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ABSTRACT

There has been an ongoing cycle where stronger detection mechanisms and de-
fenses against adversarial attacks are subsequently broken by a more advanced
defense-aware attack. We present a new approach, which we argue is a step towards
ending this cycle by deflecting adversarial attacks, i.e. by forcing the attacker to
produce an input which semantically resembles the attack’s target class. To this
end, we first propose a stronger defense mechanism based on capsule networks
which combines three detection mechanisms to achieve state-of-the-art detection
performance on both standard and defense-aware attacks. We then show that un-
detected attacks against our defense are often classified as the adversarial target
class by performing a human study where participants are asked to label the class
of images produced by the attack. These attack images thus can no longer be called
adversarial, as our network classifies them the same way as humans do.

1 INTRODUCTION

Adversarial attacks have been the subject of constant research since they were first discov-
ered (Szegedy et al., 2013; Goodfellow et al., 2014; Kurakin et al., 2016; Madry et al., 2017).
Most of this research has been focused on the creation of more robust models to defend against
adversarial attacks (Song et al., 2017; Madry et al., 2017; Yang et al., 2019), or stronger attack
algorithms that break these defenses (Madry et al., 2017; Carlini & Wagner, 2017b; Chen et al., 2018;
Athalye et al., 2018). After several iterations of defense creating and breaking, some research focused
on adversarial attack detection (Grosse et al., 2017; Feinman et al., 2017; Metzen et al., 2017; Lee
et al., 2018; Qin et al., 2019; Roth et al., 2019). Detection algorithms aim to distinguish adversarial
attacks from real data, instead of attempting to correctly classify such inputs. However, this strategy
fell into the same creating/breaking cycle. Many state-of-the-art methods (Roth et al., 2019; Ma et al.,
2018; Lee et al., 2018) claiming to detect adversarial attacks were broken shortly after publication
with a defense-aware attack (Hosseini et al., 2019; Carlini & Wagner, 2017a; Athalye et al., 2018).
We attempt to get ahead of this cycle by focusing on the deflection of adversarial attacks: If the result
of the adversarial optimization of an image looks to a human like the adversarial target class rather
than its original class, then the image can hardly be called adversarial anymore. We call such attacks
“deflected”. Some examples are shown in Figure 1. In this paper, we propose a network and detection
mechanism that either detects attacks accurately or, for undetected attacks, forces the attacker to
produce images that resemble the target class, thereby deflecting them.

In this paper we make use of capsule networks and class conditional capsule reconstruction networks
(Sabour et al., 2017; Qin et al., 2019). This architecture is made up of two components: A capsule
classification network that classifies the input, and a reconstruction network that reconstructs the
input conditioned on the pose parameters of the predicted capsule. Apart from the classification
loss and `2 reconstruction loss used in (Sabour et al., 2017; Qin et al., 2019), we introduce an extra
cycle-consistency training loss which constrains a classification of the winning capsule reconstruction
to be the same as the classification of the original input. This new auxiliary training loss encourages
the reconstructions to more closely match the class-conditional distribution and helps the model
detect and deflect adversarial attacks.

In addition, we propose two new attack-agnostic detection methods based on the discrepancy between
the winning-capsule reconstruction of clean and adversarial inputs. We find that a detection method
that combines ours with the one proposed by Qin et al. (2019) performs best. We show that this
method can accurately detect white-box and black-box attacks based on three different distortion
metrics (EAD (Chen et al., 2018), CW (Carlini & Wagner, 2017b) and PGD (Madry et al., 2017)) on
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Figure 1: Deflected adversarial attacks on the SVHN dataset. These images were generated by a
defense aware attack and the maximal adversarial perturbation is bounded by 16/255.

both the SVHN and CIFAR-10 datasets. Following the suggestions in (Athalye et al., 2018; Carlini &
Wagner, 2017a), we also propose defense-aware attacks for our new detection method. We find that
our detection methods significantly outperform state-of-the-art methods on defense-aware attacks.
Finally, we perform a human study to verify that many of the undetected adversarial attacks against
our model have been successfully deflected, i.e. adversarial images from both defense-aware and
standard attacks against our detection mechanism are frequently classified by humans as the target
class. In contrast, successful attacks against baseline models do not have this property.

To summarize, our main contributions are as follows:

• We introduce the notion of deflected adversarial attacks, which presents a step towards
ending the battle between defenses and attacks.

• We propose a new cycle-consistency loss which trains a CapsNet to encourage the winning-
capsule reconstruction to closely match the class-conditional distribution and show that this
can help detect and deflect adversarial attacks.

• We introduce two attack-agnostic detection methods based on the discrepancy between
the winning-capsule reconstruction of the clean and the adversarial input, and design a
defense-aware attack to specifically attack our detection mechanisms.

• Extensive experiments on SVHN and CIFAR-10 show that our detection mechanism can
achieve state-of-the-art performance in detecting white-/black-box standard and defense-
aware attacks.

• We perform a human study to show that our approach, unlike previous methods, is able to
deflect a large percentage of the undetected adversarial attacks.

2 NETWORK ARCHITECTURE

In order to design a model that is strong enough to deflect adversarial attacks, we build our network
based on CapsNet (Sabour et al., 2017). Figure 2 shows the pipeline of our network architecture.
The final layer of our classifier is a Capsule layer (“CapsLayer” for short) which includes both
class capsules and background capsules. These capsules are intended to encode feature attributes
corresponding to the class and the background respectively. Given an input x, the output of a
CapsLayer is a prediction f(x) and a pose parameter v for all the classes and the background, where
vi denotes the pose parameter for class i. As in the initial Capsules proposed in (Sabour et al., 2017),
the magnitude of the activation vector of a capsule encodes the existence of an instance of the class
and the orientation of the activation vector encodes instantiation parameters of the instance, such as
its pose. Therefore, the magnitudes of the capsules’ activations are used to perform classification
while the activation vector of the winning class capsule together with the activation vectors of the
background capsules are used as the input to the reconstruction network. We use r(vi=f(x)) and
r(vi 6=f(x)) to represent the reconstruction from the winning capsule and a losing capsule respectively.
The reconstruction network uses the activations of all the background capsules as well as the activation
of one class capsule but we omit this to simplify the notation. More details of the network architecture
and implementation details used in this paper are provided in Section A and B of the Appendix.

Cycle-consistent Winning Capsule Reconstructions The CapsNet (Sabour et al., 2017) is trained
with two loss terms: a marginal loss for the classification and an `2 reconstruction loss. To encourage
the reconstruction to more closely match the class conditional distribution and help the model detect
and deflect adversarial attacks, we additionally incorporate an extra cycle-consistency loss `cyc which
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Figure 2: The network architecture with cycle-consistent winning capsule reconstructions.

constrains the reconstruction from the winning capsule to be classified as the same class as the input,
formulated as:

`cyc = `net(f(r(vi=f(x))), f(x)), (1)

where `net is the cross-entropy loss function and i ∈ {0, 1, . . . , n}, n denotes the number of classes in
the dataset. This can be achieved by feeding the reconstruction corresponding to the winning capsule
back into the classification network, shown as the dotted red line in Figure 2. This extra training
loss together with our Cycle-consistent Detector (introduced in Section 3) can help detect adversarial
attacks. In addition, since the winning-capsule reconstructions are optimized to more closely match
the class conditional data distribution, it becomes easier for our model to deflect adversarial attacks.

3 DETECTION METHODS

In this paper, we will use three reconstruction-based detection methods to detect standard attacks.
They are: Global Threshold Detector (GTD), first proposed in Qin et al. (2019), Local Best Detector
(LBD) and Cycle-Consistency Detector (CCD).

Global Threshold Detector When the input is adversarially perturbed, the classification given to
the input may be incorrect, but the reconstruction is often blurry and therefore the distance between
the adversarial input and the reconstruction is larger than that would be expected from normal
input. This allows us to detect the input as adversarial with the Global Threshold Detector. This
method, proposed in Qin et al. (2019), measures the reconstruction error between the input and its
reconstruction from the winning capsule. If the reconstruction error is greater than a global threshold
θ, that is:

‖r(vi=f(x))− x‖2 > θ, (2)

then the input is flagged as an adversarial example.

Local Best Detector When the input is a clean image, the reconstruction error from the winning
capsule is smaller than that of the losing capsules, where an example is shown in the first row of
Figure 3. This is likely because the `2 reconstruction objective only minimizes the reconstruction
from the winning capsule during training. However, when the input is an adversarial example, the
reconstruction from the capsule corresponding to the correct label can be even closer to the input
compared to the reconstruction corresponding to the winning capsule (see the second row in Figure 3).
Therefore, we propose the “Local Best Detector” (LBD) to detect such adversarial images whose
reconstruction error from the winning capsule is not the smallest, that is:

arg min
j
‖r(vj)− x‖2 6= f(x), j ∈ {0, 1, . . . , n}, (3)

where n is the number of classes in the dataset.

Cycle-Consistency Detector If the input is a clean image, the reconstruction from the winning
capsule will resemble the input. Our model should ideally assign the same class to the reconstruction
of the winning capsule as the clean input. This behavior is reinforced by training with the cycle-
consistency loss. For example, as shown in Figure 3 both the clean input and its winning-capsule
reconstruction are classified as 4. However, when the input is an adversarial example which is
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Figure 3: An example of a clean input, an adversarial example generated via a PGD attack, and
the reconstructions for the clean and adversarial inputs from each class capsule. The reconstruction
corresponding to the winning capsule is surrounded by a red box. Under each reconstruction is its
`2 reconstruction error; the smallest reconstruction error is highlighted in red. Both the clean input
and its winning capsule reconstruction are classified as ‘4’. The PGD attack is classified as the target
class ‘3’ but its winning capsule reconstruction is classified as ‘4’.

perceptually indistinguishable from the clean image but causes the model to predict the target class,
the reconstruction of the winning capsule often appears closer to the clean input and/or is blurry. As
a result, the reconstruction of the winning capsule is often not classified as the target class. As shown
in Figure 3, the adversarial input has been classified as the target class “3” while the reconstruction
corresponding to the winning capsule is classified as “4”. Therefore, the Cycle-Consistency Detector
(CCD) is designed to flag the input as an adversarial example if the input x and its reconstruction of
the winning capsule r(vi=f(x)) are not classified as the same class:

f(r(vi=f(x))) 6= f(x). (4)

In this paper, we use these three detectors together to detect adversarial examples. In other words, we
flag any input as adversarial if it is classified as adversarial by any of the detection mechanisms. As a
result, an adversarial input can only go undetected if it passes all three detection mechanisms.

4 THE DEFENSE-AWARE CC-PGD ATTACK

In order for an attack mechanism to generate an adversarial example x′ = x+ ∆ (where ∆ is a small
adversarial perturbation) that can both cause a misclassification and is not detected by our detection
mechanisms, the constructed adversarial attack must:

• successfully fool the classifier: f(x′) = t and f(x) 6= t, where t is the target class.

• avoid being detected by the Global Threshold Detector (GTD), the attack needs to constrain
the reconstruction of the winning capsule to be close to the input.1

• fool the Local Best Detector (LBD), the attack should encourage the reconstructions from
all the losing capsules to be far away from the input to ensure the reconstruction error of the
winning capsule is the smallest.

• circumvent the Cycle-Consistency Detector (CCD) by fooling the classifier into making the
target prediction when it is fed the winning-capsule reconstruction of the adversarial input,
that is: f(r(vi=f(x′))) = f(x′) = t.

To generate such an attack, we follow Qin et al. (2019) and devise attacks which consist of two stages
at each gradient step. The first stage attempts to fool the classifier by following a standard attack (e.g.,
a standard PGD attack) which follows the gradient of the cross-entropy loss function with respect to
the input. Then, in the second stage, we focus on fooling the detection mechanisms by taking the
reconstruction error and cycle-consistency into consideration. This can be formulated as minimizing
the reconstruction loss `r, which consists of three components: the reconstruction loss corresponding
to the Global Threshold Detector `g , the reconstruction loss corresponding to the Local Best Detector
`l and the cycle-consistency classification loss corresponding to the Cycle-Consistency Detector `cyc.

1Here we assume that the attack is not aware of the specific value of the global threshold p used in the
defense.
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Specifically, the reconstruction loss is defined as:

`r(x
′) = α1 · `g(x′) + α2 · `l(x′) + α3 · `cyc(x′)

= α1 · ‖r(vi=f(x′))− x′‖2 − α2 ·
∑n
k 6=f(x′)‖r(vk)− x′‖2

n− 1

+ α3 · `net(f(r(vi=f(x′))), f(x′))

(5)

where x′ = x + ∆ is the adversarial example, n is the number of the classes in the dataset,
‖r(vi=f(x′)) − x′‖2 is the winning-capsule reconstruction error and ‖r(vk 6=f(x′)) − x′‖2 is the
losing-capsule reconstruction error. The hyperparameters α1, α2 and α3 are used to balance the
importance of attacking each detector. Then, the adversarial perturbation can be updated in the second
stage as:

∆← clipε∞(∆− c · sign(∇∆(`r(x + ∆))), (6)

where ε∞ is the `∞ norm bound and c is the step size in each iteration.

5 EXPERIMENTS

Now that we have proposed our new defense model, we first verify its detection performance on the
SVHN and CIFAR-10 datasets on a variety attacks. Then we use a human study to demonstrate that
our model frequently causes attacks to be deflected.

5.1 EVALUATION METRICS AND DATASETS

In this paper, we use Accuracy to represent the proportion of clean examples that are correctly
classified. To measure the ability of attacks, we use Success Rate which is defined as the proportion
of adversarial examples that successfully fool the classifier into making the targeted prediction. In
order to evaluate the performance of different detection mechanisms, we report both False Positive
Rate (FPR) and Undetected Rate. The False Positive Rate is the proportion of clean examples that
are flagged as an adversarial example by the detection mechanism while the Undetected Rate, first
proposed in (Qin et al., 2019), denotes the proportion of adversarial examples that successfully fool
the classifier and go undetected. Finally, we perform a human study in Section 6 in order to show that
our model is able to effectively deflect adversarial attacks.

We test our models on the SVHN (Netzer et al., 2011) and CIFAR-10 datasets (Krizhevsky, 2009).
The classification accuracy on the clean test set is 96.5% on SVHN and 92.6% on CIFAR-10.

5.2 ADVERSARIAL ATTACKS AND THREAT MODEL

Following the suggestions in (Carlini et al., 2019), we test our attack-agnostic detection mechanisms
on three standard targeted attacks based on different distance metrics: `1 norm-based EAD (Chen
et al., 2018), `2 norm-based CW (Carlini & Wagner, 2017b), and `∞ norm-based PGD (Madry et al.,
2017). In addition, we follow the suggestions in (Carlini & Wagner, 2017a) to report the performance
of our detection mechanisms against defense-aware attacks. In our case, the defense-aware attack
which we call CC-PGD takes all the detectors into account. For the `∞ norm-based attacks, we
set the maximal perturbation ε∞ to be 16/255 on SVHN and 8/255 on CIFAR-10 as is typically
used (Buckman et al., 2018; Madry et al., 2017).

In this paper, we consider two commonly used threat models: white-box and black-box. For white-
box attacks, the adversary has the full knowledge of the network architecture and parameters and is
allowed to construct the adversarial attack by computing the gradient of the input. In the black-box
setting, the adversary is aware of the network architecture of the target model but does not have direct
access to the parameters.

5.3 ABLATION STUDY FOR DETECTION METHODS

In this section, we study the effectiveness of our proposed detection mechanisms: Local Best Detector
(LBD) and Cycle-Consistency Detector (CCD) and compare them with the Global Threshold Detector
(GTD) from (Qin et al., 2019). Since the False Positive Rate (FPR) of clean input flagged by the
Global Threshold Detector (GTD) varies as the chosen global threshold, in Figure 4 we plot the
undetected rate of white-box adversarial attacks flagged by different detectors versus the False
Positive Rate (FPR) of the clean input. The global threshold θ is chosen from the range [0, 20] with a
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Figure 4: The Undetected Rate of different detectors for white-box attacks versus False Positive Rate
(FPR) for clean input on the SVHN dataset. “All” denotes GTD, LBD and CCD are all used to detect
adversarial attacks. The better detection mechanism has a smaller FPR for clean input and smaller
undetected rate for attacks.

SVHN Dataset CIFAR10 Dataset

Figure 5: The Undetected Rate for white-box and black-box attacks versus False Positive Rate (FPR)
for clean input on the SVHN and CIFAR-10 datasets. The strongest attack has the largest area under
the line.

step size of 0.4. In Figure 4, we can clearly see that: 1) A single Global Threshold Detector (GTD)
proposed in (Qin et al., 2019) is not enough to effectively detect adversarial attacks. 2) In standard
attacks, the CCD is the most effective detector at a low False Positive Rate. However, it becomes
less effective than LBD when the inputs are created with the defense-aware CC-PGD attack which is
designed to specifically attack the three detection mechanisms. 3) In all the attacks, the combination
of all three detectors always performs the best. Therefore, we only report the performance of the
undetected rate of the combination of all three detectors in the following experiments.

5.4 DETECTION OF WHITE-BOX ATTACKS

Before showing that our defense produces deflective attacks, we must first validate that it improves
detection performance. Therefore, we test our model on standard and defense-aware attacks and
compare it with state-of-the-art detection methods in this section.

Standard Attacks As shown in Figure 5, our detection method has a very small undetected rate
for standard white-box attacks on both the SVHN and CIFAR-10 dataset. EAD and CW attacks are
always more easily detected than PGD attacks. For PGD attacks, we achieve an undetected rate below
10% with a small False Positive Rate on the SVHN dataset. The undetected rate for white-box PGD
is around 22% with the smallest False Positive Rate on the CIFAR-10 dataset. These demonstrate
that our detection mechanism is very effective in detecting standard white-box attacks.

Defense Aware Attacks Following the suggestions in (Carlini & Wagner, 2017a), we test our
detection mechanism in the setting where the adversary is fully aware of the defense (“defense-aware
attacks”) using the CC-PGD attack. Since the PGD attack is stronger than EAD and CW, the first
stage of our CC-PGD attack is to construct an adversarial image via standard PGD and then, in the
second stage, take the reconstruction error and cycle-consistency into consideration in order to fool
the detection methods. In Figure 5 we can clearly see the undetected rate of CC-PGD increases
compared to a standard PGD attack. However, there is a significant performance drop in the success
rate of White-box CC-PGD (from PGD: 96.0% to CC-PGD: 69.0% on SVHN) as shown in Table 1.
This indicates that the adversary needs to sacrifice some success rate in order not to be detected by
our detection mechanism.

Comparison with State-of-the-Art Detection Methods We compare our detection methods with
the most recent statistical test-based detection method (Roth et al., 2019) and a classifier-based
detection method proposed in (Hosseini et al., 2019). In Table 2, we can see that although the
statistical test (Roth et al., 2019) and the classifier-based detection method (Hosseini et al., 2019) can
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Table 1: Success rate of the white-box and black-box attacks for our deflecting model.

Dataset EAD CW PGD CC-PGD
White Black White Black White Black White Black

SVHN 100.0% 10.1% 97.6% 1.7% 96.0% 28.7% 69.0% 37.0%

CIFAR-10 100.0% 6.9% 78.0% 1.6% 49.3% 15.5% 46.8% 12.9%

Table 2: Comparison of the Undetected Rate of the state-of-the-art detection methods on the CIFAR-
10 dataset. For all the models, the maximum `∞ perturbation is ε∞ = 8/255 of the pixel dynamic
range and the False Positive Rate of the clean input are 5%. The best detection performance are
highlighted in bold. (Smaller numbers indicate better detection performance.)

Detection Methods Statistical Test Classifier-based Ours

CW 0.1% 0.0% 4.6%
Defense-aware PGD 97.8% 98.4% 28.9%

detect standard attacks successfully, they both fully fail against defense-aware attacks2. In contrast,
our proposed reconstruction-based detection mechanism has the best undetected rate in detecting
defense-aware adversarial attacks and a very small undetected rate of 4.6% in detecting CW attacks.

5.5 DETECTION OF BLACK-BOX ATTACKS

To study the effectiveness of our detection mechanisms, we also test our models on black-box attacks.
In Figure 5 we can see an over 50% performance drop in the undetected rate when the inputs are
black-box CC-PGD attacks on both datasets. The highest undetected rate of a black-box attack
is around 13% on the CIFAR-10 dataset, which demonstrates that our detection mechanism can
successfully detect black-box defense-aware attacks. In addition, the great gap of the success rate
between white-box and black-box attacks shown in Table 1 indicates our defense model significantly
reduces the transferability of all kinds of adversarial attacks.

6 DEFLECTED ATTACKS

The numbers that we have presented earlier in this paper have implicitly assumed that all adversarial
attacks still resemble the initial class, and therefore classifying them as the target class would
constitute a mistake. This assumption may not be true in practice. We have discussed the ability
of our model to deflect adversarial attacks by having adversarial gradients aligned with the class
conditional data distribution, thereby making adversarial attacks resemble the target class. In order to
quantify these claims we need to evaluate human performance on the adversarial attacks against our
model.

6.1 HUMAN STUDY ON SVHN

In order to validate our claim that our method can deflect adversarial attacks, we performed a human
study. We made use of the Amazon Mechanical Turk web service to recruit participants and asked
people to label SVHN digits. Each time, they were shown a single image which was randomly
sampled from the following five different sets: 1) clean images from the SVHN test set, 2) the
undetected and successful black-box PGD and CC-PGD adversarial attacks against our deflecting
model, 3) the undetected and successful white-box PGD and CC-PGD adversarial attacks against
our deflecting model, 4) the successful black-box PGD attacks generated to attack a standard CNN
classifier3, 5) the successful white-box PGD attacks for the CNN classifier. The maximal adversarial
perturbation of all the `∞ norm-based attacks are bounded by the same ε∞ = 16/255. The recruiters
were asked to classify each image as a digit between 0 and 9. If multiple digits occurred in one image,
we asked people to label the digit closest to the center of the image. We did not limit the time that
people could spend in labeling each image and we did not explain the purpose of this study to the

2The numbers of statistical test and classifier-based detection in the Table 2 are extracted from (Hosseini
et al., 2019). Since the success rate of the attacks are close to 100%, the undetected rate is roughly (1 - True
Positive Rate).

3The CNN classifier has the same network architecture as our deflecting model except that we replace the
CapsLayer with a convolutional layer.
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Figure 7: Deflected adversarial attacks on SVHN and CIFAR-
10. The maximal `∞ perturbation is 16/255 for SVHN and
25/255 for CIFAR-10.

users other than it was a research study. In this way, we had 1500 images labeled in total and each
image was labeled by five different users. We then calculated the percentage of uniformly labeled
images that were classified as either the original class or the adversarial target class. The results are
summarized in Figure 6.

We can see that 69.7% of successful and undetected black-box attacks against our model were
classified as the adversarial target. This means that when our defense is attacked with adversarial
attacks generated within a standard `∞ bound, not only are the results visibly different than the source
image, they resemble the target class. In this way, these attacks are successfully deflected and can
hardly be said to be adversarial, as the network is classifying them the same way our human testers
classified them. This is not the case for the baseline CNN model, where only 14.3% of the successful
black-box PGD attacks were labeled as the target class. In addition, compared to the white-box
attacks, more undetected and successful adversarial attacks generated under the black-box setting are
deflected to resemble the target class. This suggests that to attack our deflecting model in a more
practical and challenging setting (black-box), the attacker is forced to generate deflected adversarial
attacks in order not to be detected. Some examples of deflected adversarial attacks on SVHN are
shown in Figure 7.

We note that a certifiably ε-robust model (Cisse et al., 2017; Raghunathan et al., 2018; Wong &
Kolter, 2017) would by definition incorrectly classify these deflected attacks because they are within
ε of the original image but are classified but humans as a different class.

6.2 DEFLECTED ATTACKS ON CIFAR-10

To show that our model can effectively deflect adversarial attacks on the CIFAR-10 dataset, we have
chosen a deflected adversarial attack for each class with a maximal `∞ norm as 25/255, displayed in
Figure 7. It is apparent that the clean input has been perturbed to have the representative features of
the target class, in order to fool both the classifier and our detection mechanisms. As a result, these
adversarial attacks are also successfully deflected by our model. Unlike SVHN, for which human
evaluators reliably classified the attacks as the target label, the generated adversarial attacks against
our deflecting model on the CIFAR-10 do not reliably resemble the target class, though they are much
harder to identify than the clean data.

7 CONCLUSION

In this paper, we introduce a new approach which presents a step towards ending the battle between
defenses and attacks by deflecting adversarial attacks. To this end, we propose a new cycle-consistency
loss to encourage the winning-capsule reconstruction of the CapsNet to closely match the class-
conditional distribution. By making use of the three detection mechanisms, we are able to detect
standard adversarial attacks based on three different distance metrics with a low False Positive Rate
on the SVHN and CIFAR-10 datasets. To specifically attack our detection mechanisms, we propose a
defense-aware attack and find that our model achieves drastically lower undetected rates for defense
aware attacks compared to state-of-the-art methods. In addition, a large percentage of the undetected
and successful attacks are deflected by our model to resemble the adversarial target class, so they
cannot be considered as adversarial any more. This is verified by a human study showing that 70% of
the successful and undetected black-box adversarial attacks are classified unanimously by humans as
the target class on the SVHN dataset.
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A MODEL ARCHITECTURES

The details of the network architecture for SVHN and CIFAR-10 dataset are shown in Table 3 and
Table 4.

B TRAINING DETAILS

We set the batch size to be 64 and the learning rate to be 0.0001 to train the network on SVHN. For
CIFAR-10, the batch size is set to be 128 and the learning rate is 0.0002. The Adam optimizer (Kingma
& Ba, 2014) is used to train both networks with the loss function: ` = `margin + 0.001× `recons +
0.0005× `cyc.

C ATTACK PARAMETERS

To generate EAD and CW attacks, we follow the previous work (Chen et al., 2018; Carlini & Wagner,
2017b) to set the binary search steps to be 9, maximum iterations to be 1000 and learning rate to be
0.01. To construct `∞ norm-based attacks, we use 0.01 as the step size in each iteration and in total
200 attack steps. Empirically, the hyperparameter α1, α2 and α3 are set to be 1, 0 and 20 respectively
for the best attack performance in our CC-PGD. The parameter that balances the importance of the
two stages in CC-PGD is set to be 0.5 on the SVHN and 0.75 on the CIFAR-10 dataset.

D EXAMPLES OF ADVERSARIAL ATTACKS AND RECONSTRUCTIONS

We display successful adversarial attacks but detected by our detection mechanism, and display all
the reconstructions when the input are EAD attacks (on the left) and CW attacks (on the right) in
Figure 8, PGD attacks (on the left) and our CC-PGD attacks (on the right) in Figure 9 for the SVHN
dataset. We also show the successful and detected adversarial EAD attacks (on the left) and CW
attacks (on the right) in Figure 10, PGD attacks (on the left) and our CC-PGD attacks (on the right)
in Figure 11 for CIFAR-10 dataset.
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Table 3: The network architecture for the SVHN dataset.
Layer Name Configurations

Classification
Network

Conv filter size: 3x3, number of filters: 64x4, stride size: 1x1,
activation: leaky relu

Conv filter size: 3x3, number of filters: 64x8, stride size: 1x1,
activations: leaky relu

Avg Pooling pool size: 2x2, stride size: 2x2

Conv filter size: 3x3, number of filters: 64x2, stride size: 1x1,
activation: leaky relu

Conv filter size: 3x3, number of filters: 64x4, stride size: 1x1,
activation: leaky relu

Avg Pooling pool size: 2x2, stride size: 2x2

Conv filter size: 3x3, number of filters: 64x1, stride size: 1x1,
activation: leaky relu

Conv filter size: 3x3, number of filters: 64x2, stride size: 1x1,
activation: leaky relu

CapsLayer
number of input capsules: 16, input atoms: 512,
number of output capsules: 25, output atoms: 4,
number of dynamic routing: 1

Reconstruction
Network

fully connected input size: 100, output size:1024
fully connected input size: 1024, output size:16384

deconv filter size: 4x4, number of filters: 64, stride size: 2x2
deconv filter size: 4x4, number of filters: 32, stride size: 2x2

conv filter size: 4x4 number of filters: 3, stride size: 1x1,
activation: sigmoid

Table 4: The network architecture for the CIFAR-10 dataset.
Layer Name Configurations

Classification
Network

Conv filter size: 3x3, number of filters: 128x4, stride size: 1x1,
activation: leaky relu

Conv filter size: 3x3, number of filters: 128x8, stride size: 1x1,
activations: leaky relu

Avg Pooling pool size: 2x2, stride size: 2x2

Conv filter size: 3x3, number of filters: 128x2, stride size: 1x1,
activation: leaky relu

Conv filter size: 3x3, number of filters: 128x4, stride size: 1x1,
activation: leaky relu

Avg Pooling pool size: 2x2, stride size: 2x2

Conv filter size: 3x3, number of filters: 128x1, stride size: 1x1,
activation: leaky relu

Conv filter size: 3x3, number of filters: 128x2, stride size: 1x1,
activation: leaky relu

CapsLayer
number of input capsules: 16, input atoms: 512,
number of output capsules: 25, output atoms: 8,
number of dynamic routing: 1

Reconstruction
Network

fully connected input size: 200, output size:1024
fully connected input size: 1024, output size:16384

deconv filter size: 4x4, number of filters: 64, stride size: 2x2
deconv filter size: 4x4, number of filters: 32, stride size: 2x2

conv filter size: 4x4 number of filters: 3, stride size: 1x1,
activation: sigmoid
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Figure 8: Successful but detected adversarial EAD attacks (on the left) and CW attacks (on the right)
and the corresponding capsule reconstructions on SVHN. The first column is the clean input, the
second column is the adversarial example, the third column is the winning-capsule reconstruction,
the last ten columns are the reconstructions corresponding to class 0 to 9.

Figure 9: Successful but detected adversarial PGD attacks (on the left) and our CC-PGD attacks (on
the right) and the corresponding capsule reconstructions on SVHN. The first column is the clean input,
the second column is the adversarial example, the third column is the winning-capsule reconstruction,
the last ten columns are the reconstructions corresponding to class 0 to 9. The maximal `∞ bound to
the adversarial perturbation is 16/255.
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Figure 10: Successful but detected adversarial EAD attacks (on the left) and CW attacks (on the right)
and the corresponding capsule reconstructions on CIFAR-10. The first column is the clean input, the
second column is the adversarial example, the third column is the winning-capsule reconstruction,
the last ten columns are the reconstructions corresponding to class 0 to 9.

Figure 11: Successful but detected adversarial PGD attacks (on the left) and our CC-PGD attacks
(on the right) and the corresponding capsule reconstructions on CIFAR-10. The first column is the
clean input, the second column is the adversarial example, the third column is the winning-capsule
reconstruction, the last ten columns are the reconstructions corresponding to class 0 to 9. The maximal
`∞ bound to the adversarial perturbation is 8/255.

13


	Introduction
	Network Architecture
	Detection Methods
	The Defense-Aware CC-PGD Attack
	Experiments
	Evaluation Metrics and Datasets
	Adversarial Attacks and Threat Model
	Ablation Study for Detection Methods
	Detection of White-box Attacks
	Detection of black-box Attacks

	Deflected Attacks
	Human Study on SVHN
	Deflected Attacks on CIFAR-10

	Conclusion
	Model Architectures
	Training Details
	Attack Parameters
	Examples of Adversarial Attacks and Reconstructions

