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ABSTRACT

We address the problem of recovering an underlying signal from lossy, inaccurate
observations in an unsupervised setting. Typically, we consider situations where
there is little to no background knowledge on the structure of the underlying sig-
nal, no access to signal-measurement pairs, nor even unpaired signal-measurement
data. The only available information is provided by the observations and the
measurement process statistics. We cast the problem as finding the maximum a
posteriori estimate of the signal given each measurement, and propose a general
framework for the reconstruction problem. We use a formulation of generative ad-
versarial networks, where the generator takes as input a corrupted observation in
order to produce realistic reconstructions, and add a penalty term tying the recon-
struction to the associated observation. We evaluate our reconstructions on several
image datasets with different types of corruptions. The proposed approach yields
better results than alternative baselines, and comparable performance with model
variants trained with additional supervision.

1 INTRODUCTION

Many real world applications require acquiring information about the state of some physical system
from incomplete and inaccurate measurements. For example, in infrared satellite imagery, one has
to deal with the presence of clouds and a variety of other external factors perturbing the acquisition
of temperature maps. This raises questions on how to recover the correct information and eliminate
the contribution of external factors hindering the overall signal acquisition.

In this context, signal recovery does not usually yield a unique solution, meaning that multiple signal
reconstructions could trivially explain the measurements. For the above example, different missing
temperature values could accurately explain the observations. To cope with this indeterminacy,
one usually relies on prior information on the structure of the true signal in order to constrain the
reconstruction to plausible solutions (Stuart (2010)). A common approach is to use handcrafted,
analytically tractable priors (Candes et al| (2005), [Mota et al.[(2017)). This approach is limited
to situations for which the underlying signal structure can be easily described, which are rarely
observed in the wild.

Recent developments in generative models parameterized by neural networks (Goodfellow et al.
(2014), Kingma & Welling| (2013), Dinh et al.| (2016)) offer a promising statistical approach to
signal recovery, for which priors on the signal are not handcrafted anymore, but learned from
large amounts of data. Despite exhibiting interesting results (Bora et al.| (2017), Mardani et al.
(2017),|Ledig et al.[(2016))), these methods all require some form of supervision, either observation
measurement-signal pairs, or at least unpaired samples from observations and underlying signals.
For many practical problems, obtaining these samples is too expensive and/or impractical, which
makes these approaches not suitable for such situations.

We address the problem of image reconstruction in an unsupervised setting, when only corrupted
observations are available, together with some prior information on the nature of the measurement
process.
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The learning problem is formulated as finding the maximum a posteriori estimate of signals given
their measurements on the training set. We derive a natural objective for our reconstruction network,
composed of a linear combination of an adversarial loss for recovering realistic signals, and a re-
construction loss to tie the reconstruction to its associated observation (Section[2.2). This model is
evaluated and compared to baselines on 3 image datasets, CelebA (Liu et al.| (2015)), LSUN Bed-
rooms (Yu et al.|(2015)), Recipe-1M (Marin et al.[(2018))), where we experiment with different types
of measurement processes corrupting the images.

Our contributions are:

e A novel, computationally efficient framework for dealing with large scale signal recovery
in an unsupervised context, applicable to a wide range of situations,

e A model and a new way of training a deep learning architecture for implementing this
framework,

e Extensive evaluations on a number of image datasets with different measurement processes.

2 PRELIMINARIES

Notations. We use capital letters (e.g. X) for random variables, and lower-case letters (e.g. x) for
their values. py () denotes the distribution (or its density in the appropriate context) of X evaluated
at .

2.1 PROBLEM SETTING.

Suppose there exists a signal X ~ py we wish to acquire, but we only have access to this signal
through lossy, inaccurate measurements Y ~ py-. The measurement process is modeled through a
stochastic operator F' mapping signals X to their associated observations Y. We will refer to F' as
the measurement process, which corrupts the input signal. F' is parameterized by a random variable
O ~ pg following an underlying distribution pg we can sample from, which represents the factors
of corruption. Thus, given a specific signal x, we can simulate its measurement by first sampling
6 from pg, and then computing F'(z;6). Additional sources of uncertainty, e.g. due to unknown
factors, can be modeled using additive i.i.d. Gaussian noise £ ~ N (0, o1 ), so that the overall
observation model becomes:

Y =F(X;0)+¢& (1)

F is assumed to be differentiable w.rt. its first argument X, and © and X to be independent (denoted
X 1 ©). Different instances of I’ will be considered (refer to Section , like random occlusions,
information acquisition from a sparse subset of the signal, overly smoothing out and corrupting
the original distribution with additive noise, etc. In such cases, the factors of corruption © might
respectively represent the position of the occlusion, the coordinates of the acquired information, or
simply the values of the additive noise.

2.2 APPROACH

Given an observation y, our objective is to find a signal £ as close as possible to the associated
true signal . From a probabilistic viewpoint, it is natural to formulate the problem as finding the
maximum a posteriori (MAP) estimate, which consists in selecting the most probable signal z*
under the posterior distribution p |y (-y):

¥ = arg max long|y($‘y) 2)

or equivalently:

" = arg maxlog py | x (y[x) + logpy (v) 3)
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where py| v (y|z) is the likelihood of the signal  given observation y, and p y () is the prior proba-

bility evaluated at x. Therefore, a good reconstruction must be likely to have generated the data, i.e.
yield high likelihood, and look realistic, i.e. yield high probability under the prior.

In the general case, calculating the likelihood term py « (y|x) requires marginalizing over noise
parameters O and this does not yield an analytic form. As for the prior py (), it is unknown, and
we have no access to samples from X since we are in an unsupervised setting: there is then no direct
way to estimate p either. In the general case considered here, with no assumption on the form of
the distributions, solving Equation (3) is up to our knowledge an open problem.

In the following sections, we will introduce an approach to deal with the likelihood term (Section
[3.1), and the unknown prior term (Section [3.2)) in order to provide an approximate solution to equa-
tion (3) (Section [3.3). For that, we will formulate the problem as learning a mapping G : Y — X
that links each measurement y to its associated MAP estimate =* on the training set. The associated
objective is then:

G" = argmax E, {logpy|x (¥|G(y)) +logpx (G(y))} &)

Which is obtained by plugging G(y) = x into equation |3| and taking the expectation w.r.t. the
distribution of observations ps-.

3 METHOD

From Equation (@), we see that a valid reconstruction mapping G must yield high probability for the
likelihood and the prior. This will guide the design of an appropriate objective during the following
section, where the reconstruction mapping G will be implemented using a neural network.

3.1 HANDLING THE LIKELIHOOD TERM

.G
F
@ ::\\ @ /@
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Figure 1 — The Figure illustrates the dependencies between the variables considered for handling
the likelihood term when solving (@). The likelihood term in () can be replaced by the expectation
of 523 ly — F(G(y); 9)||§ (see Equation . To compute this expectation, one first simulates an
observation y from a signal = using F'(x; ) , then generates & = G(y) and § = F(Z;0), as in the
Figure. This allows us to compute the MSE term in the above expression.

In the general case, evaluating the likelihood py/ « (y|z) in equation H requires marginalizing on
the unobserved noise variable ©: py | x(ylz) = Ep py|x e(y|z,0), which involves computing
an intractable integral. Most probabilistic model for image denoising make assumptions on the
structure of the measurement operator F'(.,©) and on the distribution of © in order to obtain an
analytic form for the expectation (Boyat & Joshil (2015)), |Alkinani & El-Sakkal (2017)). Here, we
consider more general measurement operators which do not necessarily lead to such a simplification
and therefore proceed in a different way.

We outline below, the main steps of the method for handling the likelihood term py, x(ylx) in
equation (). The complete derivation is provided in Appendix [A]
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1. Making use of the independence between X and ©, the expectation term
Ep, logpy|x (y|G(y)) in equation (4) can be rewritten as :

Epepxpy x.0 108 Py x,0 WG (Y), 0) + 1 o)

, with ¢; constant w.r.t. G.

2. The general measurement process described in equation (1) induces log py-| x ¢ (y|G(y), 0)
to yield a simple analytic expression:

1
logp(y|G(y),0) = —5 5 ly = F(G): 0) 5 + c2 (6)

with ¢o a constant.

3. The likelihood term E,,  log py-| x (y|G(y)) can then be replaced in objective (EI) by

1
- Ep(—)pXPY\X,@ﬁ Hy - F(G(y)7 9)”3 )

Equation (7)) shows that the likelihood term can be evaluated by first sampling a measurement y con-
ditioned on a corruption parameter § and signal x, and then constrain G such that ||y — F'(G(y); 6) ||§
is close to zero. Note that in this expression, the same parameter 6 is used for simulating ¢ from
z and y from x (see Figure [I| and section for more details). Unfortunately, this requires first
sampling x from the signal distribution py which is unknown. In the following sections, we will
see how we work around this problem.

3.2 HANDLING THE PRIOR TERM

. G
F
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Figure 2 — The figure illustrates the dependencies of the variables used for dealing with the prior
term in (). An observation y is sampled, and then transformed by the generative network into
a reconstructed signal & = G(y). One then simulates a measurement § := F'(Z;6) from this
reconstruction. We then enforce the distributions of observations py- and simulated measurements
p$ to be similar using an adversarial loss. In order to produce indistinguishable distributions, the
generator G has to remove the corruption and recover a sample & from p .

Maximizing w.r.t. the prior term py (G(y)) in equation (@) is similar to learning a mapping G, such
that the distribution induced by G(y), E,, px (G(y)) is close to the distribution py. The prior py
being unknown, the only sources of information are the lossy measurements y and the known prior
po on the measurement process. In order to learn an approximation of the true prior py, we will
use a form of generative adversarial learning, and build on an idea introduced in the AmbientGAN
model by [Bora et al.|(2018).

AmbientGAN aims at learning an unconditional generative model G of the true signal distribution
Px. when only lossy measurements y of the signal are available together with a known stochastic
measurement operator F'. In AmbientGAN, a generator is trained to produce uncorrupted signal
samples from a latent code so that the generated signals when corrupted are indistinguishable from
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the observation measurements. In Bora et al.| (2018)), the authors show that for some families of
noise distributions pg, the generator’s induced distribution matches the signal’s true distribution.
Note that even if the generation process of the observations y in AmbientGAN is similar to the
one considered in this paper (see Section [2.T)), the objective is however different: when the aim of
AmbientGAN is to learn a distribution of the underlying signal by sampling a latent space, ours is
to reconstruct corrupted signals.

In order for G to produce uncorrupted signals we will use an approach inspired from AmbientGAN,
as illustrated in Figure 2| Given an observation y, one wants to reconstruct a latent signal approx-
imation & = G(y) so that a corrupted version of this signal § = F(&) will have a distribution
indistinguishable from the one of the observations y. The generator G and a discriminator D are
trained on observations y and generated samples g. The corresponding loss is the followinﬂ

LPr(G) = max EYprprg {log D(y) +log (1 — D(9)) } (8)

where p?, corresponds to the distribution induced by G’s corrupted outputs (4 in Figure D , e
p$(y) = Epop {p(ylz,0)} and p§ denotes the marginal distribution induced by G’s outputs (& in
Figure : P () = Epyp%y(ﬂy) =E,, 0(z — G(y)) This penalty enforces the marginal p§
to be close to the true prior distribution py, and thus forces G to map its input measurements onto
Px-

3.3 PUTTING EVERYTHING TOGETHER
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Figure 3 — General Approach. We wish to train G to recover a plausible signal from lossy mea-
surements. As is shown in Section this requires the reconstructions & := G(y) to have high
probability under the likelihood and the prior. For simplicity, variable £ has been omitted. Prior :
we sample a measurement y from the data, produce a reconstruction Z, and sample a perturbation
parameter §. We enforce the simulated measurement 4 := F'(Z; 0) to be similar to measurements in
the data using an adversarial penalty. Intuitively, this requires the network to remove the corruption.
Likelihood : to enforce G to produce reconstructions with high likelihood, it is not possible to add
a penalty to constrain the mean square error (MSE) between y and 3 to be small. This is because
the underlying perturbation that caused y is unknown, and may be different from 6. Starting from ¢
we generate a ¢ (see figure [3) using the same 6 as the one used for generating . We then constrain

19 — g1l to be small (§ = F(G()).

In Section [3.1] we have shown that it is possible to maximize the average log-likelihood term in
equation (), given that we can sample from the unknown prior distribution p. In Section [3.2}
we have shown how it is possible to enforce the generator to produce samples from p, without
ever having access to uncorrupted samples. The idea is then to use the distribution induced by the
generator’s output pg'; as a proxy for py to compute an approximate value of the expectation in
equation (3): This gives us the following penalty term (see appendix [A):

LG = By 5%, ¥ mpy x o 19— F(G(©):0)|5 ©)

'the min term of the adversarial loss will be introduced later, see Equation 1|
2§ (z) is the Dirac delta function, which is equal to zero everywhere except in .
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The full objective is a linear combination of penalties () and (9):
argmin LP7(G) + A - L*(@) (10)
G

As illustrated by the dependencies highlighted in Figure [2| in the process of minimizing £P°", we
sample from the marginal likelihood p§; (y) := E,_,c {p(y|x, 0) }. The expectancy in the likelihood

term L'*eli js precisely computed w.r.t. this distribution. We can then use the same samples in order
to minimize the full objective (I0). This gives us the Algorithm [I] described below, along with the
dependency structure illustrated in Figure

Algorithm 1 Training Procedure.
Require: Initialize parameters of the generator G and the discriminator D.

while (G, D) not converged do
Sample {y; }1<i<n from data distribution py
Sample {6, }1<;<n, from Pg
Sample {¢; }1<i<y from Pg
Set g; to F(G(y;),6;) +e;forl <i<n
Update D by ascending:

% S log D(y:) + log(1 — D(j;)

i=1

Update G by descending:
1< R R X
-~ > X g = F(G )3 05)l5 + log(1 — D(yi)
i=1
end while

4 EXPERIMENTS

4.1 MODEL ARCHITECTURES AND DATASETS

Architectures. We will briefly describe the architectures, additional details on architectures and
hyperparameters can be found in appendix [B} Our network architectures are inspired by the GAN
architecture in |Zhang et al.| (2018). We use the same discriminator, and we propose an image-to-
image variant of their latent-to-image generator for the reconstruction network G.

Datasets. We evaluate our approach using three different image datasets :
o CelebA. Dataset of celebrities, containing approximately 200 000 samples. As Bora et al.
(2018), the images are center-cropped.
o LSUN Bedrooms. Dataset of bedrooms, containing 3 million samples.
e Recipe-1M. Dataset of cooked meals, containing approximately 600 000 samples.
All the images have been resized to 64 x 64. In order to place ourselves in the most realistic setting

possible, every image has been corrupted once, i.e. there is never multiple occurrences of an image
corrupted with different corruption parameters.

We withhold 15% of the training set for validation, selected uniformly at random for each dataset.

*In practice we optimize — log D(3);) instead of log(1 — D(;))
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4.2 CORRUPTIONS

Let us present the different measurement processes F' used in the experiments, also named corrup-
tions:

Remove-Pixel. This measurement process randomly samples a fraction p of pixels uniformly and
sets the associated channel values to 0. All the corresponding channel values are set to 0.

Remove-Pixel-Channel. Instead of setting to O a pixel for all channels as in Remove-Pixel, one
samples a pixel coordinate and a channel, and sets the corresponding value to 0.

Convolve-Noise. Here F'(x;60) := k * x + 0, where * is the convolution operator and k is a mean
filter of size [. For each pixel, noise 6 sampled from a zero-mean Gaussian of variance o is added
to the previous result.

Patch-Band. A horizontal band of height h whose vertical position in the image is uniformly
sampled from the set of possible positions. For each pixel falling inside the band, its associated
value is set to 0. The resulting measurement for pixel at column ¢ and row j can be summarized as:

0 ifje{0,...,04+h}
F(x;0 i, — ’ . ’ ’ 11
(@:0):i. {xi,j, otherwise an
where 6 is uniformly sampled from {1, ..., H — h}, and H is the image height. In the experiments,

h is set to 20.

4.3 BASELINES
4.3.1 CONDITIONAL AMBIENTGAN.

This is our only unsupervised baseline. The context is the same as for our model: the measurement
process F'is assumed known, there is no access to samples from the uncorrupted signal distribu-
tion py, but only to their corrupted counterpart py-. This baseline is a combination of two recent
techniques in the field of signal recovery: the aforementioned AmbientGan Bora et al.| (2018) and
CS-GAN|Bora et al.|(2017).

An unconditional generator G is trained using the AmbientGan framework (Bora et al.| (2018))
for each type of measurement process F', in order to produce samples from py (see Section 4.2).
The distribution induced by the generator p§ is an approximation of py (at the optimum, both
distributions match, i.e. p§ = py). Given a specific measurement y, the reconstruction Z is the
signal from G that is closest to y, as in/Bora et al.| (2017). To find & = G(Z), we search for the latent
code 2 of G, such that 2 = argmin,, ||y — G(2)||3 + R(z). R(z) is a regularizing term that enforces
the latent code to stay in G’s input domain. This objective is optimized using stochastic gradient
descent. To train GG, we use the same architectures and hyper-parameters as those provided by the
authors. Because this approach may be sensitive to the initial latent code, we reiterate this approach
three times and select the best resulting image.

4.3.2 UNPAIRED VARIANT.

This is a variant of our model where we have access to samples of the signal distribution py. This
means that although we have no paired samples from py -, we have access to unpaired samples
from py and py. This baseline is similar to our model but instead of discriminating between a
measurement from the data y and a simulated measurement ¢, we directly discriminate between
samples x from the signal distribution and the output of the reconstruction network Z. For a diagram
describing the model, refer to appendix

4.3.3 PAIRED VARIANT.

This is a variant of our model where we have access to signal measurement pairs (y,x) from the
joint distribution py- . Given input measurement y, the reconstruction is obtained by regressing y
to the associated signal  using a MSE loss. In order to avoid blurry samples, we add an adversarial
term in the objective in order to constrain G to produce realistic samples, as in [sola et al.| (2016).
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The model is trained using the same architectures as our model, and the hyperparameters have been
found using cross-validation. For a diagram describing the model, refer to appendix [C.2}

4.3.4 MEASUREMENT SPECIFIC BASELINES.

We also compare our model to baselines that where designed to remove specific corruptions.

Deep Image Prior (Ulyanov et al|(2017)). Given a generator G4 parametrized by randomly
initialized weights ¢ and a measurement y, this method seeks to find a reconstruction from G that
is close to the measurement. For corruptions processes Patch-Band, Remove-Pixel and Remove-
Pixel-Channel, we assume the access to the 6 associated to the observations in the data (i.e. in this
case, the mask). For more details, please refer to appendix [C|

Biharmonic Inpainting (Damelin & Hoang|(2018))). By considering inpainting as a smooth sur-
face extension domain, this baseline resolves a biharmonic equation to obtain a high order approx-
imation of the image. This approximation is then extended to the missing part of the image. This
method assumes access to the 6 associated to the observations in the data (i.e. in this case, the mask).

Total Variation Denoising (Chambolle| (2004)). This denoising baseline aims to minimize the
total variation of an image i.e the integral of the absolute gradient of the image. Reducing the
total variation of the image removes unwanted detail, such as white noise artifacts while preserving
important details such as edges and corners.

5 RESULTS

We will now present our results. First, we compare quantitatively our model with non-measurement
specific baselines on CelebA. We then present qualitative results with samples from our model and
these baselines. Comparisons with measurement specific baselines are presented in appendix [D] for
the three datasets.

5.1 QUANTITATIVE RESULTS

We compare our model with baselines introduced in the previous section. We report mean square
error (MSE) scores between the reconstructed & and the true signal x used to generate the input y.
Table [T| shows the MSE computed on the zest set, a randomly selected subset of CelebA comprised
of 40000 images. Because the Conditional AmbientGan model is too computationally expensive,
we only report the MSE on 40 randomly chosen samples of the test set.

Table 1 —: Average mean square error of neural network based models on the test set of CelebA, for
different measurement processes. The first two rows are model trained with no supervision, the last
two row with additional supervision.

Remove- Remove- Patch-Band Convolve-
Pixel Pixel- Noise
Channel
Conditional AmbientGan 0.292 0.2829 0.1421 0.0814
Our Model 0.0414 0.0409 0.0165 0.0088
Unpaired Variant 0.037 0.0336 0.034 0.0103
Paired Variant 0.0383 0.0401 0.0147 0.0084

Quantitatively, our model performs well. Except for the Conditional Ambiant GAN, all the meth-
ods are quite similar in terms of MSE. Our unsupervised model reaches performance similar to its
variants trained using additional supervision. We also note that when the aligned signal-observation
pairs are not used (as in our Unpaired Variant), results are comparable — sometimes better — than
when these pairs are used directly (as in our Paired Variant). This suggests that our likelihood term
is sufficient to condition the reconstruction on the input signal.
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5.2 QUALITATIVE RESULTS

However, quantitative results gives us only partial information. We now evaluate the quality of our
reconstruction on three different datasets (Section .I). Figure [4] shows reconstructions obtained
from different models on the CelebA dataset.We observe that Conditional AmbientGAN yields
visually poor results, especially for the Remove-Pixel and Remove-Pixel-Channel measurement
processes. We hypothesize that this is due to the large Euclidean distance between the measure-
ments and the associated signals, and the suboptimality of the generator. Visually, the quality of our
model’s reconstructions are coherent with the quantitative results: they are comparable to its paired
and unpaired counterparts (Section £.3). Figures (3), (6), (7). and () each show reconstructions
from a given measurement processe on different datasets. Our model is able to produce images with
good visual quality while remaining coherent with the underlying uncorrupted images. In Figures
(T1), (I2), (13) and (T4) in appendix [D] we compare our model with commonly used inpainting or
denoising methods. We can see that contrary to these methods, we are able to capture semantic in-
formation from the dataset. Typically, in Figure[I4} the model infers missing eyes or noses, without
ever having seen them. Additional samples are available in the appendix [D] refer to Figures (I3),

(1), (I7), and (I8).

Remove-
Pixel

Convolve- |%

Noise
Remove-
Pixel-
Channel
o BandE 4 EEE
Measurement Conditional ours, Unpaired Paired
AmbientGAN, Unsupervised Variant, Variant,
Unsupervised access to access to
uncorrupted pairs
samples

Figure 4 — Model reconstructions for different corruption processes, on CelebA. Each row corre-
sponds to a specific corruption process, and each column to a particular model.

Figure 5 — On the top row, randomly sampled test set measurements from CelebA corrupted using
Patch-Band(h = 20), and below, our associated reconstructions.

6 RELATED WORK

To our knowledge, there is no other Deep Learning approach attempting to solve the unsupervised
signal reconstruction problem. However, some of the ideas developed here are close to or even
inspired from recent work.
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Figure 6 — On the top row, randomly sampled test set measurements from CelebA corrupted using
Remove-Pixel(p = 0.95), and below, our associated reconstructions.

Figure 7 — On the top row, randomly sampled test set measurements from LSUN corrupted using
Patch-Band(h = 20), and below, our associated reconstructions.

Figure 8 — On the top row, randomly sampled test set measurements from Recipe-1M corrupted
using Remove-Pixel (p = 0.9), and below, our associated reconstructions.

In order to enforce high likelihood, we incorporate a penalty in our objective that is similar to the
Cycle Consistency loss, used in several contexts (Zhu et al.|(2017), Lample et al.| (2017)), |Almahairi
(2018)). This constraint is used to learn from unpaired data sets. Moreover, they too use
adversarial training to constrain the marginal distribution induced by the generator.

In the context of image super resolution, (Ledig et al.|(2016), [Sgnderby et al.| (2016), Mardani et al.
(2017)) attempt to retrieve maximum a posteriori estimates of the super resolution image conditioned

on an input image. They too use a generative model of the signal trained in an adversarial fashion
using samples from signal distribution to constrain their reconstructions. Their approach is fully
supervised.

Other works attempt to solve ill-posed inverse problems using generative models (Bora et al.|(2017),
[Asim et al.| (2018)), Tripathi et al.| (2018)),[Van Veen et al.| (2018)). The general approach in all these
papers consists to first train a generative model on the uncorrupted signal distribution. Then, given
a measurement from which we wish to reconstruct the signal, it is inverted by finding the latent
input code that generated the uncorrupted image, by minimizing the mean square error between
the corrupted reconstruction and the measurement. This requires solving an optimization problem
for each image, which takes several minutes (Ulyanov et al.| (2017)) on GPU, and requires random
restarts to avoid falling a bad local minima. Again, the setting is fully supervised.

Finally [Lehtinen et al] (2018)) propose a method for denoising images without direct supervision.
They train a network to regress a corrupted image to the same image with a different corruption
value. Assuming the corruption has zero-mean, their network learns to remove the corruption by the
conditional expectation. This setting implicitly assumes access to the distribution of uncorrupted
images in order to generate different noisy versions of the same image, which is not our case.

7 CONCLUSION

We have proposed a general formulation to recover a signal from lossy measurements using a neural
network, without having access to uncorrupted signal data. We have formulated the problem as

10
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finding a maximum a posteriori estimate of the signal given its observation, for all observations
in the training set. This gives us a natural objective for our neural network, composed of a linear
combination of an adversarial loss for recovering realistic signals, and a reconstruction loss to tie the
reconstruction to its associated observation. Our approach yields results superior to the baselines,
while staying competitive with other model variants that have access to higher forms of supervision.

For future work, we plan to apply our framework to different corruption processes, and evaluate our
model’s performance in real world settings, specifically for retrieving uncorrupted scientific data.
Another interesting research direction would be to make our reconstruction network stochastic, in
order to approximate the true posterior of the signal given the measurement, and to obtain uncertainty
estimates.
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A ADDITIONAL STEPS FOR HANDLING THE LIKELIHOOD

We develop below the different steps for handling the likelihood summarized in Section 3.1}

1. Making use of the independence between X and ©, we rewrite the expectation term
Ep, logpyx (y|G(y)) in equation (4) to By p p,| o 108 Py |x 0 (UG (Y),0) + c1, with ¢y
constant w.r.t. G:

For all z, (in particular for G(y)), if X and O are independent, the log-likelihood can be
decomposed as:

log py | x (y[z) = log py g x (¥, 0|z) — log pe|x vy (0|2, y)

(12)
Xl1e
=" logpy|x,e (|7, 0) +logpg () — logpg|y (0]y)
Applying the expectation w.r. to the joint py- o on both sides, we obtain
Ep, logpy | x (ylz) = Epy,@{logpnx,@(ylxﬁ) +log pe (0) — logpy o (ly) } (13)

= ]EPY,E-) { longlX,@(y|x7 9)} +a
The terms log pg (0) and log pg)y (f|y) do not depend on z, hence c; is a constant w.r.t. .

Plugging back G(y) in place of = and applying the law of total probabilities w.r.t. X on the
right hand side, we obtain:

Ep, 108 py | x (Y|G(Y) = Epgpypy x.0 108 Py x,0 (UG (Y),0) + 1 (14)
2. The general measurement process in equation , Y = F(X;0) + £ induces
log py | x,6(y|G(y),0) to yield a simple analytic expression:
1
logp(y|G(y),0) = -5 5 ly = F(G(y); 0)[15 + c2 (15)

with ¢y constant. This result is directly obtained using the fact that & ~ N (0, o%1).

3. The likelihood term [E, logpy x(y[G(y)) can then be replaced by

_Epepxpmx,e# lly — F(G(y),9)||§ in objective . This is because the constant
co does not change the objective.

B ARCHITECTURE DETAILS

Network architecture. Our network architectures are inspired by the Self-Attention GAN archi-
tecture in Zhang et al.| (2018)). They use residual networks (He et al|(2016))), where each residual
block of the generator and discriminator is comprised of 2 repeated sequences of batch normaliza-
tion (loffe & Szegedy|(2015)), ReLU activation, spectral normalization (Miyato et al.[(2018)) and
3 x 3 convolutional layers. For the discriminator, we use the same as|Zhang et al.| (2018)), and for
reconstruction network (G, we propose an image-to-image variant of their generator. We have not
added downsampling layers: we have found that they degraded the overall model’s performance. For
corruption processes that yield observations that are very correlated with the input, such as Patch
Band and Convolve-Noise, we have found that using G(y) := y + Net(y) for the reconstruction net-
work allows us to initialize G close to identity, accelerates training and augments the overall quality
of the samples.

Hyperparameters. Hyperparameters have been selected on the validation set, based on the mean
square error between the reconstructions Z and the image x. As in Zhang et al| (2018)), we use
imbalanced learning rates for the generator and the discriminator (0.0001 and 0.0004, respectively),
using the Adam optimizer (Kingma & Ba| (2014)), using 81 = 0 and f2 = 0.9. The weights are
initialized using orthogonal initialization. We set A = 2, and exponentially decay the learning rate
every 400 iterations, setting the decay factor to 0.995.
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C ADDITIONAL INFORMATION ON THE BASELINES

C.1 UNPAIRED VARIANT

o ()
O— -G /@

Discriminator ~. MSE -

/
/

Figure 9 — Unpaired Variant of our model. As opposed to our model, this baseline has access to
samples of the signal distribution py. This baseline is similar to our model, however, instead of
discriminating between a measurement from the data y and a simulated measurement g, we directly
discriminate between samples from the signal distribution and the output of the reconstruction net-
work Z.

C.2 PAIRED VARIANT

- . G
F

Figure 10 — Paired Variant of our model. As opposed to our model, this baseline not only has
access to samples of the signal distribution p y, but to signal measurement pairs (y, «) from the joint
distribution py- y. Given input measurement y, the reconstruction is obtained by regressing y to the
associated signal z. In order to avoid blurry samples, we add add a adversarial term in the objective
in order to enforce G to produce realistic samples, as in [Isola et al.| (2016). The model is trained
using the same architectures as the ones from our model.
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C.3 DEeEP IMAGE PRIOR (DIP)

Given an input measurement y, a generator Gy parameterized by random parameters ¢, and a ran-
dom latent code z, the reconstruction G« (z) is obtained by resolving the following optimization
problem:

o = arg min ly — Go(2)|3 (16)

For measurement processes Patch-Band, Remove-Pixel and Remove-Pixel-Channel (refer to Section
@), the resulting reconstruction G+ (2) was not satisfactory: G was consistently regressing to the
corrupted values in the measurement y, which led to unsatisfactory results. Instead of presenting
these results, we have chosen to remove the contribution of the error terms where the measurement
process induced null values from objective (I6), and present the latter instead. However, this as-
sumes access to the true value 6 that corrupted datum y: y = F'(x;0). Formally, we resolve the
following objective:

argmin | F(y - Go(2); 0> (17)

Where F acts as a mask, and eliminates the terms associated to the pixels from y that have been put
to 0. Note that this method corresponds to the inpainting formulation in|[Ulyanov et al.| (2017). We
used the implementation provided by the authorﬂ

D ADDITIONAL SAMPLES
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Figure 11 — Baseline comparison for the CelebA dataset. Corruption is Remove-Pixel (p = 0.95).

*nttps://dmitryulyanov.github.io/deep_image_prior
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Measurement
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Figure 12 — Baseline comparison for the CelebA dataset. Corruption is Remove-Pixel-Channel
(p = 0.95).
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Figure 14 — Baseline comparison for the CelebA dataset. Corruption is Patch-Band(h = 20).
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Figure 15 — On the top row, randomly sampled test set images from LSUN. Below, associated cou-
ples of corrupted observations and subsequent reconstructions from our model. From top to bottom,
corruptions are Remove-Pixel-Channel(p = 0.95), Remove-Pixel(p = 0.90), Patch-Band(h = 20),
Convnoise(cc = 0.15, 1 = 3).
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Figure 16 — On the top row, randomly sampled test set images from Recipe. Below, associated cou-
ples of corrupted observations and subsequent reconstructions from our model. From top to bottom,
corruptions are Remove-Pixel-Channel(p = 0.95), Remove-Pixel(p = 0.90), Patch-Band(h = 20),
Convnoise(oc = 0.15, 1 = 3).
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Figure 17 — Additional samples from our model of the LSUN Bedrooms dataset. From top to bottom,
corruptions are Convnoise(cc = 0.15, I = 3), Patch-Band(h = 20), Remove-Pixel-Channel(p =
0.90) and Remove-Pixel(p = 0.95). 20
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Figure 18 — Additional sample from our model, on the Recipe dataset. From top to bottom, corrup-
tions are Convnoise(cc = 0.3, [ = 5), Patch-Band(h = 20), Remove-Pixel-Channel(p = 0.90) and
Remove-Pixel(p = 0.90).
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