Neural Lyapunov Control

Ya-Chien Chang Nima Roohi Sicun Gao
UCSD UCSD UCSD
yac021@eng.ucsd.edu nroohi @eng.ucsd.edu sicung @eng.ucsd.edu
Abstract

We propose new methods for learning control policies and neural network Lyapunov
functions for nonlinear control problems, with provable guarantee of stability. The
framework consists of a learner that attempts to find the control and Lyapunov
functions, and a falsifier that finds counterexamples to quickly guide the learner
towards solutions. The procedure terminates when no counterexample is found by
the falsifier, in which case the controlled nonlinear system is provably stable. The
approach significantly simplifies the process of Lyapunov control design, provides
end-to-end correctness guarantee, and can obtain much larger regions of attraction
than existing methods such as LQR and SOS/SDP. We show experiments on how the
new methods obtain high-quality solutions for challenging robot control problems
such as path tracking for wheeled vehicles and humanoid robot balancing.

1 Introduction

Learning-based methods hold the promise of solving hard nonlinear control problems in robotics.
Most existing work focuses on learning control functions represented as neural networks through
repeated interactions of an unknown environment in the framework of deep reinforcement learning,
with notable success. However, there are still well-known issues that impede the immediate use of
these methods in practical control applications, including sample complexity, interpretability, and
safety [S)]. Our work investigates a different direction: Can learning methods be valuable even in
the most classical setting of nonlinear control design? We focus on the challenging problem of
designing feedback controllers for stabilizing nonlinear dynamical systems with provable guarantee.
This problem captures the core difficulty of underactuated robotics [25]. We demonstrate that neural
networks and deep learning can find provably stable controllers in a direct way and tackle the
full nonlinearity of the systems, and significantly outperform existing methods based on linear or
polynomial approximations such as linear-quadratic regulators (LQR) [[17] and sum-of-squares (SOS)
and semidefinite programming (SDP) [21]. The results show the promise of neural networks and
deep learning in improving the solutions of many challenging problems in nonlinear control.

The prevalent way of stabilizing nonlinear dynamical systems is to linearize the system dynamics
around an equilibrium, and formulate LQR problems to minimize deviation from the equilibrium.
LQR methods compute a linear feedback control policy, with stability guarantee within a small
neighborhood where linear approximation is accurate. However, the dependence on linearization
produces extremely conservative systems, and it explains why agile robot locomotion is hard [25]].
To control nonlinear systems outside their linearizable regions, we need to rely on Lyapunov meth-
ods [[13]]. Following the intuition that a dynamical system stabilizes when its energy decreases over
time, Lyapunov methods construct a scalar field that can force stabilization. These fields are highly
nonlinear and the need for function approximations has long been recognized [13]. Many existing
approaches rely on polynomial approximations of the dynamics and the search of sum-of-squares
polynomials as Lyapunov functions through semidefinite programming (SDP) [21]]. A rich theory
has been developed around the approach, but in practice the polynomial approximations pose much
restriction on the systems and the Lyapunov landscape. Moreover, well-known numerical sensitivity

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

issues in SDP [[18] make it very hard to find solutions that fully satisfy the Lyapunov conditions. In
contrast, we exploit the expressive power of neural networks, the convenience of gradient descent for
learning, and the completeness of nonlinear constraint solving methods to provide full guarantee of
Lyapunov conditions. We show that the combination of these techniques produces control designs
that can stabilize various nonlinear systems with verified regions of attraction that are much larger
than what can be obtained by existing control methods.

We propose an algorithmic framework for learning control functions and neural network Lyapunov
functions for nonlinear systems without any local approximation of their dynamics. The framework
consists of a learner and a falsifier. The learner uses stochastic gradient descent to find parameters
in both a control function and a neural Lyapunov function, by iteratively minimizing the Lyapunov
risk which measures the violation of the Lyapunov conditions. The falsifier takes a control function
and Lyapunov function from the learner, and searches for counterexample state vectors that violate
the Lyapunov conditions. The counterexamples are added to the training set for the next iteration of
learning, generating an effective curriculum. The falsifier uses delta-complete constraint solving [11]],
which guarantees that when no violation is found, the Lyapunov conditions are guaranteed to hold
for all states in the verified domain. In this framework, the learner and falsifier are given tasks that
are difficult in different ways and can not be achieved by the other side. Moreover, we show that the
framework provides the flexibility for fine-tuning the control performance by directly enlarging the
region of attraction on demand, by adding regulator terms in the learning cost.

We experimented with several challenging nonlinear control problems in robotics, such as drone
landing, wheeled vehicle path following, and humanoid robot balancing. We are able to find new
control policies that produce certified region of attractions that are significantly larger than what can
be established previously. We provide a detailed analysis of the performance comparison between the
proposed methods and the LQR/SOS/SDP methods.

Related Work. The recent work of Richards et. al. [24]] has also proposed and shown the effectiveness
of using neural networks to learn safety certificates in a Lyapunov framework, but our goals and
approaches are different. Richards er. al. focus on discrete-time polynomial systems and the use of
neural networks to learn the region of attraction of a given controller. The Lyapunov conditions are
validated in relaxed forms through sampling. Special design of the neural architecture is required
to compensate the lack of complete checking over all states. In comparison, we focus on learning
the control and the Lyapunov function together with provable guarantee of stability in larger regions
of attraction. Our approach directly handles non-polynomial continuous dynamical systems, does
not assume control functions are given other than an initialization, and uses generic feed-forward
network representations without manual design. Our approach successfully works on many more
nonlinear systems, and find new control functions that enlarge regions of attraction obtainable
from standard control methods. Related learning-based approaches for finding Lyapunov functions
include [6l 7, [10, 22]]. There is strong evidence that linear control functions are all we need for
solving highly nonlinear control problems through reinforcement learning as well [20]], suggesting
convergence of different learning approaches. In the control and robotics community, similar learner-
falsifier frameworks have been proposed by [23| [16] without using neural network representations.
The common assumption is the Lyapunov functions are high-degree polynomials. In these methods,
an explicit control function and Lyapunov function can not be learned together because of the bilinear
optimization problems that they generate. Our approach significantly simplifies the algorithms
in this direction and has worked reliably on much harder control problems compared to existing
methods. Several theoretical results on asymptotic Lyapunov stability [2 4, 3, [1] show that some
very simple dynamical systems do not admit a polynomial Lyapunov function of any degree, despite
being globally asymptotically stable. Such results further motivates the use of neural networks as a
more suitable function approximator. A large body of work in control uses SOS representations and
SDP optimization in the search for Lyapunov functions [14} 21,19, (15| [19]]. However, scalability and
numerical sensitivity issues have been the main challenge in practice. As is well known, the number
of semidefinite programs from SOS decomposition grows quickly for low degree polynomials [21].

2 Preliminaries

We consider the problem of designing control functions to stablize a dynamical system at an equilib-
rium point. We make extensive use of the following results from Lyapunov stability theory.

Definition 1 (Controlled Dynamical Systems). An n-dimensional controlled dynamical system is

& fula), 2(0) = a0 ()

where f, : D — R"isa Lipschitz-contlnuous vector field, and D C R" is an open set with 0 € D
that defines the state space of the system. Each x(t) € D is a state vector. The feedback control is
defined by a continuous function w : R™ — R™, used as a component in the full dynamics f,,.

Definition 2 (Asymptotic Stability). We say that system of (1) is stable at the origin if for any
e € RT, there exists 6(¢) € R such that if ||z(0)|| < § then ||z(¢)|| < £ for all ¢ > 0. The system is
asymptotically stable at the origin if it is stable and also lim;_, ||2(¢)|| = 0 for all ||z (0)| < .

Definition 3 (Lie Derivatives). The Lie derivative of a continuously differentiable scalar function
V : D — R over a vector field f,, is defined as

oV dux;
ViV Z Ox; dt Z 895%

It measures the rate of change of V' along the direction of the system dynamics.

Proposition 1 (Lyapunov Functions for Asymptotic Stability). Consider a controlled system (1) with
equilibrium at the origin, i.e., f,,(0) = 0. Suppose there exists a continuously differentiable function
V . D — R that satisfies the following conditions:

V(0) =0, and, Yz € D\ {0}, V () > 0and V,V () < 0. (2)

Then, the system is asymptotically stable at the origin and V' is called a Lyapunov function.

Linear-Quadratic Regulators (LQR) is a widely-adpoted optimal control strategy. LQR controllers
are guaranteed to work within a small neighborhood around the stationary point where the dynamics
can be approximated as linear systems. A detailed description can be found in [[17].

3 Learning to Stabilize with Neural Lyapunov Functions

We now describe how to learn both a control function and a neural Lyapunov function together, so
that the Lyapunov conditions can be rigorously verified to ensure stability of the system. We provide
pseudocode of the algorithm in Algorithm|[T}

3.1 Control and Lyapunov Function Learning

We design the hypothesis class of candidate Lyapunov functions to be multilayered feedforward
networks with tanh activation functions. It is important to note that unlike most other deep learning
applications, we can not use non-smooth networks, such as with ReLU activations. This is because we
will need to analytically determine whether the Lyapunov conditions hold for these neural networks,
which requires the existence of their Lie derivatives.

For a neural network Lyapunov function, its input is any state vector of the system in Definition (TJ
and the output is a scalar value. We write 6 to denote the parameter vector for a Lyapunov function
candidate V. For notational convenience, we write u to denote both the control function and the
parameters that define the function. The learning process updates both the § and u parameters to
improve the likelihood of satisfying the Lyapunov conditions, which we formulate as a cost function
named the Lyapunov risk. The Lyapunov risk measures the degree of violation of the following
Lyapunov conditions, as shown in Proposition . First, the value of Vj (z) is positive; Second, the
value of the Lie derivative V f, Vj () is negative; Third, the value of Vp(0) is zero. Conceptually, the
overall Lyapunov control design problem is about minimizing the minimax cost of the form

lenf sup (max((), ~Vp(z)) + max(0, Vs, Vo(x)) + Vf(O)) .
U zeD

The difficulty in control design problems is that the violation of the Lyapunov conditions can not just
be estimated, but needs to be fully guaranteed over all states in D. Thus, we need to rely on global
search with complete guarantee for the inner maximization part, which we delegate to the falsifier
explained in Section 3.2. For the learning step, we define the following Lyapunov risk function.

Definition 4 (Lyapunov Risk). Consider a candidate Lyapunov function Vj for a controlled dynamical
system f,, from Definition[I] The Lyapunov risk is a defined by the following function

Ly (0:0) = E o) (0, Vi) + max(0,9,Valo)) + V3 0)) G)

where z is a random variable over the state space of the system with a distribution p. In practice, we
work with the Monte Carlo estimate named the empirical Lyapunov risk by drawing samples:

1 N
Ly (0o) = 55 30 (max(-1 (0. 0) 4 max(0, V. Voo) 4 V20, @)

i=1
where z;,1 < i < N are samples of the state vectors sampled according to p(D).

It is clear that the empirical Lyapunov risk is an unbiased estimator of the Lyapunov risk function. It
is clear that Ly , is an unbiased estimator of L.

Note that L, is positive semidefinite, and any (6, u) that corresponds to a true Lyapunov function
satisfies L (6, u)=0. Thus, Lyapunov functions define global minimizers of the Lyapunov risk function.

Proposition 2. Let Vi, be a Lyapunov function for dynamical system f,,, where u, is the control
parameters. Then (0,,u,) is a global minimizer for L, and L,(0,,u,) = 0.

Note that both Vj and f, are highly nonlinear (even though w is almost always linear in practice),
and thus L(0, u) generates a highly complex landscape. Surprisingly, multilayer feedforward tanh
networks and stochastic gradient descent can quickly produce generalizable Lyapunov functions with
nice geometric properties, as we report in detail in the experiments. In Figure [T] (b), we show an
example of how the Lyapunov risk is minimized over iterations on the inverted pendulum example.

Initialization and improvement of control performance over LQR. Because of the local nature
of stochastic gradient descent, it is hard to learn good control functions through random initialization
of control parameters. Instead, the parameters u in the control function are initialized to the LQR
solution, obtained for the linearized dynamics in a small neighborhood around the stationary point. On
the other hand, the initialization of the neural network Lyapunov functions can be completely random.
We observe that the final learned controller often delivers significantly better control solutions than
the initalization from LQR. Figure[I[a) shows how the learned control reduces oscillation of the
system behavior in the humanoid robot balancing example and achieve more stable control.

--- 6;(LQR)
6,(LQR) 05
— 0u(NN)

\
BFaN — 6NN
0.4
0 2
03
-1

o 1 2 3 4 5 6 7 8 0 25 50 75 100 125 150 175 - - 0
Iterations Angle(rad)
(c) ¢

Lyapunov risk
Angular velocity

[
(a) Iniial state (14, 1.4, 05, 0.5) (b)

Figure 1: (a) Comparison between LQR and deep-learned controllers for humanoid balancing. (b)
The Lyapunov risk decreases quickly over iterations. (c) Counterexamples returned by falsifiers from
several epochs, which quickly guides the learner to focus on sepcial regions in the space.

3.2 Falsification and Counterexample Generation

For each control and Lyapunov function pair (Vy, u) that the learner obtains, the falsifier’s task is to
find states that violate the Lyapunov conditions in Proposition[I} We formulate the negations of the
Lyapunov conditions as a nonlinear constraint solving problem over real numbers. These falsification
constraints are defined as follows.

Definition 5 (Lyapunov Falsification Constraints). Let V' be a candidate Lyapunov function for a
dynamical system defined by f,, defined in state space D. Let e € Q™ be a small constant parameter
that bounds the tolerable numerical error. The Lyapunov falsification constraint is the following
first-order logic formula over real numbers:

D (z) := (iﬁ > 5) A (V(ac) <0V Vy,V(z)> 0)

where x is bounded in the state space D of the system. The numerical error parameter ¢ is explicitly
introduced for controlling numerical sensitivity near the origin. Here ¢ is orders of magnitude smaller
than the range of the state variables, i.e., /¢ < min(1, ||D||2).

Remark 1. The numerical error parameter € allows us to avoid pathological problems in numerical
algorithms such as arithmetic underflow. Values inside this tiny ball correspond to disturbances that
are physically insignificant. This parameter is important for eliminating from our framework the
numerical sensitivity issues commonly observed in SOS/SDP methods. Also note the e-ball does not
affect properties of the Lyapunov level sets and regions of attraction outside it (i.e., D \ B;).

The falsifier computes solutions of the falsification constraint ®. (). Solving the constraints requires
global minimization of a highly nonconvex functions (involving Lie derivatives of the neural network
Lyapunov function), and it is a computationally expensive task (NP-hard). We rely on recent progress
in nonlinear constraint solving in SMT solvers such as dReal [11]], which has been used for similar
control design problems [16] that do not involve neural networks.

Example 1. Consider a candidate Lyapunov function V (z) = tanh(ayx1 + asxo + b) and dynamics
71 = —x% and ¥5 = sin(xy). The falsification constraint is of the following form

®(x) == (22 +22) > e A(tanh(a121 + agze 4+ b) < 0Vay (1 —tanh?(ayz1 4 agws +b))(—x3)
+as(1l— tanhQ(alxl + agxs + b)) sin(x1) > 0))

which is a nonlinear non-polynomial disjunctive constraint system. The actual examples used in our
experiments all use larger two-layer tanh networks and much more complex dynamics.

To completely certify the Lyapunov conditions, the constraint solving step for ®.(z) can never fail to
report solutions if there is any. This requirement is rigorously proved for algorithms in SMT solvers
such as dReal [12], as a property called delta-completeness [[11]].

Definition 6 (Delta-Complete Algorithms). Let C be a class of quantifier-free first-order constraints.
Let & € QT be a fixed constant. We say an algorithm A is §-complete for C, if for any ¢(z) € C, A
always returns one of the following answers correctly: ¢ does not have a solution (unsatisfiable), or
there is a solution = a that satisfies ©°(a). Here, (° is defined as a small syntactic variation of the
original constraint (precise definitions are in [11]).

In other words, if a delta-complete algorithm concludes that a formula ®. (x) is unsatisfiable, then it is
guaranteed to not have any solution. In our context, this is exactly what we need for ensuring that the
Lyapunov condition holds over all state vectors. If ®.(x) is determined to be J-satisfiable, we obtain
counterexamples that are added to the training set for the learner. Note that the counterexamples are
simply state vectors without labels, and their Lyapunov risk will be determined by the learner, not
the falsifier. Thus, although it is possible to have spurious counterexamples due to the J error, they
are used as extra samples and do not harm correctness of the end result. In all, when delta-complete
algorithms in dReal return that the falsification constraints are unsatisfiable, we conclude that the
Lyapunov conditions are satisfied by the candidate Lyapunov and control functions. Figure [Ifc)
shows a sequence of counterexamples found by the falsifier to improve the learned results.

Remark 2. When solving ®.(z) with §-complete constraint solving algorithms, we use § < ¢ to
reduce the number of spurious counterexamples. Following delta-completeness, the choice of § does
not affect the guarantee for the validation of the Lyapunov conditions.

3.3 Tuning Region of Attraction

An important feature of the proposed learning framework is that we can adjust the cost functions
to learn control and Lyapunov functions favoring various additional properties. In fact, the most
practically important performance metric for a stabilizing controller is its region of attraction (ROA).

An ROA defines a forward invariant set that is guaranteed to contain all possible trajectories of
the system, and thus can conclusively prove safety properties. Note that the Lyapunov conditions
themselves do not directly ensure safety, because the system can deviate arbitrarily far before coming
back to the stable equilibrium. Formally, the ROA of an asymptotically stable system is defined as:

Definition 7 (Region of Attraction). Let f, define a system asymptotically stable at the origin with
Lyapunov function V' for domain D. A region of attraction R is a subset of D that contains the origin
and guarantees that the system never leaves R. Any level set of V' completely contained in D defines
an ROA. That is, for § > 0, if Rg = {V(z) < 8} C D, then Ry is an ROA for the system.

To maximize the ROA produced by a pair of Lyapunov function and control function, we add a cost
term to the Lyapunov risk that regulates how quickly the Lyapunov function value increases with
respect to the radius of the level sets, by using Ly,,(0,u) + + SN llzille — aVe(a) following
Definition] Here v is tunable parameter. We observe that the regulator can have major effect on
the performance of the learned control functions. Figure [2]illustrates such an example, showing how
different control functions are obtained by regulating the Lyapunov risk to achieve larger ROA.

Figure 2: (a) Lyapunov function found by the initial LQR controller. (b) Lyapunov function found by
learning without tuning the ROA. (c) Lyapunov function found by learning after adding the ROA
tuning term. (d) Comparison of ROA for the different Lyapunov functions.

Algorithm 1 Neural Lyapunov Control
1: function LEARNING(X, f, ¢'7")

2: Set learning rate (0.01), input dimension (# of state variables), output dimension (1)

3: Initialize feedback controller « to LQR solution ¢'4"

4: Repeat:

5: Vo (z),u(z) < NNp,, (2) > Forward pass of neural network

6 MAGCOEDVEE AVAIC)

7: Compute Lyapunov risk L (6, u)

8: 00+ aVeL(0,u)

9: u <+ u+aVyL(0,u) > Update weights using SGD
10: Until convergence
11: return Vy, u

12: end function

13: function FALSIFICATION(f, u, Vj, €,)

14: Encode conditions in Definition[3]

15: Using SMT solver with § to verify the conditions

16: return satisfiability

17: end function

18: function MAIN()

19: Input: dynamical system (f), parameters of LQR (¢'?"), radius (¢), precision () and an
initial set of randomly sampled states in D

20: while Satisfiable do

21: Add counterexamples to X
22: Vi, u < LEARNING(X, f, ¢!9")
23: CE+ FALSIFICATION(f, u, Vy, €, d)

24: end while
25: end function

4 Experiments

We demonstrate that the proposed methods find provably stable control and Lyapunov functions on
various nonlinear robot control problems. In all the examples, we use a learning rate of 0.01 for the
learner, an € value of 0.25 and ¢ value of 0.01 for the falsifier, and re-verify the result with smaller &
in Table[I] We emphasize that the choices of these parameters do not affect the stability guarantees
on the final design of the control and Lyapunov functions. We show that the region of attraction is
enlarged by 300% to 600% compared to LQR results in these examples. Full details of the results and
system dynamics are provided in the Appendix. Note that for the Caltech ducted fan and humanoid
balancing examples, we numerically relaxed the conditions slightly when the learning has converged,
so that the SMT solver dReal does not run into numerical issues. More details on the effect of such
relaxation can be found in the paper website [8].

Benchmarks Learning time | falsification time | # samples | # iterations €
Inverted Pendulum 25.5 0.6 500 430 0.04
Path Following 36.3 0.2 500 610 0.01
Caltech Ducted Fan 1455.16 50.84 1000 3000 0.01
Humanoid Balancing 6000 458.27 1000 4000 0.01

Table 1: Runtime statistics of the full procedures on four nonlinear control examples.

Inverted pendulum. The inverted pendulum is a standard nonlinear control problem for testing
different control methods. This system has two state variables, the angular position @, angular velocity
0 and one control input u. Our learning procedure finds a neural Lyapunov function that is proved
to be valid within the domain ||z||s < 6. In contrast, the ROA found by SOS/SDP techniques is an
ellipse with large diameter of 1.75 and short diameter of 1.2. Using LQR control on the linearized
dynamics, we obtain an ellipse with large diameter of 6 and short diameter of 0.1. We observe that
among all the examples in our experiments, this is the only one where the SOS Lyapunov function
has passed the complete check by the constraint solver, so that we can compare to it. The Lyapunov
function obtained by LQR gives a larger ROA if we ignore the linearization error. The different
regions of attractions are shown in Figure [3] These values are consistent with the approximate
maximum region of attraction reported in [24]]. In particular, FigureE] (c) shows that the SOS function
does not define a big enough ROA, as many trajectories escape its region.

-2
0
Aleragy 2 4

0
Angle(rad)

Figure 3: Results of Lyapunov functions for inverted pendulum. (a) Lie derivative of learned
Lyapunov function over valid region. Its value is negative over the valid region, satisfying the
Lyapunov conditions. (b) ROA estimated by different Lyapunov functions. Our method enlarges
the ROA from LQR three times. (c) Validation of ROAs. Stars represent initial states. It shows
trajectories start near border of the ROA defined by the learned neural Lyapunov function are safely
bounded within the green region. On the contrary, many trajectories (red) starting inside the SOS
region can escape, and thus the region fails to satisfy the ROA properties.

Caltech ducted fan in hover mode. The system describes the motion of a landing aircraft in hover
mode with two forces u; and us. The state variables x, y, 8 denote the position and orientation of

the centre of the fan. There are six state variables [z, y, 0, &, ¢, 0]. The dynamics, neural Lyapunov

function with two layers of tanh activation functions, and the control policy are given in the Appendix.
In Figure (a), we show that the ROA is significantly larger than what can be obtained from LQR.

Caltech ducted fan(y — y subspace) Path tracking
' g - =
TV LR 0.64
£ Valid Region

\ <

0012
0.011 0411

0.010

Angle error(rad)
°
s

0.009

0.008

— ——— Llooo
-08 -06 -04 -02 00 02 04 06 08

-0.8
(b) Distance error (C) X

=L 0.007

v

Figure 4: (a) Comparison of ROAs for Caltech ducted fan. (b) Comparison of ROAs for path
following. (c) Schematic diagram of wheeled vehicle to show the nonlinear dynamics.

Wheeled vehicle path following. We consider the path tracking control using kinematic bicycle
model (see Figure EKC)). We take the angle error 6. and the distance error d. as state variables.
Assume a target path is a unit circle, then we obtain the Lyapunov function within ||z||, < 0.8.

Humanoid balancing. The task of balancing a humanoid robot can be modelled as maintaining
an n-link pendulum a vertical posture. The n-link pendulum system has n control inputs and 2n

state variables [0, 0o, ..., 0y, 91, 92, ..., 0y], representing the n link angles and n angle velocities.
Each link has mass m; and length /;, and the moments of inertia I; are computed from the link
pivots, where ¢ = 1,2, ..., n. We find a neural Lyapunov function for the 3-link pendulum system

within ||z||, < 0.5. In Figure 5, we show the shape of the neural Lyapunov functions on two of the
dimensions, and the ROA that the control design achieves. We also provide a video of the control on
the 3-link model.

0.0180

— = Valid region
~~ Valid region

0.0165

0.0150

00135

00120

0.0105

00090

0.0075

Figure 5: Results of humanoid balance. (a) Schematic diagram. (b) Learned Lyapunov function. (c)
Lie derivative of Lyapunov function. (d) Comparison of the region of attraction.

5 Conclusion

We proposed new methods to learn control policies and neural network Lyapunov functions for highly
nonlinear systems with provable guarantee of stability. The approach significantly simplifies the
process of nonlinear control design, provides end-to-end provable correctness guarantee, and can
obtain much larger regions of attraction compared to existing control methods. We show experiments
on challenging nonlinear problems central to various robotics problems. The proposed methods
demonstrate clear advantage over existing methods. We envision that neural networks and deep
learning will provide immediate solutions to many core problems in robot control design.

References

[1] Amir A. Ahmadi and Rapha€l M. Jungers. Lower bounds on complexity of lyapunov functions
for switched linear systems. CoRR, abs/1504.03761, 2015.

[2] Amir A. Ahmadi, M. Krstic, and P. A. Parrilo. a globally asymptotically stable polynomial
vector field with no polynomial lyapunov function. In 2011 50th IEEE Conference on Decision
and Control and European Control Conference.

[3] Amir A. Ahmadi and Pablo A. Parrilo. Stability of polynomial differential equations: Complex-
ity and converse lyapunov questions. CoRR, abs/1308.6833, 2013.

[4] Amir Ali Ahmadi. On the difficulty of deciding asymptotic stability of cubic homogeneous
vector fields. In American Control Conference, ACC 2012, Montreal, QC, Canada, June 27-29,
2012, pages 3334-3339, 2012.

[5] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman, and Dan Mané.
Concrete problems in Al safety. CoRR, abs/1606.06565, 2016.

[6] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause. Safe learning of regions of attrac-
tion for uncertain, nonlinear systems with gaussian processes. In 2016 IEEE 55th Conference
on Decision and Control (CDC), pages 4661-4666, Dec 2016.

[7] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 908-918. Curran Associates, Inc., 2017.

[8] Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural Lyapunov control (project website),
https://yachienchang.github.io/NeurIPS2019.

[9] G. Chesi and D. Henrion. Guest editorial: Special issue on positive polynomials in control.
IEEE Transactions on Automatic Control, 54(5):935-936, May 2009.

[10] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A
lyapunov-based approach to safe reinforcement learning. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems 31, pages 8092—8101. Curran Associates, Inc., 2018.

[11] Sicun Gao, Jeremy Avigad, and Edmund M. Clarke. Delta-Complete decision procedures
for satisfiability over the reals. In Automated Reasoning - 6th International Joint Conference,
IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings, pages 286-300, 2012.

[12] Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An SMT solver for nonlinear
theories over the reals. In Automated Deduction - CADE-24 - 24th International Conference on
Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings, pages 208-214,
2013.

[13] Wassim Haddad and Vijaysekhar Chellaboina. Nonlinear dynamical systems and control: A
lyapunov-based approach. Nonlinear Dynamical Systems and Control: A Lyapunov-Based
Approach, 01 2008.

[14] D. Henrion and A. Garulli. Positive Polynomials in Control, volume 312 of Lecture Notes in
Control and Information Sciences. Springer Berlin Heidelberg, 2005.

[15] Z. Jarvis-Wloszek, R. Feeley, Weehong Tan, Kunpeng Sun, and A. Packard. Some controls
applications of sum of squares programming. In 42nd IEEE International Conference on
Decision and Control (IEEE Cat. No.03CH37475), volume 5, pages 4676—4681 Vol.5, Dec
2003.

[16] James Kapinski, Jyotirmoy V. Deshmukh, Sriram Sankaranarayanan, and Nikos Arechiga.
Simulation-guided lyapunov analysis for hybrid dynamical systems. In Proceedings of the 17th
International Conference on Hybrid Systems: Computation and Control, HSCC ’14, pages
133-142. ACM, 2014.

https://yachienchang.github.io/NeurIPS2019

[17] Huibert Kwakernaak. Linear Optimal Control Systems. John Wiley & Sons, Inc., New York,
NY, USA, 1972.

[18] Johan Lofberg. Pre- and post-processing sum-of-squares programs in practice. /[EEE Transac-
tions on Automatic Control, 54(5):1007-1011, 2009.

[19] Anirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust feedback motion
planning. The International Journal of Robotics Research, 36(8):947-982, 2017.

[20] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies
is competitive for reinforcement learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems
31, pages 1805-1814. Curran Associates, Inc., 2018.

[21] Pablo A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization. PhD thesis, California Institute of Technology, 2000.

[22] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. Adaptative
computation and machine learning series. University Press Group Limited, 2006.

[23] Hadi Ravanbakhsh and Sriram Sankaranarayanan. Learning control lyapunov functions from
counterexamples and demonstrations. Autonomous Robots, 43(2):275-307, 2019.

[24] Spencer M. Richards, Felix Berkenkamp, and Andreas Krause. The lyapunov neural network:
Adaptive stability certification for safe learning of dynamical systems. In Proceedings of The
2nd Conference on Robot Learning, volume 87 of Proceedings of Machine Learning Research,
pages 466476, 29-31 Oct 2018.

[25] Russ Tedrake. Underactuated Robotics: Algorithms for Walking, Running, Swimming, Flying,
and Manipulation (Course Notes for MIT 6.832). 2019.

10

	Introduction
	Preliminaries
	Learning to Stabilize with Neural Lyapunov Functions
	Control and Lyapunov Function Learning
	Falsification and Counterexample Generation
	Tuning Region of Attraction

	Experiments
	Conclusion

