and translated images with black (also
known as zero or constant padding). This is the standard approach used when performing random cropping for
data augmentation purposes. We briefly examined the effect of mirror padding, that is replacing empty pixels
by reflecting the image around the border6. The results are shown in Table 6. We observed that training with
one padding method and evaluating using the other resulted in a significant drop in accuracy. Training using
one of these methods randomly for each example resulted in a model which roughly matched the best-case of
the two individual cases.

6https://www.tensorflow.org/api_docs/python/tf/pad
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Table 5: Majority Defense. Accuracy of different models on the natural evaluation set and against a
combined rotation and translation adversary using aggregation of multiple random transformations.

Natural Acc. Grid Acc.
Model Stand. Vote Stand. Vote

M
N

IS
T

Standard 99.31% 98.71% 26.02% 18.80%
Aug 30. 99.53% 99.41% 95.79% 95.32%
Aug 40. 99.34% 99.25% 96.95% 97.65%

W-10 (30) 99.48% 99.40% 97.32% 96.95%
W-10 (40) 99.42% 99.41% 97.88% 98.47%

C
IF

A
R

10

Standard 92.62% 80.37% 2.82% 7.85%
Aug 30. 90.02% 92.70% 58.90% 69.65%
Aug 40. 88.83% 92.50% 61.69% 76.54%

W-10 (30) 91.34% 93.38% 69.17% 77.33%
W-10 (40) 91.00% 93.40% 71.15% 81.52%

Im
ag

eN
et

Standard 75.96% 73.19% 31.42% 40.21%
Aug 30. 65.96% 72.44% 32.90% 44.46%
Aug 40. 66.19% 71.46% 33.86% 46.98%

W-10 (30) 76.14% 74.92% 52.76% 56.45%
W-10 (40) 74.64% 73.38% 50.23% 56.23%

Natural
Random

(Zero)

Random

(Mirror)

Grid Search

(Zero)

Grid Search

(Mirror)

Standard Nat 92.62% 60.76% 66.42% 8.08% 5.37%

Standard Adv 80.21% 59.79% 67.12% 7.20% 12.89%

Aug. A, Zero 90.25% 91.09% 87.67% 59.87% 40.55%

Aug. B, Zero 89.55% 91.40% 87.94% 62.42% 42.37%

Aug. A, Mirror 92.25% 88.43% 91.05% 41.46% 53.95%

Aug. B, Mirror 92.03% 88.58% 91.34% 45.44% 57.97%

Aug. A, Both 91.80% 90.98% 91.28% 56.95% 52.60%

Aug. B, Both 91.57% 91.87% 91.11% 60.46% 56.13%

Table 6: CIFAR10: The effect of using reflection or zero padding when training a model. The
experimental setup matches that of Section 4. Zero padding refers to filling the empty pixels caused
by translations and rotations with black. Mirror padding corresponds to using a reflection of the
images. ”Both” refers to training using both methods and alternating randomly between them for
each training example.
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