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Abstract

In many domains, especially enterprise text analysis, there is an abundance of data
which can be used for the development of new AI-powered intelligent experiences
to improve people’s productivity. However, there are strong-guarantees of privacy
which prevent broad sampling and labeling of personal text data to learn or eval-
uate models of interest. Fortunately, in some cases like enterprise email, manual
annotation is possible on certain public datasets. The hope is that models trained on
these public datasets would perform well on the target private datasets of interest.
In this paper, we study the challenges of transferring information from one email
dataset to another, for predicting user intent. In particular, we present approaches to
characterizing the transfer gap in text corpora from both an intrinsic and extrinsic
point-of-view, and evaluate several methods for bridging this gap. We conclude by
raising issues for further discussion in this arena.

1 Introduction
Using publicly available text data to train predictive models for use in privacy-aware enterprise
settings is a very fruitful direction in the area of document understanding. However, when the
labeled training dataset (source domain) is different from the unlabeled test (target domain), the two
datasets likely follow different distributions. This application setting violates the i.i.d. assumption
made by classic supervised learning methods and calls for domain adaptation techniques to properly
account for this difference. State of the art domain adaptation techniques are generally developed and
evaluated using a limited number of benchmark datasets and under constrained settings. The extent to
which these methods are applicable for predictive settings over enterprise text data has neither been
explored nor characterized in detail.

To explore the effectiveness of state of the art domain adaptation methodology in enterprise text data,
we focus on communication intent prediction in enterprise email. In particular, we use two public
enterprise email datasets (Avocado, an IT company, and Enron, an oil company) to systematically
analyze the transfer problem in enterprise email. The two intent prediction tasks that we focus
on in this study are Meeting Intent (the email expresses an intent to meet with the recipient) and
Commitment Intent (the email expresses an action the sender intends to take in the future) – both of
which are binary classification tasks.

1.1 Setting - Domain Adaptation
Denote the joint distributions of the source and the target domain as PS(X,Y ) and PT (X,Y )
respectively. In our setting, we assume PS(X,Y ) 6= PT (X,Y ) and seek to establish measures
that quantify these differences. This difference can be measured: (1) directly (intrinsically) in
terms of observed distributional differences of words, n-grams, or more generally the representation
conditioned on class; (2) or in terms of the downstream (extrinsic) impact on models learned to predict
the class when used in a different domain. We refer to these measurable differences as the transfer
gap. To understand the nature and extent to which these challenges persist in enterprise email, we
first present intrinsic analyses of email text and features. We then proceed to extrinsic analyses
to determine the extent to which state of the art methodology can account for the aforementioned
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challenges. Our contributions are: (1) we provide ways of measuring the transfer gap intrinsically over
both classical bag-of-words and bag-of-n-grams representations as well as distributed representations;
(2) provide evidence that these distributional differences lead to downstream measurable differences
specifically in enterprise domains across different companies; (3) and, provide a first evaluation of
proposed transfer methods from elsewhere in the literature to enterprise settings.
2 Intrinsic Analysis
We first begin by analyzing the intrinsic differences in distribution (i.e. the transfer gap) across
the two datasets. The way text is processed into features has evolved over the years from BoW
vectors, to dense feature vectors from Skip-Gram word embeddings [5], and more recently feature
vectors that take into account contextual information such as ELMO and BERT [6, 3]. We seek to
establish distributional differences exist across a variety of representation choices. To this end, we
first analyze the difference by first comparing most frequent words when conditioned on positive
class (i.e. comparing the head of P (w|+)) and then comparing the contexts in which these most
frequent words in the positive class are used. Then we proceed to examine the transfer gap in terms
of distributional measures of sentence-level encodings using a generic CNN encoder and state of the
art word embeddings.
2.1 Overlap of Most Commonly Used Words
To analyze the most frequent words in positive intent, we compared the overlap between the top 30
n-grams (where n ranges from 1 to 3) in each dataset, when considering only sentences with positive
labels, for each task. The results for 1-grams show that the overlap for the most frequent words in the
two enterprises is 53.3% and 70.0% for meeting and commitment intents respectively. Similar counts
hold for bi-grams and tri-grams too. From this analysis, it is apparent that for both tasks there is a
significant number of words (nearly half in Meeting and close to a third in Commitment) that are
frequently used to express positive intent, which do not overlap across domains. Furthermore, the
most frequent words in positive-intent sentences overlap more in Commitment than in Meeting Intent.
This means that in Meeting Intent the difference in distribution may come down to different word
usage to express intent, whereas in Commitment if differences exist they may be more subtle and due
to differences in context.

2.2 Difference in Contextual Use of Common Positive-Intent Words
To explore whether the top-30 positive-intent associated words were used in different contexts,
we embedded each sentence using contextual word embeddings. For each domain and task, we
considered each word in the top-30 most frequent list for positive intent (obtained as described above),
and we retrieved a distribution of its contextual word embeddings from each of the sentences in
which the word was present. To measure whether there is a difference in terms of the contexts in
which a word was used in one domain vs. another, we compared the distribution of its contextual
word embeddings in the two domains by maximum mean discrepancy (MMD) [4]: Avocado (source)
vs. Enron (target). MMD is a kernel-based symmetric measure of distribution difference that can be
applied to a variety of representation types including embeddings; we use a Gaussian kernel. As a
baseline reference since any sample even from the same distribution may show differences, we also
performed this comparison with two disjoint subsets of the Avocado dataset. The results are shown
in Table 1, One can appreciate that there is a much larger relative difference in the distribution of
contextual word embeddings when comparing across domains, as opposed to within domain. This
indicates that the transfer gap includes not only different vocabularies, but also difference in context
in the most relevant words associated with positive intent.

MMD - Uni MMD - Bigram Rel. Uni Rel Bigram
Avocado-Avocado (Meeting) 0.00001 0.001 1× 1×
Avocado-Enron (Meeting) 0.003 0.007 300× 7×
Avocado-Avocado (Commitment) ∼0.0 0.004 1× 1×
Avocado-Enron (Commitment) 0.008 0.01 ∞ 2.5×

Table 1: Comparisons of distributions of contextual word embeddings of the top-30 most common
words in positive-labeled sentences, within domain and across domains. The MMD values displayed
are averages over all top-30 terms (unigrams and bi-grams).

2.3 Analysis of Cross-Domain Differences of Encoder Representations

The previous intrinsic analyses consider lists of individual most frequent words. To capture sentence-
level structure, sentences in modern methodologies are represented as sequences of dense vectors,
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often obtained with a supervised deep encoder. In order to evaluate the extent to which there is
a distribution difference in this dense sentence-level representation across domains, for each task
and domain we trained a CNN encoder/classifier in that particular domain (for example Avocado).
We then compared two distributions (in terms of MMD) of the CNN dense encodings of two sets
of sentences from: (1) the domain in which the encodings were trained; (2) across domains. The
results can be found in Table 2. From these results, one can appreciate that in all cases except one
(Avocado-Enron for Commitment), the difference between distributions of two sets of sentences
in the same vs. different domains is different by an order of magnitude. In the dense encoding
representation, we see a large difference in the distribution across domains, and can expect a gap in
the performance of predictive models when trained within vs. across domains. The main takeaways
from the intrinsic analyses are: (1) the transfer gap can be observed in individual words (n-grams)
used in sentences that express intent, (2) the transfer gap can be observed in terms of the context
distribution in the top words that express intent, (3) the transfer gap can be observed in terms of the
sentence encodings of the sentences in which they occur. Therefore, an ideal transfer learning method
to bridge the transfer gap would need to address these word-level and sentence-level differences.

Meeting MMD Rel. to in Domain
Avo-Avo 0.00037 1×
Avo-Enron 0.0071 19.2×
Enron-Enron 0.00038 1×
Enron-Avo 0.002 5.3×

Commitment MMD Rel. to in Domain
Avo-Avo 0.0013 1×
Avo-Enron 0.0011 0.85×
Enron-Enron 0.0003 1×
Enron-Avo 0.004 13.3×

Table 2: Maximum Mean Discrepancy (MMD) of the distributions of encodings for meeting intent
(left) and commitment (right). "Avo-Avo" compares the encodings of two disjoint sets of sentence
encodings from Avocado. "Avo-Enron" compares sentence encodings from Avocado and Enron,
obtained by first training the CNN on Avocado labeled data.

3 Extrinsic Analyses
Now that we have established through the intrinsic analyses that there is a distributional difference,
we analyze how that difference is reflected in terms of predictive performance of state of the art
text classification and domain adaptation methods. We use two classes of methods: non-transfer
text classification methods without accounting for the difference in distribution, and methods which
perform domain adaptation. To provide a measure of the extrinsic transfer gap, we fix the training set
and train each model on the training set and apply it in-domain and out-of-domain. This is equivalent
to training on one enterprise’s data and deploying the model both to that enterprise (in-domain)
and to another enterprise (out-of-domain). Because the ratio of positive/negatives is different in the
in-domain test set versus the out-of-domain test set, we use AUC as our performance metric which
is a ranking-based metric that is invariant to class-skew. Thus it is reasonable to expect a similar
performance on the out-of-domain test set on AUC if it really is from the same distribution as the
in-domain. We prefer AUC over other performance metrics (like average precision and F1) since they
are sensitive to class skew making it hard to use them for comparisons across test sets where the class
skew changes.

Transfer Methods The two domain adaptation methods that we use are: (1) an mSDA autoencoder
[1] which combines unlabeled data from the source and target domains to learn a joint feature
representation that can then be used with a regular classifier like logistic regression, and (2) a
domain adversarial deep learning method using a CNN architecture [2], which combines the labeled
source domain data and the unlabeled target domain data, to extract a latent representation that
is invariant across domains, and still useful for performing classification in the source domain –
we call this CNN+ADV. Non-transfer baselines: as baselines, we apply models which are not
designed to perform any transfer across domains, and inherently assume that the source and the
target domains follows the same distribution. The non-transfer text classification methods we use
are: (1) L1-regularized logistic regression, which uses sparse BoW representation; (2) A CNN ,
which encodes each sentence in a dense encoding using word embeddings as input – to provide a
controlled comparison this is the same CNN as in CNN+ADV essentially eliminating the adversarial
training; (3) mSDA-NT where unlabeled data from only the source domain is used when training the
autoencoder.
Examining the results in Table 3, it is clear comparing the upper in-domain line in each pair of
rows to the out-of-domain line that regardless of the model there is a transfer gap (higher in-domain
performance) in all cases except one. That one case is when transferring from Avocado to Enron in
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No Transfer Transfer
Task Train→ Test LR CNN mSDA-NT CNN+ADV mSDA

Meeting

Avocado→ Avocado 0.91 0.93 0.93 – –
Avocado→ Enron 0.89 0.92 0.91 0.92 0.90
Enron→ Enron 0.92 0.94 0.93 – –
Enron→ Avocado 0.89 0.90 0.90 0.91 0.91

Commitment

Avocado→ Avocado 0.95 0.97 0.96 – –
Avocado→ Enron 0.98 0.99 0.99 0.99 0.98
Enron→ Enron 0.99 0.99 0.99 – –
Enron→ Avocado 0.93 0.96 0.95 0.95 0.94

Table 3: AUC Scores for both Prediction Tasks. Each pair of adjacent rows in a block compares the
model applied in-domain (upper row) and the model applied out-of-domain (lower row). The transfer
out-of-domain results (e.g. CNN+ADV, mSDA) can be compared to the corresponding no Transfer
in-domain (e.g. CNN, mSDA-NT).

Commitments. Referring back to the MMD results on right of Table 2, note that MMD actually shows
Enron is closer to Avocado than a sample of Avocado is! This can be interpreted as the variation
in the language in commitments in Enron is smaller than that seen in Avocado; therefore a random
sample of Enron commitments has less variability. Given that this predicts the direction of better
out-of-domain performance, understanding how to leverage this better in learning is an interesting
future direction. Now, note that both of the transfer methods generally improve over the logistic
regression baseline but not over their most similar no-transfer counterpart. In much of the transfer
learning literature a new model and training approach is introduced jointly and only compared to a
baseline. Here we see by comparing to a no-transfer version, the gains on out-of-domain relative to a
simple baseline is due to improved modeling but that it has not closed the size of the gap between
in-domain and out-of-domain performance. In fact, many transfer papers do not compute in-domain
performance nor compare on a performance metric that is skew invariant.

4 Conclusion
We presented several ways of demonstrating an intrinsic transfer gap in the distributions of words
across different text corpora. Using contextual embeddings, MMD based distances on the positive
class were especially accurate in predicting how models would perform on out-of-domain datasets.
While methods proposed for transfer in the literature do provide improved gains compared to simple
baselines, we found the change in model architecture to be the primary explanation for improved
absolute performance. Furthermore, techniques like adversarial training did not add additional
improvement – nor did the gap between in-domain and out-of-domain performance decrease with
transfer based methods. Investigating the reasons for this in detail may be a fruitful direction in order
to improve cross-domain prediction in enterprise text data.
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