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ABSTRACT

We present a Deep Neural Network with Spike Assisted Feature Extraction (SAFE-
DNN) to improve robustness of classification under stochastic perturbation of
inputs. The proposed network augments a DNN with unsupervised learning of low-
level features using spiking neuron network (SNN) with Spike-Time-Dependent-
Plasticity (STDP). The complete network learns to ignore local perturbation while
performing global feature detection and classification. The experimental results
on CIFAR-10 and ImageNet subset demonstrate improved noise robustness for
multiple DNN architectures without sacrificing accuracy on clean images.

1 INTRODUCTION

There is a growing interest in deploying DNNs in autonomous systems interacting with physical
world such as autonomous vehicles and robotics. It is important that an autonomous systems make
reliable classifications even with noisy data. However, in a deep convolutional neural networks (CNN)
trained using stochastic gradient descent (SGD), pixel level perturbation can cause kernels to generate
incorrect feature maps. Such errors can propagate through network and degrade the classification
accuracy (Nazaré et al.[(2017);|Luo & Yang|(2014)).

Approaches for improving robustness of a DNN to pixel perturbation can be broadly divided into
two complementary categories. First, many research efforts have developed image de-noising (or
filtering) networks that can pre-process an image before classification, but at the expense of additional
latency in the processing pipeline (Ronneberger et al.| (2015); Na et al.| (2019); Xie et al.| (2012);
Zhussip & Chun|(2018)); |Soltanayev & Chun| (2018));/Zhang et al.[(2017)). De-noising is an effective
approach to improve accuracy under noise but can degrade accuracy for clean images (Na et al.
(2019)). Moreover, de-noising networks trained on a certain noise type do not perform well if the
a different noise structure is experienced during inference (Zhussip & Chun| (2018))). Advanced
de-noising networks are capable of generalizing to multiple levels of a type of noise and effective for
different noise types (Zhussip & Chun|(2018)); Soltanayev & Chun/(2018);[Zhang et al.[(2017)). But
high complexity of these network makes them less suitable for real-time applications and lightweight
platforms with limited computational and memory resources.

An orthogonal approach is to develop a classification network that is inherently robust to input
perturbations. Example approaches include training with noisy data, introducing noise to network
parameters during training, and using pixel level regularization (Milyaev & Laptev|(2017); Nazaré
et al.| (2017); Luo & Yang|(2014); Na et al.|(2018); [Long et al.| (2019))). These approaches do not
change the processing pipeline or increase computational and memory demand during inference.
However, training-based approaches to design robust DNNs also degrade classification accuracy for
clean images, and more importantly, are effective only when noise structure (and magnitude) during
training and inference closely match. Therefore, a new class of DNN architecture is necessary for
autonomous system that is inherently resilient to input perturbations of different type and magnitude
without requiring training on noisy data, as well as computationally efficient.

Towards this end, this paper proposes a new class of DNN architecture that integrates features
extracted via unsupervised neuro-inspired learning and supervised training. The neuro-inspired
learning, in particular, spiking neural network (SNN) with spike-timing-dependent plasticity (STDP)
is an alternative and unsupervised approach to learning features in input data (Hebb et al.|(1950);
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Figure 1:(a) An example architecture of SAFE-DNN. (b) Transition of building blocks from SNN to spiking
convolution module of SAFE-DNN, with a special activation unit (SAU)

Bi & Pog (2001)] Diehl & Cook|(2015); She etll. (2019a); Querlioz et al. (2013); Srinivasan et al.
(2016)). STDP based SNN optimizes network parameters according to causality information with no
labels (Moreno-Bote & Drugowitsch (201%); Lansdell & Kording (2019)). However, the classi cation
accuracy of a STDP-learned SNN for complex datasets is much lower than a that of a DNN.

The fundamental premise of this paper is that, augmenting the feature space of a supervised (trained)
DNN with features extracted by an SNN via STDP-based learning increases robustness of the DNN
to input perturbations. We argue that stochastic gradient descent (SGD) based back-propagation
in a DNN enables global learning between low-level pixel-to-pixel interactions and high-level
detection and classi cation. On the other hand, STDP performs unsupervised local learning and
extracts low-level features under spatial correlation. By integrating features from global (supervised
training) and local (STDP) learning, the hybrid network “learns to ignore” locally uncorrelated
perturbations (noise) in pixels while extracting the correct feature representation from the overall
image. Consequently, hybridization of SGD and STDP enables robust image classi cation under
noisy input while preserving the accuracy of the baseline DNN for clean images.

We present a hybrid network architecture, referred to as Spike Assisted Feature Extraction based
Deep Neural Network (SAFE-DNN), to establish the preceding premise. We develop an integrated
learning/training methodology to couple the features extracted via neuro-inspired learning and
supervised training. In particular, this paper makes the following contributions:

We present a SAFE-DNN architecture (FigQte 1) that couples STDP-based robust learning
of local features with SGD based supervised training. This is achieved by integrating a
spiking convolutional module within a DNN pipeline.

We present a novel frequency-dependent stochastic STDP learning rule for the spiking
convolutional demonstrating local competitive learning of low level features. The proposed
learning method makes the feature extracted by the spiking convolutional module robust to
local perturbations in the input image.

We develop a methodology to transform the STDP-based spiking convolution to an equiv-
alent CNN. This is achieved by using a novel special neuron activation unit (SAU), a
non-spiking activation function, that facilitates integration of the SNN extracted features
within the DNN thereby creating a single fully-trainable deep network. The supervised
(SGD-based) training is performed in that deep network after freezing the STDP-learnt
weights in the spiking CNN module.

We present implementations of SAFE-DNN based on different deep networks including MobileNet,
ResNet and DenseNet (Sandler et [al. (2018), He et al. (2015), Huang et al. (2016)) to show the
versatility of our network architecture. Experiment is conducted for CIFRA10 and ImageNet subset
considering different types of noise, including Gaussian, Wald, Poisson, Salt&Paper, and adversarial
noise demonstrating robust classi cation under input noise. Unlike training-based approaches,
SAFE-DNN shows improved accuracy for a wide range of noise structure and magnitude without
requiring any prior knowledge of the perturbation during training and inference and does not degrade
the accuracy for clean images (even shows marginal improvement in many cases). SAFE-DNN
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complements, and can be integrated with, de-noising networks for input pre-processing. However,
unlike de-noising networks, the SAFE-DNN has negligible computation and memory overhead,
and does not introduce new stages in the processing pipeline. Hence, SAFE-DNN is an attractive
architecture for resource-constrained autonomous platforms with real-time processing.

We note that, SAFE-DNN differs from deep SNNSs that convert a pre-trained DNN to SNN (Sengupta
et al. (2019), Hu et al. (2018)). Such networks function as a spiking network during inference to
reduce energy; however, the learning is still based on supervision and back-propagation. In contrast,
SAFE-DNN hybridizes STDP and SGD during learning but creates a single hybrid network operating
as a DNN during inference.

2 BACKGROUND ONSNN

Spiking neural network uses biologically plausible neuron and synapse models that can exploit
temporal relationship between spiking events (Moreno-Bote & Drugowitsch (2015); Lansdell &
Kording (2019)). There are different models that are developed to capture the ring pattern of real
biological neurons. We choose to use Leaky Integrate Fire (LIF) model in this work described by:

dV=dt= a+ bV+ Cl , andV = Vreset ; |f Vv > Vthresh0|d (1)

where,a, bandc are parameters that control neuron dynamics,laistthe sum of current signal
from all synapses that connects to the neuron.

In SNN, two neurons connected by one synapse are referred to as pre-synaptic neuron and post-
synaptic neuron. Conductance of the synapse determines how strongly two neurons are connected and
learning is achieved through modulating the conductance following an algorithm named spike-timing-
dependent-plasticity (STDP) (Hebb et al. (1950); Bliss & Gardner-Medwin (1973); Gerstner et al.
(1993)). With two operations of STDP: long-term potentiation (LTP) and long-term depression (LTD),
SNN is able to extract the causality between spikes of two connected neurons from their temporal
relationship. More speci cally, LTP is triggered when post-synaptic neuron spikes closely after a
pre-synaptic neuron spike, indicating a causal relationship between the two events. On the other
hand, when a post-synaptic neuron spikes before pre-synaptic spike arrives or without receiving a
pre-synaptic spike at all, the synapse goes through LTD. For this model the magnitude of modulation
is determined by (Querlioz et al. (2013)):

Gp = pe p(G Gmin )=(Gmax  Gmin )and Gd = q4e d(Gmax  G)=(Gmax Gmin ) (2)

In the functions above, G, is the magnitude of LTP actions, and3q is the magnitude of LTD
actions. p, 4, p, d» Gmax andGyn are parameters that are tuned based on speci ¢ network
con gurations.

3 MOTIVATION BEHIND SAFE-DNN

The gradient descent based weight update process in a DNN computes the new wai§ht a/
r L, where the gradient of loss functianis taken with respect to weight:, L = h &g i
Consider cross entropy loss as an exampléforeight optimization of elemeritis described by:

1~ P
Nv@ . [ynlog(9n)lg
@w

Here is the rate for gradient desceit;is the number of classeg; is a binary indicator for the
correct label of current observation apdis the predicated probability of classby the network.

For equation (3), gradient is derived based on the output prediction probalyildies ground truth.

Such information is available only at the output layer. To generate the gradient, the output prediction
(or error) has to be back-propagated from the output layer to the target layer using chain rule. As
¥ = g(W; X) with g being the logistic function an¥ the input image, the prediction probabilities

are the outcome of the entire network structure. Consider the low level feature extraction layers in a
deep network. Equation (3) suggests that gradient of the loss with respect to a parameter is affected

W= W

3)
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by all pixels in the entire input image. In other words, the back-propagation makes weight update
sensitive to non-neighboring pixels. This facilitates global learning and improve accuracy of higher
level feature detection and classi cation.

However, the global learning also makes it dif cult to strongly impose local constraints during training.
Hence, the networkloes not learn to ignorcal perturbations during low-level feature extraction as
it is trained to consider global impact of each pixel for accurate classi cations. This means that during
inference, although a noisy pixel is an outlier from the other pixels in the neighbourhood, a DNN
must consider that noise agynalwhile extracting low-level features. The resulting perturbation
from pixel level noise propagates through the network, and degrades the classi cation accuracy.

The preceding discussion suggests that, to improve robustness to stochastic input perturbation (noise),
the low level feature extractors must learn to consider local spatial correlation. The local learning
will allow network to more effectively “ignore” noisy pixels while computing the low-level feature
maps and inhibit propagation of input noise into the DNN pipeline.

The motivation behind SAFE-DNN comes from the observation that STDP in SNN enables local
learning of features. Compared to conventional DNN, SNN conductance is not updated through
gradient descent that depends on back propagation of global loss. Consider a network with one
spiking neuron and connected input synapses, a spiking event of the neuron at e and

timing of closest spikes from all input spike traifigpu: , the modulated conductance is given by:

GY= Gi +sign( t) r(G)) p( ti:fi) @)

Here ti = tspike Ti‘nput is spike timing difference, is the magnitude function (Equation 2) and

p is the modulation probability function (Equation 5). The valuégke is a result of the neuron's
response to the collective sum of input spike trains in one kernel. Hence, the modulation of weight of
each synapse in a SNN depends only on other input signals within the same (local) receptive eld.
Moreover, as the correlation between the spike patterns of neighboring pre-synaptic neurons controls
and causes the post-synaptic spike, STDP helps the network learn the expected spatial correlation
between pixels in a local region. During inference, if the input image contains noise, intensity of
individual pixel can be contaminated but within a close spatial proximity the correlation is better
preserved. As the SNN has learned to respond to local correlation, rather than individual pixels, the
neuron's activity experiences less interference from local input perturbation. In other words, the SNN
“learns to ignore” local perturbations and hence, the extracted features are robust to noise.

4 SAFE-DNN ARCHITECTURE ANDLEARNING PROCESS

4,1 NETWORKARCHITECTURE

_ _ . Table 1: Network Complexity
Fig. 1 (a) shows an illustrative implementa-

tion of SAFE-DNN. The network containsModel Params (M) MACs (G)
spiking layers placed contiguously o forg asefing MobileNetv2 3,50 033

the splk_lng convolution module,.a_long W'thBaseIine ResNet101 44 55 787
conventlonal QNN layers. The spiking CONVOR,celine DenseNet121  7.98 290
lution module is placed at the front to enable

robust extraction of local and low-level feaSAFE-MobileNetv2  3.57 0.36
tures. Further, to ensure that the low-levepAFE-ResNet101 44.62 7.90
feature extraction also considers global lear@AFE-DenseNet121  8.04 2.94

ing, which is the hallmark of gradient back-
propagation as discussed in section 3, we place several conventional CNN layers of smaller size
in parallel with the spiking convolution module. This is called the auxiliary CNN module. The
output feature map of the two parallel modules is maintained to have the same height and width, and
concatenated along the depth to be used as input tensor to the remaining CNN layers, referred to as
the main CNN module. Main CNN module is responsible for higher level feature detection as well
as the nal classi cation. The main CNN module can be designed based on existing deep learning
models. The concatenation of features from auxilary CNN and spikining convolutional module helps
integrate global and local learning.
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Figure 2: Creating SAFE-MobileNetV2 from the original MobileNetV2

Fig. 2 shows the process of implementing SAFE-MobileNetV2 based on the original MobileNetV2.
The rst convolution layer and the following one block from the original network architecture are
dropped and the remaining layers are used as the mian CNN module of SAFE-MobileNetV2. We
show that SAFE-DNN is a versatile network by testing three con gurations in this work, which have
the main CNN module based on MobileNetV2, ResNet101 and DenseNet121, respectively. The
storage and computational complexity of the networks are shown in Table 1. It can be observed that
SAFE-DNN implementations do not introduce a signi cant overhead to the baseline networks.

In the dynamical system of SNN, neurons transmit information in the form of spikes, which are
temporally discrete events that spread across multiple simulation time steps. This requires input
signal intensity to be converted to spike trains, and a number of time steps for neurons to respond
to input stimulus. Such mechanism is different from that of the conventional DNN, which takes
only one time step for data to propagate through the network. Due to this reason the native SNN
model can not be used in spiking convolution module of SAFE-DNN. Two potential solutions to this
problem are, running multiple time steps for every input, or, adapting the spiking convolution module
to single-time-step response system. Since the rst slows down both training and inference by at least
one order of magnitude, we choose the latter.

Training Process. We separate STDP-based learning and DNN training into two stages. In the rst
stage, the spiking convolution module operates in isolation and learns all images in the training set
without supervision. The learning algorithm follows our novel frequency dependent STDP method
described next in section 4.2. In the second stage, network parameters are rst migrated to the spiking
convolution module of SAFE-DNN. The network building blocks of the spiking convolutional module

go through a conversion process shown in Fig. 1 (b). The input signal to spike train conversion
process is dropped, and conductance matrix is re-scaled to be used in the new building block. Batch
normalization is inserted after the convolution layer. In order to preserve the non-linear property of
spiking neurons, a special activation unit (SAU) is designed to replace the basic spiking neuron model.
Details about SAU is discussed later in section 4.3. Once the migration is completed, the entire
SAFE-DNN is then trained fully using statistical method, while weights in the spiking convolution
module are kept xed to preserve features learned by SNN. Network inference is performed using the
network architecture created during the second stage of training i.e. instead of the baseline LIF, the
SAU is used for modeling neurons.

4.2 SIKING CONVOLUTIONAL MODULE

Frequency-dependent stochastic STDP The STDP algorithm discussed in 2 captures the basic ex-
ponential dependence on timing of synaptic behavior, but does not address the associative potentiation
issue in STDP ( Levy & Steward (1979); Carew et al. (1981); Hawkins et al. (1983)). Associativity is

a temporal speci city such that when a strong (in case of our SNN model, more frequent) input and a
weak (less frequent) input into one neuron induce a post-synaptic spike, a following conductance
modulation process is triggered equivalently for the both.

In the context of STDP based SNN, associativity can cause erroneous conductance modulation if
unaccounted for (She et al. (2019b)). Therefore, we propose a frequency-dependent (FD) stochastic
STDP that dynamically adjust the probability of LTP/LTD based on input signal frequency. The
algorithm is described by:
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Figure 3: The architecture of the spiking convolutional module for feature extraction and layer-by-
layer learning process.

= f fmin = ffmin
P, = pe( SO aR et Seand))] andPy = de( ECa+ o)) (5)

In this algorithm, 4 and , are time constant parameterst is determined by subtracting the arrival

time of the pre-synaptic spike from that of the post-synaptic spijlg:( tpre ). Probability of LTP

P, is higher with smaller t, which indicates a stronger causal relationship. The probability of LTD

Pq is higher when t is larger. ; and 4 controls the peak value of probabilitiefgnax  andf min

de ne the upper and lower limit of input spike frequency dnis the value of input spike frequency.
When input spike originates from a weak input, the probability declines faster than that from a strong
input. As a result, pre-synaptic spike time of weak input needs to be much closer to the post-synaptic
spike than that of strong input to have the same probability of inducing LTP, i.e. the window for
LTP is narrower for weak input. The same rule applies to LTD behavior. As will be shown in the
following section, FD stochastic STDP exhibits better learning capability than conventional STDP.

SNN architecture The architecture of the spiking convolutional module is shown in Fig. 3. This
architecture resembles conventional DNN but have some differences. First, the 8-bit pixel intensity
from input images is converted to spike train with frequency over a rangeffggmto f nax . The

input spike train matrix connects to spiking neurons in the spiking convolution layer in the same way
as conventional 2D convolution, which also applies for connections from one spiking convolution
layer to the next. All connections as mentioned are made with plastic synapses following STDP
learning rule. When a neuron in the convolution layer spikes, inhibitory signal is sent to neurons at
the same (X,y) coordinate across all depth in the same layer. This cross-depth inhibition prevents all
neurons at the same location from learning the same feature. Overall, such mechanism achieves a
competitive local learning behavior of robust low level features that are crucial to the implementation
of SAFE-DNN.

A basic property of spiking neuron is that a num-
ber of spikes need to be received before a neuron
reaches spiking state and emits one spike. In a two
layer network this does not cause a problem but for
multiple-layer network it prohibits spiking signal to
travel deep down. Due to the diminishing spiking
frequency of multiple-layer SNN, a layer-by-layer
learning procedure is used. When the rst layer com-
pletes learning, its conductance matrix is kept xed
and cross-depth inhibition disabled. Next, all neu-
rons in the rst layer are adjusted to provide higher
spiking frequency by lowering the spiking threshold
Figure 4: Post-synaptic spiking frequency (H#) . The effect of changinliy, is illustrated in Fig.4.
vs. pre-synaptic spike frequency (Hz) In such way, neurons in the rst layer receive input
from input images and produce enough spikes that can facilitate learning behavior of the second layer.
The same process is repeated until all layers complete learning.

4,3 SPECIAL ACTIVATION UNIT

Consider the spike conversion process of SNN, given an input valde @f 0;1 and input
perturbation , conversion to spike frequency with rang® fnin ;fmax IS applied such that
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F = Clip f(X + )fmax fmin)g. For the duration of input signdli,eu: , the total received
spikes for the recipient il spike = bF - Tinput C. Also consider how one spiking neuron responses to
input frequency variation, which is shown in Fig.4: it can be observed that at regions exist throughout

spiking activity as its unique non-linearity. Therefore, jfgr T (oo o) perturbation does

not cause receiving neuron to produce extra spikes. While the exact valuignahges with different
input frequency, it is small only when original input frequency is near the edges of non-linearity. This
provides the network with extra robustness to small input perturbations. Based on this, we design the

P
Special Activation Unit (SAU) to be a step function in the fornf ¢k) = i i(x) where ; and
i=1
i are pre-de ned multiplication parameter and interval indicator function.

5 EXPERIMENTAL RESULTS
5.1 CIFAR10 DxTASET

Three baseline networks: MobileNetV2,

ResNet101 and DenseNetl21 are tested in

comparison with SAFE-DNN. We also studied

two enhancement methods for baseline networks,

namely, training with noisy input (30 dB) and using

average lter (2x2) for image pre-processingote

SAFE-DNN is never trained with noisy images;

it is only trained with clean images and only

tested with noisy imagesFig. 5 shows training

and test loss (top), and training accuracy and

test accuracy (bottom) for the training process

SAFE-MobileNetV2. The training time using a

desktop machine with Intel Core i7-7700K and

two NVIDIA GTX 1080 Ti GPUs, SNN learning

takes 265 minutes. Training time for SAFE-

MobileNetV2 is 63 minutes, for SAFE-ResNet101,

412 minutes and for SAFE-DenseNet121, 274

minutes. Figure 5: Training accuracy and loss; test accu-
racy and loss for SAFE-MobileNetV2.

Visualization of the embedding space We demonstrate the improved local feature extraction of

FD stochastic STDP by comparing capability of the deep network to cluster noisy input. Two SAFE-
MobileNetV2 are trained with FD stochastic STDP and deterministic STDP, respectively, and tested
on noisy input with AWGN noise. The embedding space is taken between the two fully connected
layers and each color represents one class. As shown in Fig. 6, 20 dB input is used for (i) and (ii),
18 dB for (iii) and (iv) and 15 dB for (v) and (vi). SAFE-MobileNetV2 implemented with features
extracted via FD stochastic STDP provides better clustering of different classes and achieves higher
accuracy.

Next, we compare the entire SAFE-DNN architecture with alternative designs. First, we consider
the standard (baseline) MobileNetV2. The second one, referred to as MobileNet the

same architecture as SAFE-MobileNetV2, but the spiking convolution module is replaced with
regular trainable DNN layers. The third one, referred to as the MobileNet\Vi&-constructed

by replacing the activation functions in the rst three layers of a trained MobileNet\&th the

SAU (without any re-training). The comparisons with MobileNetV2and MobileNetV2- show
whether bene ts of SAFE-MobilenetV2 can be achieved by only architectural modi cations or new
(SAU) activation function, respectively, without local STDP learning. All networks are trained with
CIFAR10 dataset. Fig. 7 shows embedding space visualizations of all four networks with clean
and noisy (SNR equal to 25dB) images. We observe that with clean input images, the vectors in
embedding space of the baseline MobileNetV2 are distributed into ten distinct clusters. As noise
is added to the images the clusters overlap which leads to reduced classi cation accuracy. On the
other hand, SAFE-MobileNetV2 is able to maintained good separation between feature mappings
for each class from no noise to 25 dB. We further observe that clusters for noisy images also heavily
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