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Abstract

Various Q-learning operators have been proposed to improve performance in the
presence of approximation or estimation errors. Recently, in ‘A Family of Robust
Stochastic Operators for Reinforcement Learning’, the authors prove rigorously
and show experimentally that stochastic operators can outperform more classical
operators, such as the Bellman and Consistent Bellman operator. In this paper, we
replicate their experimental results and find not only results mostly consistent with
the paper, but also demonstrate that these stochastic operators can converge more
rapidly to an optimal policy.

1 Introduction

Q-learning is a major technique in Reinforcement Learning, which functions by updating the agent’s
estimates of the value of state-action pairs according to some operator. While Q-learning using
Bellman operator based updates can be shown to exactly solve for the optimal policy in the absence of
approximation or estimation errors, this may not necessarily be the case for more complex problems.
In addition, when the values of different actions at a particular state are close, these approximation
errors further make learning the true optimal action difficult. Recent efforts to mitigate these effects
involve constructing Q-learning operators that are optimality preserving and action-gap increasing [2].
Optimality preserving operators guarantee convergence to the optimal policy while gap-increasing
operators improves Q-learning’s rate of convergence. Most recently proposed operators with the
above properties have been deterministic, which carry with them an inherent trade-off between
optimality preservation and action-gap increasing. More specifically, operators which increase the
action gap too much may violate optimality [3].

In ‘A Family of Robust Stochastic Operators for Reinforcement Learning’, the authors propose adding
randomness with certain properties to the standard Bellman operator to circumvent this trade-off. The
authors provide rigorous justification that these stochastic operators are both optimality-preserving
and gap increasing in a stochastic sense. They then provide experimental evidence of these claims as
well as directly compare the performance of their stochastic operator, the standard Bellman operator
and Consistent Bellman Operator, a type of deterministic gap increasing and optimality preserving
operator, on OpenAl gym games. In section 2, we will briefly explain relevant notation and the
relevance of the stochastically action-gap increasing and optimality-preserving properties in our
replication. In section 3, we compare the results found by [5] and our replicated results. In section
4, we analyze the performance of RSO under different exploration schemes, such as the e-greedy
and softmax methods. In section 5, we compare the performance of different distributions for the
perturbation term in the stochastic operator. In section 6, we summarize our findings.
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2 Properties of Robust Stochastic Operators (RSO)

In this section, we provide a brief overview of notation and then reiterate the proposed family of
robust stochastic operators described in [5], as well as explain why any sequence of these family
of operations are both stochastically optimality-preserving and gap-increasing. The MDP is given
by (X, A P, R,~), where X and A denote the state and action spaces respectively with transition
probabilities P : X x A x X — [0, 1], reward function R : X X A — [0, c0) and discount factor
v € [0,1). Let V and Q denote the set of real valued functions over X and X x A, where for @ € Q,
r € X, and a € A, the value function V' € V is defined as V(z) = max, By cp(.|2,Q (2, a).
Let {73, }xen denote a sequence of operators on Q where {0y }xen is a sequence of independent,
non-negative, and bounded random variables with expectation between 0 and 1 inclusive. Finally, a
robust stochastic operator is defined as the following:

T5.Qr(z,a) := R(z,a) + YEu ep(.|z,a) Vi (@) — Br [Vi(2) — Qr(z,a)] (1)

where Vj, € V and QQ € Q denote the agent’s updated value and state-action value tables after k
iterations. The authors further show this family of operators is also optimality-preserving in the
stochastic sense. That is, these operators guarantee that Q-learning converges to a policy returning
the true optimal actions at each state. This implies that that even training in the continuous sense is
possible with loss of optimality. Furthermore, the guarantee of optimality in the stochastic sense shows
that a convergence in an infinite dimensional space of random variables is possible, in contrast with
convergence in a discretized, finite dimensional space explored by the standard Bellman operators.

Among these sequences that are optimality-preserving, the papers also states that for sequences with
larger variance for 35 with the same mean, we also have a larger variance for Q(x, a). Intuitively,
an action-gap increasing operator widens the difference between the values of the actions of the
true optimal action and all sub-optimal actions for each state. Since the sequences are optimality-
preserving, we know that the value Q(z, a) will be very close to the optimal value Q*(x, b*), for
some optimal action b* in state . Therefore, by using a sequence of 3 with larger variance, there is
higher likelihood of the value Qx(x, a) being smaller, implying a larger action gap. Since this does
not affect the ultimate convergence of the operators, this simple implementation decision regarding
the variance [ can be used to exploit the stochastic ordering result explained previously.

As we will be comparing the performance of RSO to the classic and consistent Bellman operators,
we also note the differences among them. The classical Bellman operator makes no adjustment
for potential approximation or estimation errors, and hence 35 = 0 for all k. In contrast, the
consistent Bellman operator modifies the @) function such that action a is taken again if a yielded
no state transition; ' = x. Bellemare [2] showed that this operator is action-gap increasing and
optimality preserving and thus, given its simplicity, will serve as a representative benchmark amongst
deterministic operators to compare RSO against. The experimental results of these operators on
OpenAl Gym games are shown below.

3 Figures

In this section, we show and explain our experimental replication results for some of the OpenAl Gym
environments used in the paper: Acrobot, Mountain Car, and Lunar Lander. The authors observed that
“simply replacing the Bellman operator or the consistent Bellman operator with the RSO generally
results in significant performance improvements” in their experiments; our aim in this section is to
re-do the analysis from scratch to see if that observation can be verified, as well as attempt to recreate
the figures. This formed the bulk of our replication effort.

3.1 Acrobot

This environment is introduced in [4]. The authors [5] set up the state space as a 6-dimensional vector
with three actions each, with the goal of minimizing the total score. The position and velocity values
were discretized into 8 bins, while the other states were discretized into 10. Over 20 experiments,
they trained the three agents for many episodes (an explicit number was not given). The graph in
Figure 1a displays the average score of each of these agents, averaged over a 1000 episode moving
average.
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Figure 1: Acrobot Training Graphs

We attempted to replicate this environment by copying their specifications and using the hyperparam-
eters &« = 0.1, v = 0.999, Q;nst = 0, and 7' = 1. Our results are displayed in Figure 1b. Ultimately,
although the overall graph seems to be consistent with the fact that the average score of the RSO
agent outperforms the other two, our graph seems to have much more variance compared to the
original, as confirmed by the "jaggedness" of the visualization. This could be because we do not
perform any sort of annealing method to our learning algorithm, while the original authors may have
utilized an annealing method on top of the sliding window smoothing on the figure. In addition,
we investigated their action gap values achieved in each of the agents by running each of the three
algorithms for 100,000 episodes average over 72 trials. Although this is not consistent with the 40
trials they averaged in the paper, we assume that the mean action gap should still be similar between
our experiment and the original. Indeed, our replicated action gap values are consistent with the
original. Although our action gap values are larger than the original, this is still consistent with the
fact that our replication performed slightly better overall. In addition, the paper did not provide any
methodology for calculating the average action gap, so we computed this value by weighting the
action gap value for each state by the empirical visited frequency.

Table 1: Original vs Replicated Action Gaps

Experiment Original Replication

Bellman 0.1436 1.1966
Consistent 0.1263 1.4587
RSO 0.9004 2.3851

3.2 Mountain Car

This OpenAl Gym environment is introduced in [1]. The authors [5] replicated the set up of Mountain
Car by discretizing the 2-D state space into a 40x40 grid; there are three actions possible at each state
and the goal of the problem is to minimize the player’s score. Over 20 experiments, they trained the
three agents for 10,000 episodes of up to 200 steps, and reported the training graph shown in Figure
[2fa) (note that the graphs use a 500 episode moving average to smooth the curves). Their observation
was that the RSO agent performed much better on average than the Bellman and Consistent Bellman
agents.
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Figure 2: Mountain Car Training Graphs

We attempted to replicate this environment by not only using the specifications above, but also
choosing the hyperparameters o = 0.01, v = 0.99, Q;,;: = —50, and T = 1. Our results, shown in
Figure 2(b), match their observation that the average score of the RSO agent is much better than that
of the other two agents. From this standpoint, we can verify that replicating the training phase of this
experiment was relatively straightforward. The only hurdle was realizing a softmax distribution over
actions should be used to choose actions during the training phase; for more discussion on this please
see section 4.

The authors also reported testing results: after the 10,000 episodes of training, they used the final
policy to run the agent for 1,000 steps. They reported average testing scores and standard deviations
of 129.93 and 32.68 for the Bellman agent, 127.58 and 30.90 for the Consistent Bellman agent, and
122.70 and 7.25 for the RSO agent. These results were harder to replicate: the policy yielded by
the our training graph above in Figure 2(b) led to average testing scores and standard deviations of
123.69 and 9.48 for the Bellman agent, 119.45 and 3.66 for the Consistent Bellman agent, and 119.43
and 3.68 for the RSO agent.

In the paper, the RSO agent had by far the best testing performance; it outperformed the other two
operators and also had a much lower standard deviation. Our results paint a less straightforward
picture. The standard deviation of the RSO agent was just marginally better than the classic Bellman
agent and marginally worse than the Consistent Bellman agent on average. To delve deeper, we
repeated the same process with different training lengths and saw the following results (scores and
standard deviations):

Table 2: Training Time vs Testing Results
Experiment 500 (Episodes) 1000 2500 5000 10000
Bellman 193.14 (17.19)  151.78 (25.94) 126.81 (4.61) 124.54 (3.72) 123.69 (9.48)

Consistent  149.21 (24.20) 128.14 (4.47)  120.68 (3.41) 119.96 (3.43)  119.45 (3.66)
RSO 129.67 (5.16)  120.87 (3.30)  119.42 (3.70) 119.43 (3.69) 119.43 (3.68)

As the training time decreases, we see a larger divergence between the RSO agent and the classical
agents. With only 1000 episodes of training, the RSO agent attains testing results very close to those
attained after 10,000 episodes of training (120.87 vs 119.43). In contrast, after 1000 episodes of
training the Bellman and Consistent Bellman agents lag far behind. Furthermore, with short training
the testing results of the RSO agent have lower variance than those of the classical agents. This
is in line with our prior that the RSO agent learns faster and more stably than with the other two
operators, but does no better in the long term. Hence the authors’ claim of the RSO agent’s superior
performance seems valid in the context of this experiment, as it finds an equally good policy in a
shorter amount of time than the other agents.

3.3 Lunar Lander

We used the discrete LunarLander-v2 OpenAl Gym environment to evaluate the three agents: Bellman,
consistent Bellman, and RSO with epsilon-greedy and softmax policies. Additionally, learning rate




annealing was performed on the softmax agents for a total of 9 agents: BSC, BSA, BEC, CSC, CSA,
CEC, RSC, RSA, and REC, where the first character B/C/R indicates the type of update (Bellman,
consistent Bellman, RSO), the second character E/S indicates e-greedy/softmax, and the third C/A
indicates constant or annealed learning rate. Under this naming scheme, the original paper’s agents
would be BEC, CEC, and REC. The learning rate, o, was varied between the three values 0.01, 0.1,
and 0.5, but only the agents with learning rate 0.1 did well.

The state vector (6 real numbers + 2 bits) was discretized into 4 bins (given by the four intervals
in [—o00, —0.5,0,0.5, 00]) for each of the continuous entries. The total size of the state space was
16384.

The training rewards for the top 5 (out of 27) and BEC, CEC agent-hyperparameter pairs over 15000
episodes (100 moving average) are shown below:

LunarLander-v2 Training Rewards
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Figure 3: Lunar Lander Training Graphs

Notably, our rewards were much higher than those given in the original paper. There was little
difference between the performance of the consistent Bellman agents and the RSO agents. The
reward curves were relatively smooth (given the unknown smoothing factor on the original graph).

Over 3000 testing episodes and 20 experiments, a histogram was generated of the test rewards for the
top two agents (CSC and RSA):
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Figure 4: Lunar Lander Training Graphs

Notably, the distribution we got is centered much farther to the right (in the positive reward area)
than the one given in the original paper. This was true for all agents except BEC with a = 0.5.
Additionally, the distributions are approximately normal with low variance compared to the original



figure. The CSC agent had an marginally better center (36.38 vs 35.66) and lower standard deviation
(52.07 vs. 61.47) than the RSA agent. This would seem to indicate that the performance CSC is at
least equivalent to, if not superior to, that of RSA (and RSC, REC) in the LunarLander-v2 domain.
Hence we cannot clearly verify that the RSO agent performs better than the classical agents here.

4 Exploration Schemes

Although the authors mentioned that they used the e-greedy to balance exploitation and exploration,
they did not specify which values of € were used in each experiment. In particular, the authors
mentioned that the relative performance of the three different agents did not depend much on the
value of €.

For the Mountain Car experiments (we focused on these as they had the shortest runtime), we found
that € did somewhat affect the relative performance of the agents. This could be hyperparameter
dependent: perhaps our setup led to dependence on € while the authors’ setup did not. However, we
document our observations regarding e tuning below; note that the other hyperparameters were fixed
at the values o = 0.01, v = 0.99, and Q;,;: = —50.

Below are figures showing the average scores over 20 experiments for 10,000 episodes of training
for different exploration schemes. We have documented 3 values of € as well as the cases where the
softmax distribution with temperatures 1 and 2 are used to construct action probabilities. We tried
annealing epsilon as well. Each curve has a 500 episode moving average. Testing results are provided
in the table below the figures.
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Table 3: Testing Results for Different Exploration Schemes
e=0 e=01 €=0.3 Annealed,e=0.3 softmax,T=1 T =2

Bellman 171.55 162.28 130.52  150.56 123.69 146.58
Consistent 188.80 165.60 129.90 135.81 119.45 121.82
RSO 184.79 16130 127.58 138.74 119.43 119.42

There appears to be a difference between using an e-greedy training policy and using a softmax
approach. The softmax approach seems to lead to much greater differentiation in the training phase
between the RSO and classical agents. In the e-greedy graphs, the performance of the three agents is
in the same ballpark, but in the softmax graphs the RSO agent performs drastically better than the
other two.

As for testing results, it seems like both exploration schemes follow a similar trend: a higher
propensity to explore seems to result in better RSO performance relative to the classical agents. This
seems to be the case in both the training and testing phases, at least for the Mountain Car problem.
For example, in the training graphs we can see that for the e-greedy case, as ¢ increases the RSO
curves starts to seperate a little from the other two curves. In the softmax training case, the classical
operators really struggle in the higher temperature setting. We also can see that the gap between RSO
and the other agents widens in the more exploratory columns of the testing results table. Furthermore,
annealing the learning rate did not seem to have a large effect.

Although the authors explicitly mentioned they used the e-greedy method in their experiments, the
reader will note that the softmax graphs in Figure [5]look much more like the graphs in the paper than
the e-greedy graphs do. We took the step of emailing the authors to clarify this point; they confirmed
that they used the softmax operation to construct action probabilities for their agents.

To reiterate, we found that more exploratory behavior tended to improve the performance of the RSO
agent relative to the performance of the classical agents; in addition, the softmax method seemed to
produce more differentiation than the e-greedy method during the training phase.

5 Distribution of 3

As a proof of concept that higher variance distributions for {8} are more action-gap increasing,
the authors of RSO also compared the performance of the RSO agents using distributions {5} ~
UJ0,1) and {8} = 1 against the original {35} ~ UJ0,2). While the authors claim that {8} ~
U[0, 2) yields consistently superior performance, our results are mixed, suggesting that higher mean
distributions tend to perform better. We tested the three distributions U[0, 1), U0, 2), and fixed 1
that the authors used, as well as fixed 0, U[0, 1), U[0, 2), U[3$, 2), and {Bx} € {0,2} with equal
probability.

Table 4: Different Distributions of {5} with mean 1, in order of increasing variance

Experiment 500 (Episodes) 1000 2500 5000 10000
Br =1 129.40 (5.62) 121.31 (3.67) 119.43 (3.71) 119.40 (3.68) 119.42 (3.67)
Br ~ UL, 2)  129.68 (8.83) 121.06 (3.40) 119.46 (3.66) 119.41 (3.70) 119.43 (3.67)

1

2
Br ~ U0,2 129.67 (5.16) 120.87 (3.30) 119.42 (3.70) 119.43 (3.69) 119.43 (3.68)
Bk € {0,2} 130.83 (5.83) 121.12 (3.46) 119.43 (3.67) 119.42 (3.68) 119.37 (3.72)

Interestingly, there is no noticeable difference amongst these distributions, which all have mean 1 but
different variances. This is inconsistent with the authors’ [5] claim of higher variance improving per-
formance, theoretically and experimentally. However, performance seems to be positively correlated
with the mean, as shown below.



Table 5: Different Distributions of {3} in order of increasing mean

Experiment 500 (Episodes) 1000 2500 5000 10000

By = 193.14 (17.19) 15178 (25.94) 126.81 (4.61) 12454 (3.72) 123.69 (9.48)
Br ~U0,1) 18469 (22.89) 14190 (19.27) 124.55 (4.12) 121.73(3.32) 120.42 (3.39)
Br ~U[0,1) 172.53(29.26) 127.42(526)  121.57 (3.45) 120.10(3.39) 119.55 (3.62)
Br ~U[0,3) 143.02(18.81) 12425(3.95)  119.87 (3.47) 119.42(3.69) 119.43 (3.70)
Br ~U[0,2) 129.67(5.16)  120.87 (3.30)  119.42(3.70) 119.43 (3.69) 119.43 (3.68)

As the mean of /3 deviates from 1, the performance seems to decrease as well. This suggests that
distributions with higher mean may be optimal. As the authors showed that the expectation of {5}
being bounded between 0 and 1 is necessary condition for stochastic optimally-preserving.

6 Conclusion

We summarize our replication results below:

o In the replicated experiments (Acrobot, Mountain Car), we confirmed the authors’ findings
that the RSO agent achieved better training and testing performance than the classical agents.

o We were able to replicate the action gap results from the Acrobot experiment. We found that
the RSO agent actually had a larger action gap relative to the classical agents than stated in
the paper.

e We did not see the same negatively skewed, bimodal distribution of testing scores in the
Lunar Lander experiment that the authors saw. We also achieved a significantly higher
reward.

e We found that more exploratory hyperparameters (larger € in the e-greedy setting, larger
temperature in the softmax setting) led to a larger gap in performance between the RSO
agent and the classical agents. This contradicts the paper’s finding that the value of ¢ did not
affect the relative performance of the three operators (the paper did not explicitly mention
the softmax case).

e We found that using distributions with higher mean for 3j, led to better performance in the
Mountain Car experiment. However, the alternative distributions with equivalent mean such
as fixed 1, U[1, 2), Br € {0,2} had comparable performances, contradicting the authors’
claim that higher variance yields better performance.

Ultimately, our replication efforts seems to support the idea that using a Robust Stochastic Operator
for Q-Learning can often lead to better training and testing performance than the classical Bellman
and Consistent Bellman operators, although it does not seem to completely dominate the other two
agents as suggested in the original paper.
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