
Generalization of Reinforcement Learners with
Working and Episodic Memory

Meire Fortunato? Melissa Tan?
Ryan Faulkner? Steven Hansen? Adrià Puigdomènech Badia

Gavin Buttimore Charlie Deck Joel Z Leibo Charles Blundell
DeepMind

{meirefortunato, melissatan, rfaulk, stevenhansen,
adriap, buttimore, cdeck, jzl, cblundell}@google.com

(? Equal Contribution)

Abstract

Memory is an important aspect of intelligence and plays a role in many deep
reinforcement learning models. However, little progress has been made in un-
derstanding when specific memory systems help more than others and how well
they generalize. The field also has yet to see a prevalent consistent and rigorous
approach for evaluating agent performance on holdout data. In this paper, we aim
to develop a comprehensive methodology to test different kinds of memory in an
agent and assess how well the agent can apply what it learns in training to a holdout
set that differs from the training set along dimensions that we suggest are relevant
for evaluating memory-specific generalization. To that end, we first construct a
diverse set of memory tasks1 that allow us to evaluate test-time generalization
across multiple dimensions. Second, we develop and perform multiple ablations on
an agent architecture that combines multiple memory systems, observe its baseline
models, and investigate its performance against the task suite.

1 Introduction

Humans use memory to reason, imagine, plan, and learn. Memory is a foundational component of
intelligence, and enables information from past events and contexts to inform decision-making in the
present and future. Recently, agents that utilize memory systems have advanced the state of the art
in various research areas including reasoning, planning, program execution and navigation, among
others (Graves et al., 2016; Zambaldi et al., 2018; Santoro et al., 2018; Banino et al., 2018; Vaswani
et al., 2017; Sukhbaatar et al., 2015).

Memory has many aspects, and having access to different kinds allows intelligent organisms to bring
the most relevant past information to bear on different sets of circumstances. In cognitive psychology
and neuroscience, two commonly studied types of memory are working and episodic memory.
Working memory (Miyake and Shah, 1999) is a short-term temporary store with limited capacity.
In contrast, episodic memory (Tulving and Murray, 1985) is typically a larger autobiographical
database of experience (e.g. recalling a meal eaten last month) that lets one store information over a
longer time scale and compile sequences of events into episodes (Tulving, 2002). Episodic memory
has been shown to help reinforcement learning agents adapt more quickly and thereby boost data
efficiency (Blundell et al., 2016; Pritzel et al., 2017; Hansen et al., 2018). More recently, Ritter et al.
(2018) shows how episodic memory can be used to provide agents with context-switching abilities

1Videos available at https://sites.google.com/view/memory-tasks-suite

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

https://sites.google.com/view/memory-tasks-suite/home

in contextual bandit problems. The transformer (Vaswani et al., 2017) can be viewed as a hybrid
of working memory and episodic memory that has been successfully applied to many supervised
learning problems.

In this work, we explore adding such memory systems to agents and propose a consistent and rigorous
approach for evaluating whether an agent demonstrates generalization-enabling memory capabilities
similar to those seen in animals and humans.

One fundamental principle in machine learning is to train on one set of data and test on an unseen
holdout set, but it has to date been common in reinforcement learning to evaluate agent performance
solely on the training set which is suboptimal for testing generalization (Pineau, 2018). Also, though
advances have recently been made on evaluating generalization in reinforcement learning (Cobbe
et al., 2018) these have not been specific to memory. Our approach is to construct a train-holdout split
where the holdout set differs from the training set along axes that we propose are relevant specifically
to memory, i.e. the scale of the task and precise objects used in the task environments. For instance,
if an agent learns in training to travel to an apple placed in a room, altering the room size or apple
color as part of a generalization test should ideally not throw it off.

We propose a set of environments that possess such a split and test different aspects of working and
episodic memory, to help us better understand when different kinds of memory systems are most
helpful and identify memory architectures in agents with memory abilities that cognitive scientists
and psychologists have observed in humans.

Alongside these tasks, we develop a benchmark memory-based agent, the Memory Recall Agent
(MRA), that brings together previously developed systems thought to mimic working memory and
episodic memory. This combination of a controller that models working memory, an external episodic
memory, and an architecture that encourages long-term representational credit assignment via an
auxiliary unsupervised loss and backpropagation through time that can ‘jump’ over several time-steps
obtains better performance than baselines across the suite. In particular, episodic memory and
learning good representations both prove crucial and in some cases stack synergistically.

To summarize, our contribution is to:

• Introduce a suite of tasks that require an agent to utilize fundamental functional properties
of memory in order to solve in a way that generalizes to holdout data.

• Develop an agent architecture that explicitly models the operation of memory by integrating
components that functionally mimic humans’ episodic and working memory.

• Show that different components of our agent’s memory have different effectiveness in
training and in generalizing to holdout sets.

• Show that none of the models fully generalize outside of the train set on the more challenging
tasks, and that the extrapolation incurs a greater level of degradation.

2 Task suite overview

We define a suite of 13 tasks designed to test different aspects of memory, with train-test splits that test
for generalization across multiple dimensions. These include cognitive psychology tasks adapted from
PsychLab (Leibo et al., 2018) and DMLab (Beattie et al., 2016), and new tasks built with the Unity 3D
game engine (Juliani et al., 2018) that require the agent to 1) spot the difference between two scenes;
2) remember the location of a goal and navigate to it; or 3) infer an indirect transitive relation between
objects. Videos with task descriptions are at https://sites.google.com/view/memory-tasks-suite.

2.1 PsychLab

Four tasks in the Memory Tasks Suite use the PsychLab environment (Leibo et al., 2018), which
simulates a psychology laboratory in first-person. The agent is presented with a set of one or multiple
consecutive images, where each set is called a ‘trial’. Each episode has multiple trials.

In Arbitrary Visuomotor Mapping (AVM) a series of objects is presented, each with an associated
look-direction (e.g. up,left). The agent is rewarded if it looks in the associated direction the next time
it sees a given object in the episode (Fig ?? in App. ??). Continuous Recognition presents a series
of images with rewards given for correctly indicating whether an image has been previously shown
in the episode (Fig ?? in App. ??). In Change Detection the agent sees two consecutive images,

2

https://sites.google.com/view/memory-tasks-suite

separated by a variable-length delay, and has to correctly indicate if the two images differ (Fig ??
in App. ??). In What Then Where the agent is shown a single ‘challenge’ MNIST digit, then an
image of that digit with three other digits, each placed along an edge of the rectangular screen. It next
has to correctly indicate the location of the ‘challenge’ digit (Fig ?? in App. ??).

2.2 3D tasks

(a) Spot the Difference basic (b) Navigate to Goal (c) Transitive Inference

Figure 1: Task layouts for Spot the Difference, Goal Navigation, and Transitive Inference. In (a), the
agent has to identify the difference between the two rooms. In (b), the agent has to go to the goal.
which is represented by an oval symbol here and may be visible or not to the agent. In (c), the agent
has to go to the higher-valued object in each pair. The value order is given by the transitive chain
outside the room. It is shown here solely for illustration; the agent cannot see it.

Spot the Difference: This tests whether the agent can correctly identify the difference between two
nearly identical scenes (Figure 1(a)). The agent has to move from the first to the second room, with a
‘delay’ corridor in between. See Fig. 2 for the four different variants.

(a) Spot the Difference
Basic

(b) Spot the Difference
Passive

(c) Spot the Difference
Multi-Object

(d) Spot the Difference
Motion

Figure 2: Spot the Difference tasks. (a) All the tasks in this family are variants of this basic setup,
where each room contains two blocks. (b) By placing Room 1’s blocks right next to the corridor
entrance, we guarantee that the agent will always see them. (c) The number of objects varies. (d)
Instead of differing in color between rooms, the altered block follows a different motion pattern.

Goal Navigation: This task family was inspired by the Morris Watermaze (Miyake and Shah, 1999)
setup used with rodents in behavioral neuroscience. The agent is rewarded every time it successfully
reaches the goal; once it gets there it is respawned randomly in the arena and has to find its way back
to the goal. The goal location is re-randomized at the start of episode (Fig. 1(b), Fig. 3).

(a) Invisible Goal
Empty Arena

(b) Invisible Goal, With
Buildings

(c) Visible Goal With
Buildings

(d) Visible Goal Proce-
dural Maze

Figure 3: Goal Navigation tasks. (a) The arena has no buildings, agent must navigate by skybox. (b)
There are rectangular buildings at fixed, non-randomized locations in the arena. (c) As in (b), but the
goal appears as an oval. (d) A visible goal in a procedurally generated maze.

Transitive Inference: This task tests if an agent can learn an overall transitive ordering over a chain
of objects, through being presented with ordered pairs of adjacent objects (See Fig. 1(c) and App.
??).

3

2.3 Scale and Stimulus Split

To test how well the agent can generalize to holdout data after training, we create per-task holdout
levels that differ from the training level along a scale and a stimulus dimension. The scale dimension
is intended to capture something about the memory demand of the task: e.g., a task with a longer
time delay between events that must be related should be harder than one with a short delay. The
stimulus dimension is to guard against trivial overfitting to the particular visual input presented to the
input: the memory representation should be more abstract than the particular colour of an object.

The training level comprises a ‘small’ and ‘large’ scale version of the task. When training the
agent we uniformly sample between these two scales. As for the holdout levels, one of them –
‘holdout-interpolate’ – corresponds to an interpolation between those two scales (call it ‘medium’)
and the other, ‘holdout-extrapolate’, corresponds to an extrapolation beyond the ‘large’ scale (call it
‘extra-large’). Alterations made for each task split and their settings are in Table ?? in App. ??.

3 The Memory Recall Agent

Our agent, the Memory Recall Agent (MRA), incorporates five components: 1) a pixel-input convo-
lutional, residual network, 2) a working memory, 3) a slot-based episodic memory, 4) an auxiliary
contrastive loss for representation learning (van den Oord et al., 2018), 5) a jumpy backpropagation-
through-time training regime. Our agent architecture is shown in Figure 4(a). The overall agent is
built on top of the IMPALA model (Espeholt et al., 2018) and is trained in the same way with the
exceptions described below. Component descriptions are below.

Pixel Input Pixel input is fed to a convolutional neural network, as is common in recent agents,
followed by a residual block (He et al., 2015). The precise hyper-parameters are given in ??: we
use three convolutional layers followed by two residual layers. The output of this process is xt in
Figure 4(a) and serves as input to three other parts of the network: 1) part of the input to the working
memory module, 2) in the formation of keys and queries for the episodic memory, 3) as part of the
target for the contrastive predictive coding.

Working Memory Working memory is often realized through latent recurrent neural networks
(RNNs) with some form of gating, such as LSTMs and Relational Memory architectures (Hochreiter
and Schmidhuber, 1997; Santoro et al., 2018). These working memory models calculate the next set
of hidden units using the current input and the previous hidden units. Although models which rely on
working memory can perform well on a variety of problems, their ability to tackle dependencies and
represent variables over long time periods is limited. The short-term nature of working memory is
pragmatically, and perhaps unintentionally, reflected in the use of truncated backprop through time
and the tendency for gradients through these RNNs to explode or vanish. Our agent uses an LSTM as
a model of working memory. As we shall see in experiments, this module is able to perform working
memory–like operations on tasks: i.e., learn calculations involving short-term memory. As depicted
in Figure 4(a), the LSTM takes as input xt from the pixel input network and mt from the episodic
memory module. As in Espeholt et al. (2018), the LSTM has two heads as output, producing the
policy π and the baseline value function V . In our architecture these are derived from the output from
the LSTM, ht. ht is also used to form episodic memories, as described below.

Episodic Memory (MEM) If our agent only consisted of the working memory and pixel input
described above, it would be almost identical to the model in IMPALA (Espeholt et al., 2018), an
already powerful RL agent. But MRA also includes a slot-based episodic memory module as that
can store values more reliably and longer-term than an LSTM, is less susceptible to the intricacies of
gradient propagation, and its fundamental operations afford the agent different abilities (as observed in
our experiments). The MEM in MRA has a key-value structure which the agent reads from and writes
to at every time-step (see Fig. 4(a)). MRA implements a mechanism to learn how to store summaries
of past experiences and retrieve relevant information when it encounters similar contexts. The reads
from memory are used as additional inputs to the neural network (controller), which produces the
model predictions. This effectively augments the controller’s working memory capabilities with
experiences from different time scales retrieved from the MEM, which facilitate learning long-term
dependencies, a difficult task when relying entirely on backpropagation in recurrent architectures
(Hochreiter and Schmidhuber, 1997; Graves et al., 2016; Vaswani et al., 2017).

4

Episodic Memory

� � � � �� �

� � � � � �
ht-1

ht

qt=Wq[xt, ht-1]+bq

 Wk[pi, vi]+bk

 vi

write

[xt, mt]

read

mt = wjvj

input

CNN+
ResNet

π V

∑
j=1

K

 pi

ht xt

 ki

k1
v1 p1

(a) Architecture of the MRA.

predictions

xt+1

working
memory

CNN+
ResNet

xt+2 xt+3

working
memory

working
memory

CNN+
ResNet

CNN+
ResNet

CNN+
ResNet

CNN+
ResNet

CNN+
ResNet

ht

xt-2mt-2 xt-1mt-1
xtmt

(b) Contrastive Predictive Coding loss for MRA.

Figure 4: The Memory Recall Agent (MRA) architecture.

The MEM has a number of slots, indexed by i. Each slot stores activations from the pixel input
network and LSTM from previous times ti in the past. The MEM acts as a fixed-size circular buffer:
New keys and values are added, overwriting the least recently added entry if there are no unused slots
available. The contents of the episodic memory buffer is wiped at the end of each episode.

Memory Writing Crucially, writing to episodic memory is done without gradients. At each step a
free slot is chosen for writing, denoted i. Next, the following is stored:

pi ← xt; vi ← ht; ki ←Wk[pi, vi] + bk (1)

where pi is the pixel input embedding from step t and vi is the LSTM hidden state (if the working
memory is something else, e.g. a feedforward, this would be the output activations). ki is the key,
used for reading (described below), computed as a simple linear function of the other two values
stored. Caching the key speeds up memory reads significantly. However, the key can become stale
as the weights and biases, Wk and bk are learnt (the procedure for learning them is described below
under Jumpy Backpropagation). In our experiments we did not see an adverse effect of this staleness.

Memory Reading The agent uses a form of dot-product attention (Bahdanau et al., 2015) over its
MEM, to select the most relevant events to provide as input mt to the LSTM. The query qt is a linear
transform of the pixel input embedding xt and the LSTM hidden state from the previous time-step
ht−1, with weight Wq and bias bq .

qt =Wq[xt, ht−1] + bq (2)

The query qt is then compared against the keys in MEM as in Pritzel et al. (2017): Let (pj , vj , kj),
1 ≤ j ≤ K be the K nearest neighbors to qt from MEM, under an L2 norm between kj and qt.

mt =

K∑
j=1

wjvj where wj ∝
1

ε+ ||qt −Wk[pj , vj]− bk||22
(3)

We compute a weighted aggregate of the values (vj) of the K nearest neighbors, weighted by the
inverse of each neighbor-key’s distance to the query. Note that the distance is re-calculated from
values stored in the MEM, via the linear projection Wk, bk in (1). We concatenate the resulting
weighted aggregate memory mt with the embedded pixel input xt, and pass it as input to the working
memory as shown in Figure 4(a).

Jumpy backpropagation We now turn to how gradients flow into memory writes. Full backprop-
agation can become computationally infeasible as this would require backpropagation into every
write that is read from and so on. Thus as a new (pi, vi, ki)-triplet is added to the MEM, there are
trade-offs to be made regarding computational complexity versus performance of the agent. To make
it more computationally tractable, we place a stop-gradient in the memory write. In particular, the
write operation for the key in (1) becomes:

ki ←Wk[SG(pi),SG(vi)] + bk (4)

5

where SG(·) denote that the gradients are stopped. This allows the parameters Wk and bk to receive
gradients from the loss during writing and reading, while at the same time bounding the computational
complexity as the gradients do not flow back into the recurrent working memory (or via that back
into the MEM). To re-calculate the distances, we want to use these learnt parameters rather than,
say, random projection, so we need to store the arguments xt and ht of the key-generating linear
transform Wk, bk for all previous time-steps. Thus in the MEM we store the full (pi, vi, ki)-triplet,
where pi = xti , vi = hti and ti is the step that write i was made. We call this technique ‘jumpy
backpropagation’ because the intermediate steps between the current time-step t and the memory
write step ti are not taken into account in the gradient updates.

This approach is similar to Sparse Attentive Backtracking (Ke et al., 2018, SAB) which uses sparse
replay by passing gradients only through memories selected as relevant at each step. Our model
differs in that it does not have a fixed chunking scheme and does not do full backpropagation
through the architecture (which in our case becomes quickly intractable). Our approach has minimal
computational overhead as we only recompute the keys for the nearest neighbors.

Auxiliary Unsupervised Losses An agent with good memory provides a good basis for forming a
rich representation of the environment, as it captures a history of the states visited by the agent. This
is the primary basis for many rich probabilistic state representations in reinforcement learning such as
belief states and predictive state representations (Littman and Sutton, 2002). Auxiliary unsupervised
losses can significantly improve agent performance (Jaderberg et al., 2016). Recently it has been
shown that agents augmented with one-step contrastive predictive coding (van den Oord et al., 2018,
CPC) can learn belief state representations of the environment (Guo et al., 2018). Thus in MRA we
combine the working and episodic memory mechanisms listed above with a CPC unsupervised loss
to imbue the agent with a rich state representation. The CPC auxiliary loss is added to the usual RL
losses, and is of the following form:

N∑
τ=1

CPCLoss [ht;xt+1, xt+2, . . . , xt+τ] (5)

where CPCLoss is from van den Oord et al. (2018), ht is the working memory hidden state, and xt+τ
is the encoding pixel input at τ steps in the future. N is the number of CPC steps (typically 10 or 50
in our experiments). See Figure 4(b) for an illustration and further details and equations elaborating
on this loss in App. ??.

Reconstruction losses have also been used as an auxiliary task (Jaderberg et al., 2016; Wayne et al.,
2018) and we include this as a baseline in our experiments. Our reconstruction baseline minimizes
the L2 distance between the predicted reward and predicted pixel input and the true reward and pixel
input, using the working memory state ht as input. Details of this baseline are given in App. ??.

4 Experiments

Setup We ran 10 ablations on the MRA architecture, on the training and the two holdout levels:

• Working Memory component: Either feedforward neural network (‘FF’ for short) or LSTM.
The LSTM-only baseline corresponds to IMPALA (Espeholt et al., 2018).
• With or without using episodic memory module (‘MEM’).
• With or without auxiliary unsupervised loss (either CPC or reconstruction loss (‘REC’)).
• With or without jumpy backpropagation, for MRA (i.e. LSTM + MEM + CPC)

Given that the experiments are computationally demanding, we only performed small variations
within as part of our hyper-parameter tuning process for each task (see App. ??).

We hypothesize that in general the agent should perform the best in training, somewhat worse on the
holdout-interpolation level and the worst on the holdout-extrapolation level. That is, we expect to see
a generalization gap. Our results validated this hypothesis for the tasks that were much harder for
agents than for humans.

4.1 Full comparison

We computed human-normalized scores (details in App. ??) and plotted them into a heatmap (Fig
5) sorted such that the model with the highest train scores on average is the top row and the task

6

with highest train scores on average is the leftmost column. The heatmap suggests that the MRA
architecture, LSTM + MEM + CPC, broadly outperforms the other models (App. ?? Table ??). This
ranking was almost always maintained across train and holdout levels, despite MRA performing
worse than the LSTM-only baseline on What Then Where. What Then Where was one of the tasks
where all models did poorly, along with Spot the Difference: Multi-Object, Spot the Difference:
Multi-Object, Spot the Difference: Multi-Object (rightmost columns in heatmap). At the other end of
the difficulty spectrum, LSTM + MEM had superhuman scores on Visible Goal Procedural Maze in
training and on Transitive Inference in training and holdout, and further adding CPC or REC boosted
the scores even higher.

Figure 5: Heatmap of ablations per task sorted by normalized score for Train, Holdout-Interpolate,
Holdout-Extrapolate. The same plot with standard errors is in App. ?? Fig. ??.

4.2 Results

Figure 6: Normalized scores averaged across tasks.

Different memory systems worked best for dif-
ferent kinds of tasks, but the MRA architecture’s
combination of LSTM + MEM + CPC did the
best overall on training and holdout (Fig. 6). Re-
moving jumpy backpropagation from MRA hurt
performance in five Memory Suite tasks (App.
?? Fig. ??), while performance was the same in
the remaining ones (App. ?? Fig. ?? and ??).

Generalization gap widens as task difficulty
increases The hypothesized generalization
gap was minimal for some tasks e.g. AVM and
Continuous Recognition but significant for oth-
ers e.g. What Then Where and Spot the Differ-
ence: Multi-Object (Fig 7). We observed that
the gap tended to be wider as the task difficulty
went up, and that in PsychLab, the two tasks where the scale was the number of trials seemed to be
easier than the other two tasks where the scale was the delay duration.

MEM critical on some tasks, is enhanced by auxiliary unsupervised loss Adding MEM im-
proved scores on nine tasks in training, six in holdout-interpolate, and six in holdout-extrapolate.
Adding MEM alone, without an auxiliary unsupervised loss, was enough to improve scores on AVM
and Continuous Recognition, all Spot the Difference tasks except Spot the Difference: Multi-Object,
all Goal Navigation tasks except Visible Goal Procedural Maze, and also for Transitive Inference.

Adding MEM helped to significantly boost holdout performance for Transitive Inference, AVM, and
Continuous Recognition. For the two PsychLab tasks this finding was in line with our expectations,
since they both can be solved by memorizing single images and determining exact matches and thus
an external episodic memory would be the most useful. For Transitive Inference, in training MEM
helped when the working memory was FF but made little difference on an LSTM, but on holdout

7

MEM helped noticeably for both FF and LSTM. In Change Detection and Multi-Object, adding
MEM alone had little or no effect but combining it with CPC or REC provided a noticeable boost.

Synergistic effect of MEM + CPC, for LSTM On average, adding either the MEM + CPC stack
or MEM + REC stack to any working memory appeared to improve the agent’s ability to generalize
to holdout levels (Fig. 6). Interestingly, on several tasks we found that combining MEM + CPC
had a synergistic effect when the working memory was LSTM: The performance boost from adding
MEM + CPC was larger than the sum of the boost from adding MEM or CPC alone. We observed
this phenomenon in seven tasks in training, six in holdout-interpolate, and six in holdout-extrapolate.
Among these, the tasks where there was MEM + CPC synergy across training, holdout-interpolate,
and holdout-extrapolate were: the easiest task, Visible Goal Procedural Maze; Visible Goal with
Buildings; Spot the Difference: Basic; and the hardest task, Spot the Difference: Multi-Object.

CPC vs. REC CPC was better than REC on all Spot the Difference tasks, and the two harder
PsychLab tasks Change Detection and What Then Where. On the other two PsychLab tasks there was
no difference between CPC and REC. However, REC was better on all Goal Navigation tasks except
Invisible Goal Empty Arena. When averaged out, REC was more useful when the working memory
was FF, but CPC was more useful for an LSTM working memory.

Figure 7: Generalization gap is smaller for AVM and Continuous Recognition, larger for What Then
Where and Spot the Difference: Multi-Object. Dotted lines indicate human baseline scores. See other
curves in App. ?? Fig. ??.

5 Discussion & Future Work

We constructed a diverse set of environments 2 to test memory-specific generalization, based on tasks
designed to identify working memory and episodic memory in humans, and also developed an agent
that demonstrates many of these cognitive abilities. We propose both a testbed and benchmark for
further work on agents with memory, and demonstrate how better understanding the memory and
generalization abilities of reinforcement learning agents can point to new avenues of research to
improve agent performance and data efficiency. There is still room for improvement on the trickiest
tasks in the suite where the agent fared relatively poorly. In particular, solving Spot the Difference:
Motion might need a generative model that enables forward planning to imagine how future motion
unrolls (e.g., (Racanière et al., 2017)). Our results indicate that adding an auxiliary loss such as
CPC or reconstruction loss to an architecture that already has an external episodic memory improves
generalization performance on holdout sets, sometimes synergistically. This suggests that existing
agents that use episodic memory, such as DNC and NEC, could potentially boost performance by
implementing an additional auxiliary unsupervised loss.

2We plan to release the full task suite at publication time.

8

Acknowledgements

We would like to thank Jessica Hamrick, Jean-Baptiste Lespiau, Frederic Besse, Josh Abramson,
Oriol Vinyals, Federico Carnevale, Charlie Beattie, Piotr Trochim, Piermaria Mendolicchio, Aaron
van den Oord, Chloe Hillier, and many others at DeepMind for insightful discussions, comments and
feedback on this work.

References
D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. In

3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1409.0473.

A. Banino, C. Barry, B. Uria, C. Blundell, T. Lillicrap, P. Mirowski, A. Pritzel, M. J. Chadwick, T. Degris,
J. Modayil, et al. Vector-based navigation using grid-like representations in artificial agents. Nature, 557
(7705):429, 2018.

C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright, H. Küttler, A. Lefrancq, S. Green, V. Valdés,
A. Sadik, J. Schrittwieser, K. Anderson, S. York, M. Cant, A. Cain, A. Bolton, S. Gaffney, H. King,
D. Hassabis, S. Legg, and S. Petersen. Deepmind lab. CoRR, abs/1612.03801, 2016.

C. Blundell, B. Uria, A. Pritzel, Y. Li, A. Ruderman, J. Z. Leibo, J. Rae, D. Wierstra, and D. Hassabis. Model-free
episodic control. arXiv preprint arXiv:1606.04460, 2016.

K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman. Quantifying generalization in reinforcement learning.
arXiv preprint arXiv:1812.02341, 2018.

L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley, I. Dunning,
S. Legg, and K. Kavukcuoglu. IMPALA: scalable distributed deep-rl with importance weighted actor-learner
architectures. CoRR, abs/1802.01561, 2018. URL http://arxiv.org/abs/1802.01561.

A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwinska, S. G. Colmenarejo,
E. Grefenstette, T. Ramalho, J. Agapiou, A. P. Badia, K. M. Hermann, Y. Zwols, G. Ostrovski, A. Cain,
H. King, C. Summerfield, P. Blunsom, K. Kavukcuoglu, and D. Hassabis. Hybrid computing using a neural
network with dynamic external memory. Nature, 538(7626):471–476, 2016. doi: 10.1038/nature20101. URL
https://doi.org/10.1038/nature20101.

Z. D. Guo, M. G. Azar, B. Piot, B. A. Pires, T. Pohlen, and R. Munos. Neural predictive belief representations.
CoRR, abs/1811.06407, 2018. URL http://arxiv.org/abs/1811.06407.

S. Hansen, A. Pritzel, P. Sprechmann, A. Barreto, and C. Blundell. Fast deep reinforcement learning using online
adjustments from the past. In Advances in Neural Information Processing Systems, pages 10567–10577,
2018.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR, abs/1512.03385,
2015. URL http://arxiv.org/abs/1512.03385.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–1780, Nov. 1997. ISSN
0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL http://dx.doi.org/10.1162/neco.1997.9.
8.1735.

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K. Kavukcuoglu. Reinforcement
learning with unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.

A. Juliani, V. Berges, E. Vckay, Y. Gao, H. Henry, M. Mattar, and D. Lange. Unity: A general platform for
intelligent agents. CoRR, abs/1809.02627, 2018. URL http://arxiv.org/abs/1809.02627.

N. R. Ke, A. Goyal, O. Bilaniuk, J. Binas, M. C. Mozer, C. Pal, and Y. Bengio. Sparse attentive backtracking:
Temporal creditassignment through reminding. CoRR, abs/1809.03702, 2018. URL http://arxiv.org/
abs/1809.03702.

J. Z. Leibo, C. de Masson d’Autume, D. Zoran, D. Amos, C. Beattie, K. Anderson, A. G. Castañeda, M. Sanchez,
S. Green, A. Gruslys, S. Legg, D. Hassabis, and M. Botvinick. Psychlab: A psychology laboratory for deep
reinforcement learning agents. CoRR, abs/1801.08116, 2018.

M. L. Littman and R. S. Sutton. Predictive representations of state. In Advances in neural information processing
systems, pages 1555–1561, 2002.

9

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1802.01561
https://doi.org/10.1038/nature20101
http://arxiv.org/abs/1811.06407
http://arxiv.org/abs/1512.03385
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1809.02627
http://arxiv.org/abs/1809.03702
http://arxiv.org/abs/1809.03702

A. Miyake and P. Shah. Models of working memory: Mechanisms of active maintenance and executive control.
Cambridge University Press, 1999. doi: 10.1017/CBO9781139174909.

J. Pineau. Oreproducible, reusable, and robust reinforcement learning (invited talk). Advances in Neural
Information Processing Systems, 2018, 2018.

A. Pritzel, B. Uria, S. Srinivasan, A. P. Badia, O. Vinyals, D. Hassabis, D. Wierstra, and C. Blundell. Neural
episodic control. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
2827–2836. JMLR.org, 2017.

S. Racanière, T. Weber, D. Reichert, L. Buesing, A. Guez, D. J. Rezende, A. P. Badia, O. Vinyals, N. Heess, Y. Li,
et al. Imagination-augmented agents for deep reinforcement learning. In Advances in neural information
processing systems, pages 5690–5701, 2017.

S. Ritter, J. X. Wang, Z. Kurth-Nelson, S. M. Jayakumar, C. Blundell, R. Pascanu, and M. Botvinick. Been there,
done that: Meta-learning with episodic recall. arXiv preprint arXiv:1805.09692, 2018.

A. Santoro, R. Faulkner, D. Raposo, J. W. Rae, M. Chrzanowski, T. Weber, D. Wierstra, O. Vinyals, R. Pascanu,
and T. P. Lillicrap. Relational recurrent neural networks. CoRR, abs/1806.01822, 2018. URL http:
//arxiv.org/abs/1806.01822.

S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus. Weakly supervised memory networks. CoRR, abs/1503.08895,
2015. URL http://arxiv.org/abs/1503.08895.

E. Tulving. Episodic memory: From mind to brain. Annual Review of Psychology, 53(1):1–25, 2002. doi:
10.1146/annurev.psych.53.100901.135114. URL https://doi.org/10.1146/annurev.psych.
53.100901.135114. PMID: 11752477.

E. Tulving and D. Murray. Elements of episodic memory. Canadian Psychology, 26(3):235–238, 1985.

A. van den Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding. CoRR,
abs/1807.03748, 2018. URL http://arxiv.org/abs/1807.03748.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention
is all you need. CoRR, abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.

G. Wayne, C. Hung, D. Amos, M. Mirza, A. Ahuja, A. Grabska-Barwinska, J. W. Rae, P. Mirowski, J. Z.
Leibo, A. Santoro, M. Gemici, M. Reynolds, T. Harley, J. Abramson, S. Mohamed, D. J. Rezende, D. Saxton,
A. Cain, C. Hillier, D. Silver, K. Kavukcuoglu, M. Botvinick, D. Hassabis, and T. P. Lillicrap. Unsupervised
predictive memory in a goal-directed agent. CoRR, abs/1803.10760, 2018.

V. F. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin, K. Tuyls, D. P. Reichert, T. P. Lillicrap,
E. Lockhart, M. Shanahan, V. Langston, R. Pascanu, M. Botvinick, O. Vinyals, and P. Battaglia. Relational
deep reinforcement learning. CoRR, abs/1806.01830, 2018. URL http://arxiv.org/abs/1806.
01830.

10

http://arxiv.org/abs/1806.01822
http://arxiv.org/abs/1806.01822
http://arxiv.org/abs/1503.08895
https://doi.org/10.1146/annurev.psych.53.100901.135114
https://doi.org/10.1146/annurev.psych.53.100901.135114
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1806.01830
http://arxiv.org/abs/1806.01830

	Introduction
	Task suite overview
	PsychLab
	3D tasks
	Scale and Stimulus Split

	The Memory Recall Agent
	Experiments
	Full comparison
	Results

	Discussion & Future Work

