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Abstract

Detecting the emergence of abrupt property changes in time series is a challenging
problem. Kernel two-sample test has been studied for this task making fewer
assumptions on the distributions than traditional parametric approaches. However,
selecting kernels is non-trivial in practice. Although kernel selection for two-sample
test has been studied, the insufficient samples in change point detection (CPD)
problem hinders the success of those developed kernel selection algorithms. In this
paper, we propose KL-CPD, a novel kernel learning framework that optimizes a
lower bound of test power via an auxiliary generative model. With deep kernel
parameterization, KL-CPD endows kernel two-sample test with the data-driven
kernel to detect different types of change-points in real-world applications. The
proposed approach significantly outperformed other state-of-the-art methods in our
comparative evaluation of benchmark datasets.

1 Introduction

Detecting changes in the temporal evolution of a system in time series analysis has attracted con-
siderable attention in machine learning decades [4, 7]. In this work, we study the retrospective
change-point detection (CPD) problem [29, 21], which allows a flexible time window to react on
the change-points. Retrospective CPD not only enjoys robust detection [9] but embraces many
real-world applications [26, 31, 36]. Albeit being developed for many years [16], many works are
parametric with strong assumptions on the distributions [4, 15], including auto-regressive models [35]
and state-space models [18] for tracking changes in various statistics.

On the other hand, kernel two-sample test has been applied to time series CPD that makes fewer
assumptions on the distributions (e.g. [17, 21]). The performance of kernel methods, nevertheless,
relies heavily on the choice of kernels. [12, 13] conducted kernel selection for RBF kernel bandwidths
via median heuristic. While certainly straightforward, it has no statistical guarantees regarding to the
test power of hypothesis testing. [14] show explicitly optimizing the test power leads to better kernel
choice for hypothesis testing under mild conditions. Kernel selection by optimizing the test power,
however, is not directly applicable for time series CPD due to insufficient samples.

In this paper, we propose KL-CPD, a kernel learning framework for time series CPD, highlighting
three contributions: In Section 2, we discuss the inaptness of existing kernel learning approaches in a
simulated example. We then propose to optimize a lower bound of the test power via an auxiliary
generative model, serving as a surrogate of the abnormal events. In Section 3, we present a deep kernel
parametrization of our framework, which endows a data-driven kernel for the kernel two-sample test.
KL-CPD induces composition kernels by combining RNNs and RBF kernels that are suitable for
the time series applications. In Section 4, we conduct extensive benchmark evaluation showing the
outstanding performance of KL-CPD in real-world CPD applications.
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2 Optimizing Test Power for Change-Point Detection

Maximum mean Discrepancy (MMD) is a nonparametric probabilistic distance commonly used in
two-sample-test [12, 13]. Given a kernel k, the MMD distance between two distributions P and
Q is Mk(P,Q) := EP[k(x, x0)] � 2EP,Q[k(x, y)] + EQ[k(y, y0)]. In practice, with finite samples
X = {x1, . . . , xm} ⇠ P and Y = {y1, . . . , ym} ⇠ Q, we estimate Mk(P,Q) with an unbiased
estimator M̂k(X,Y ) := 1
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characteristic kernel k, Mk(P,Q) = 0 iff P = Q. However, the estimator M̂k(X,X
0) may not be 0

even though X,X
0 ⇠ P due to finite sample size. Hypothesis test instead offers thorough statistical

guarantees of whether two finite sample sets are the same distribution. Following [13], the hypothesis
test is defined by the null hypothesis H0 : P = Q and alternative H1 : P 6= Q, using test statistic
mM̂k(X,Y ). For a given allowable false rejection probability ↵ (i.e., Type I error), we choose a test
threshold c↵ and reject H0 if mM̂k(X,Y ) > c↵.

The kernel selection objective to maximize the test power [14, 28] is presented as follows. Under
the alternative H1 : P 6= Q, M̂k is asymptotically normal with Vm(P,Q) denoting the asymptotic
variance. The test power is then
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where � is the CDF of the standard normal distribution. Given a set of kernels K, We aim to choose
a kernel k 2 K to maximize the test power, which is equivalent to maximizing the argument of �.

In time series CPD, we denote P as the distribution of usual events and Q as the distribution for the
event when change-points happen. The difficulty of choosing kernels via optimizing test power in
Eq. (1) is that we have very limited samples from the abnormal distribution Q. Kernel learning in this
case may easily overfit, leading to sub-optimal performance in time series CPD.

2.1 Difficulties of Optimizing Kernels for CPD

Figure 1: Test power versus ✏q

To demonstrate how limited samples of Q would affect op-
timizing test power, we consider kernel selection for Gaus-
sian RBF kernels on the Blobs dataset [14, 28], which is
considered hard for kernel two-sample test. P is a 5 ⇥ 5
grid of two-dimensional standard normals. Q is laid out
identically, but with covariance ✏q�1

✏q+1 between the coordi-
nates. Right figure shows X ⇠ P (red samples), Y ⇠ Q
(blue dense samples), Ỹ ⇠ Q (blue sparse samples) with
✏q = 6. Note that when ✏q = 1, P = Q.

For ✏q 2 {4, 6, 8, 10, 12, 14}, we take 10K samples
for X,Y and 200 samples for Ỹ . We choose kernels
by: 1) median heuristic; 2) max-ratio ⌘k⇤(X,Y ) =
argmaxk M̂k(X,Y )/

p
Vm(X,Y ); among 20 kernel

bandwidths. We repeat this process 1000 times and re-
port the test power under false rejection rate ↵ = 0.05.
As shown in Fig. 1, optimizing kernels using limited sam-
ples Ỹ significantly decreases the test power compared to
Y (blue curve down to the cyan curve). This result not
only verifies our claim on the inaptness of existing kernel
learning objectives for CPD task, but stimulates us with
the following question, How to optimize kernels with very

limited samples from Q, even none in an extreme?

2.2 A Practical Lower Bound on Optimizing Test Power

We first assume there exist a surrogate distribution G that we can easily draw samples from (Z ⇠ G,
|Z|� |Ỹ |), and also satisfies the following property:

Mk(P,P) < Mk(P,G) < Mk(P,Q), 8k 2 K, (2)
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Besides, we assume dealing with non trivial case of P and Q where a lower bound 1
mvl 

Vm,k(P,Q), 8k exists. Since Mk(P,Q) is bounded, there exists an upper bound vu. With bounded
variance vl

m  Vm,k(P,Q)  vu
m condition, we derive an lower bound �k⇤(P,G) of the test power
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Just for now in the blob toy experiment, we artifact this distribution G by mimicking Q with the
covariance ✏g = ✏q � 2. We defer the discussion on how to find G in the later subsection 2.3.
Choosing kernels via �k⇤(X,Z) using surrogate samples Z ⇠ G, as represented by the green curve
in Fig. 1, substantially boosts the test power compared to ⌘k⇤(X, Ỹ ) with sparse samples Ỹ ⇠ Q.

Test Threshold Approximation Under H0 : P = Q, mM̂k(X,Y ) converges asymptotically to an
unknown distribution depending on P [13, Theorem 12], yielding a non closed form test threshold c↵.
Even estimating c↵ with permutation test or some kernel approximated distributions, it is difficult to
optimize c↵ because it is a function of k and P. Alternatively, since c↵ is a function of M̂k(X,X

0)
that controls the Type I error, bounding M̂k(X,X

0) could be an approximation of bounding c↵.
Therefore, we propose the following objective that maximizing a lower bound of test power

argmax
k2K

Mk(P,G)� �M̂k(X,X
0), (3)

where � is a hyper-parameter to control the trade-off between Type-I and Type-II errors. Note that the
optimization of Eq. (3) is solved using the unbiased estimator of Mk(P,G) with empirical samples.

2.3 Surrogate Distributions using Generative Models
The remaining question is how to construct the surrogate distribution G. As no prior knowledge nor
empirical samples of Q, to ensure (2) holds for any possible Q (e.g. Q 6= P but Q ⇡ P), intuitively,
we have to make G as closed to P as possible. We propose to learn an auxiliary generative model

G✓ parameterized by ✓ such that M̂k(X,X
0) < min✓Mk(P,G✓) < Mk(P,Q), 8k 2 K. To ensure

the first inequality hold, we set early stopping criterion when solving G✓ in practice. Moreover, the
limited capacity of G✓ (e.g. small neural networks) [3] and finite samples of P hinder us to fully
recover P. Thus, we result in a min-max formulation to consider all possible k 2 K when we learn G,

min
✓

max
k2K

Mk(P,G✓)� �M̂k(X,X
0), (4)

and solve the kernel for the hypothesis test in the mean time. Lastly, we remark that although the
resulted objective (4) is similar to [20], the motivation and explanation are different. One major
difference is we aim to find k with highest test power while their goal is finding G✓ to approximate P.

3 KLCPD: Realization for Time Series Applications
To have a more expressive kernel for complex time series, we consider compositional kernels K =n
k̃ | k̃(x, x0) = exp(�kf�(x)� f�(x)0k2)

o
. The resulted kernel k̃ is still characteristic if f is an

injective function and k is characteristic [13]. Inspired by the recent success of combining deep neural
networks into kernels [32, 1, 20], we parameterize f� by RNNs to capture the temporal dynamics of
time series. For an injective function f , there exists a function F such that F (f(x)) = x, 8x 2 X . A
practical realization of f is a RNN encoder parametrized by � while the function F is a RNN decoder
parametrized by  trained to minimize the reconstruction loss. Thus, our final objective is

min
✓

max
�

Mf�

�
P,G✓

�
� � · M̂f�

�
X,X

0�� � · E⌫2P[G✓k⌫ � F 

�
f�(⌫)

�
k22. (5)

Practical Implementation We consider two consecutive windows in mini-batch to estimate
M̂f�

�
X,X

0� in an online fashion for efficiency. The sample X ⇠ P is divided into the left win-
dow segment X(l) = {xt�w, . . . , xt�1} and the right window segment X(r) = {xt, . . . , xt+w�1}
such that X = {X(l)

, X
(r)}. We present an realization of KL-CPD in Algorithm 1 with the

weight-clipping technique, where the generator g✓ is also a Seq2Seq model aims at conditional
generation. The stopping condition is based on a maximum number of epochs or the detecting power
of Mf�

�
P,G✓)  ✏. This ensure the surrogate G✓ is not too close to P, as motivated in Sec. 2.2.
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Algorithm 1: KL-CPD, our proposed algorithm.
input : learning rate ↵, clipping range c, window size w , nc kernel learning update per iter
while Mk�f�(P,G✓) > ✏ do

for t = 1, . . . , nc do
Sample a minibatch Xt ⇠ P, denote Xt = {X(l)

t , X
(r)
t }, and ! ⇠ P(⌦)

gradient(�) r�Mk�f�
�
P,G✓

�
� �M̂k�f�

�
X

(l)
t , X

(r)
t

�
� �E⌫⇠P[G✓k⌫ � F 

�
f�(⌫)

�
k22

� �+ ↵ · RMSProp(�, gradient(�))
� clip(�,�c, c)

Sample a minibatch Xt0 ⇠ P, denote Xt0 = {X(l)
t0 , X

(r)
t0 }, and ! ⇠ P(⌦)

gradient(✓) r✓Mk�f�
�
P,G✓

�

✓  ✓ � ↵ · Adam(✓, gradient(✓))

4 Experiment Results

We compare the proposed KL-CPD with seven representative baselines on benchmark datasets
from real-world applications of CPD, including Bee-Dance [30], Fishkiller [30], HASC [23] and
Yahoo [34]. Detailed data description are available in Appendix B.1. Following [19, 27, 23], the
datasets are split into training/validation/test set by 60%, 20%, 20% ratio in chronological order. Note
that training is fully unsupervised for all methods while labels in the validation set are used for
hyperparameters tuning. We consider AUC under the ROC curves as the evaluation metric, which is
commonly used in CPD literature [21, 23, 33].

We compare KL-CPD with real-time CPD methods (ARMA, ARGP, RNN,LSTNet) and retrospec-
tive CPD methods (ARGP-BOCPD, RDR-KCPD, Mstats-KCPD). Details are in Appendix B.2.
Note that OPT-MMD is a deep kernel learning baseline which optimizes MMD by treating past
samples as P and the current window as Q (insufficient samples).

Method Bee-Dance Fishkiller HASC Yahoo
ARMA [6] 0.5368 0.8794 0.5863 0.8615
ARGP [8] 0.5833 0.8813 0.6448 0.9318
RNN [10] 0.5827 0.8872 0.6128 0.8508

LSTNet [19] 0.6168 0.9127 0.5077 0.8863

ARGP-BOCPD [27] 0.5089 0.8333 0.6421 0.9130
RDR-KCPD [23] 0.5197 0.4942 0.4217 0.6029

Mstats-KCPD [21] 0.5616 0.6392 0.5199 0.6961

OPT-MMD 0.5262 0.7517 0.6176 0.8193
KL-CPD (Proposed method) 0.6767 0.9596 0.6490 0.9146

Table 1: AUC on four real-world datasets. KL-CPD has the best AUC on three out of four datasets.

KL-CPD shows significant gain over the other methods mostly, except being in a second place on the
Yahoo dataset, with 2% lower AUC compared to the leading ARGP. This confirms the importance
of data-driven kernel selection and effectiveness of our kernel learning framework. Notice that OPT-
MMD performs not so good compared to KL-CPD, which again verifies our simulated example in
Sec. 2 that directly applying existing kernel learning approaches with insufficient samples may not be
suitable for real-world CPD task.

5 Conclusion

We propose KL-CPD, a new kernel learning framework for two-sample test by optimizing a lower
bound of test power with a auxiliary generator, to resolve the issue of insufficient samples in change-
points detection. The deep kernel parametrization of KL-CPD combines RNNs with RBF kernels
that effectively detect a variety of change-points from different real-world applications. Extensive
evaluation of our new approach along with strong baseline methods on benchmark datasets shows the
outstanding performance of the proposed method in retrospective CPD.
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