Under review as a conference paper at ICLR 2020

ISOM-GSN: AN INTEGRATIVE APPROACH FOR
TRANSFORMING MULTI-OMIC DATA INTO GENE SIMI-
LARITY NETWORKS VIA SELF-ORGANIZING MAPS

Anonymous authors
Paper under double-blind review

ABSTRACT

One of the main challenges in applying graph convolutional neural networks on
gene-interaction data is the lack of understanding of the vector space to which they
belong and also the inherent difficulties involved in representing those interactions
on a significantly lower dimension, viz Euclidean spaces. The challenge becomes
more prevalent when dealing with various types of heterogeneous data. We in-
troduce a systematic, generalized method, called iISOM-GSN, used to transform
“multi-omic” data with higher dimensions onto a two-dimensional grid. After-
wards, we apply a convolutional neural network to predict disease states of various
types. Based on the idea of Kohonen’s self-organizing map, we generate a two-
dimensional grid for each sample for a given set of genes that represent a gene
similarity network. We have tested the model to predict breast and prostate cancer
using gene expression, DNA methylation and copy number alteration, yielding
prediction accuracies in the 94-98% range for tumor stages of breast cancer and
calculated Gleason scores of prostate cancer with just 11 input genes for both cases.
The scheme not only outputs nearly perfect classification accuracy, but also pro-
vides an enhanced scheme for representation learning, visualization, dimensionality
reduction, and interpretation of the results.

1 INTRODUCTION

Large scale projects such as “The Cancer Genome Atlas” (TCGA) generate a plethora of multi-
dimensional data by applying high-resolution microarrays and next generation sequencing. This
leads to diverse multi-dimensional data in which the need for devising dimensionality reduction and
representation learning methods to integrate and analyze such data arises. An earlier study by Shen et
al. proposed algorithms iCluster (Shen et al.,2009a) and iCluster+ (Shen et al.,|2009b), which made
use of the latent variable model and principal component analysis (PCA) on multi-omic data and
aimed to cluster cancer data into sub-types; even though it performed well, it did not use multi-omics
data. In another study, (Lyu and Haque} 2018)) attempted to apply heatmaps as a dimensionality
reduction scheme on gene expression data to deduce biological insights and then classify cancer types
from a Pan-cancer cohort. However, the accuracy obtained by using that method was limited to 97%
on Pan-cancer data, lacking the benefits of integrated multi-omics data.

In a recent study (Choy et al., 2019) used self-Organizing maps (SOMs) to embed gene expression
data into a lower dimensional map, while the works of (Bustamam et al., 2018}, Mallick et al., 2019
Paul and Shilll 2018} [Loeffler-Wirth et al.||2019) generate clusters using SOMs on gene expression
data with different aims. In addition, the work of (Hopp et al., 2018) combines gene expression
and DNA methylation to identify subtypes of cancer similar to those of (Roy et al., 2018)), which
identifies modules of co-expressing genes. On the other hand, the work of (Kartal et al.| 2018)) uses
SOMs to create a generalized regression neural network, while the model proposed in (Yoshioka
and Dozonol 2018}, Shah and Luo, 2017) uses SOMs to classify documents based on a word-to-
vector model. Apart from dimensionality reduction methods, attempts have been made by applying
supervised deep machine learning, such as deepDriver (Luo et al., 2019), which predicts candidate
driver genes based on mutation-based features and gene similarity networks. Although these works
have been devised to use embedding and conventional machine learning approaches, the use deep
neural networks on multi-omics data integration is still in its infancy. In addition, these methods lack
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Gleason Score | Number of Samples | Group
3+4 147 34
4+3 101 43
4+5,5+4 139 9

Table 1: Distribution of the different Gleason groups considered for PRCA.

in adequacy to generalize them multi-omics data to predic disease states. More specifically, none of
these models combine the strength of SOMs for representation learning combined with the CNN for
image classification as we do in this work.

In this paper, a deep learning-based method is proposed, and is used to predict disease states by
integrating multi-omic data. The method, which we call iSOM-GSN, leverages the power of SOMs
to transform multi-omic data into a gene similarity network (GSN) by the use of gene expression
data. Such data is then combined with other genomic features to improve prediction accuracy and
help visualization. To our knowledge, this the first deep learning model that uses SOMs to transform
multi-omic data into a GSN for representation learning, and uses CNNss for classification of disease
states or other clinical features. The main contributions of this work can be summarized as follows:

e A deep learning method for prediction of tumor aggressiveness and progression using
iSOM-GSN.

A new strategy to derive gene similarity networks via self-organizing maps.

Use of iSOM-GSN to identify relevant biomarkers without handcrafted feature engineering.

An enhanced scheme to interpret and visualize multi-dimensional, multi-omics data.

An efficient model for graph representation learning.

2 MATERIALS AND METHODS

2.1 DATASETS

We considered two datasets as part of our study: The Cancer Genome Atlas (TCGA) Prostate
Adenocarcinoma (PRCA) (National Cancer Institutel |2013) and The Cancer Genome Atlas (TCGA)
Breast Invasive Carcinoma (BRCA) (National Cancer Institute, [2015). Our aim here is to classify
patients based on Gleason scores for PRCA (Hamzeh et al., |2017), and tumor stage for BRCA
(Firoozbakht et al., [2017). The total number of samples for PRCA and BRCA were 499 and 570
respectively. Both datasets had approximately 60,000 features for gene expression data alone. Thus,
a variance threshold of 0.2% was applied to these data, which removes all features that have at least
80% zero values; this step reduced the feature set size to 16,000.

The data were then normalized on a common scale for all omics, including DNA methylation and
CNA data. The gene names were preserved in HUGO format and the names considered irrelevant by
HUGO were removed. All the three types of data were then combined, based on patient ID, which
yielded data for 387 and 392 patients for PRCA and BRCA respectively, containing all three required
omic data.

Since imbalance was observed across all classes in the PRCA dataset, we considered only three
distinct Gleason scores. It is worthwhile to note that samples with Gleason score 7 were considered
as two different classes, i.e., 34+4 and 4+3, for example, since these two groups are clinically different.
More details on class distribution are shown in Tables [T]and 21

MultisgCV was used to further process the data (Lawrence et al.,|2013). The MutsigCV algorithm
identifies significantly mutated genes by building a patient-specific mutation model based on gene
expression and DNA methylation data. This method takes the whole genome or exome sequence as
input and identifies genes that are mutated more often. The top 14 mutated genes from Multisig were
considered for the rest of the experiment.
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Tumor Stage | Number of Samples
2A 179
2B 129
3A 84

Table 2: Distribution of the different tumor groups considered for BRCA.

2.2 PROPOSED METHOD

We consider the problem of integrating multiple types of omics data. For this purpose, we propose
a three-step approach, which we call iSOM-GSN, and whose main steps are depicted in Figure[T]
First, we create a GSN by extracting features from one data type, in our case, gene expression data.
Then, for each sample, we integrate all data types by considering features extracted from the first
step. Finally, we apply a CNN to perform classification with training and test split at 70:30 ratio to
test the model.
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Figure 1: Block diagram of the main components of iSOM-GSN.
We assume the input data is a set of matrices S = {s((f])}, where i = {1,2,3,...,n} represents the

samples, j = {1,2,3,...,m} represents the genes, and 0o = {1, 2,3, ..., p} represents types of data
(omics). Here, n is the number of samples, m is the number of genes, and p is the number of types of
omics.

2.3  GENE SIMILARITY NETWORK

The first step consists of creating a gene similarity network (GSN) by applying a self-organizing
map learning algorithm. In this step, we consider only one type of data, i.e., gene expression. Let

Sy = {s%)}szl denote one omic data where j = {1,2,3,...,m} represents the set of genes and

i=1{1,2,3,...,n} represents the set of samples. S; is the input to the SOM.

A SOM is a lower-dimensional representation of complex, higher-dimensional data in such a way
that distances among vectors in the original space are preserved in the new representation. A SOM is
learned via an unsupervised clustering algorithm, which takes sample vectors as inputs, and groups
them based on the similarities derived by the features. In our case, the input vectors to the SOM are
the samples with gene expression values of all samples as features. The following are the main steps
that are followed to construct a SOM.
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1. Initialize m neurons with random weights assigned to each neuron c;, where k =
1,2,...,m, where m is the number of genes under consideration, in our case 14.

2. Calculate the Euclidean distance between each gene g; and its neuron ¢y, and identify the
winning neuron, i.e., the neuron that has the smallest distance to its respective neuron. The
Euclidean distance is calculated as follows:

(s8) — ¢0)2 (1)

<
I
=}

1 .
where sg j) = g, represents the gene vector for ;' sample and c;; represents neuron vector.

3. Suppose that ¢j, is the winning neuron, i.e., it is the closest to gene g;. Then, we update the
weight of ¢, using Equation (2). The winning neuron is also known as best matching unit
(BMU).

4. Update the weights of the neurons that are in proximity to the BMU, c. To account for this,
we use a neighbourhood function that is defined by Equation (3.

5. Repeat steps 2 - 4 for e iterations or until desired convergence (i.e., the weights remain
unchanged or the change is less than a threshold).

6. Finally, obtain ¢, neurons, which represent g,,, genes in the two-dimensional space, repre-
sented by Equation ().

cr(t+1) = cx(t) +0;(1) L) (515 (1) — cx(t)) , )
where L(t) is the learning rate regulation function defined in Equation (4).

d?
@(t)zexp( J) t=1,2,...,e 3)

202(t)
L(t) = Loexp (_)\) t=1,2,...,¢e ())
where Ly is initial learning rate.
X = (m17y1)7(x27y2)7"'7(xmaym)v (5)

where (z;, y;) represents the coordinates of g;.

As a result of running the training algorithm, a SOM is obtained in which the genes are organized
based on their similarity, representing a GSN. This network is represented as a two-dimensional
lattice whose coordinates are denoted as in Equation (3)). Figure 2]shows the two SOMs derived from
the two datasets, BRCA and PRCA. Observing the evolution of the SOM learning algorithms through
the different epochs for both datasets (see Figures[TOHI3] of the Supplementary Material), show how
complex, high-dimensional relationships among related genes are revealed and visualized in a simple
way on a two-dimensional map.

2.4 INTEGRATING MULTIPLE DATA TYPES

The second step of iISOM-GSN is to integrate multiple data types. We use the GSN generated in
the first step as a template image; in the example, the genes are indexed with numbers by followng
the mapping listed in Table[3] We then expand a circular region around the points with a predefined
radius and color the circles as shown in Figure [3] We color each circle by considering each data
view by using the RGB color scheme, where Red is represented by gene expression, Green by DNA
methylation and Blue by CNA.

In our case, Sﬁ) represents gene expression, Séé) DNA methylation, and Sé? copy number alteration
(CNA).

For each sample s(*), gene g; is colored as in the RGB palette, by considering the rule of Equation

(©):
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Figure 2: Comparison of PRCA and BRCA genes.

Index | Gene Name BRCA | Gene Name PRCA
0 RUNX1 SPOP
1 PIK3CA FOXA1
2 GATA3 CTNNBI1
3 FOXA1 CLPTMIL
4 SF3B1 DPYSL2
5 PTEN NEIL1
6 CBFB PITPNM2
7 CDHI1 ATM
8 MAP2K4 EMGI
9 MAP3K1 ETV3
10 ERBB2 BRAF
11 NCORI1 NKX3-1
12 FAMS86B2 ZMYM3
13 CDKNI1B SALL1

Table 3: Indices of gene names for the BRCA and PRCA datasets.

RGBY 1f point (p, ¢) is within certain radius of g;,
Tpqg = J . 6)
0 otherwise .
where RY =50, G\ = 5{and B = 5"

As aresult, we obtain a set of matrices, one per each sample, defined as follows:

X0 = {z{}. (@)

Figure 3] represents a sample image created after integrating multiple omics for the BRCA dataset.
As can be observed, various shades of colors for different genes represent their values with respect to
the three different types of omic data.
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Figure 3: Sample image after integrating multiple data views for BRCA for 14 genes.

2.5 CONVOLUTIONAL NEURAL NETWORK

The last step of iSOM-GSN is to feed the images generated in the previous step to the CNN, to predict
the state of the disease as the final output. The architecture of the CNN is proven to be the most
effective in learning visual representations. The CNN is also known to perform better than the human
eye in many visual processing problems. The usage of the CNN in any method is just a variation in
how the convolution and pooling layers are combined, and how the network is trained.

A more detailed, schematic diagram of the entire network design is depicted in Figure [7] of the
Supplementary Material. The network includes two convolutional layers and two fully-connected
layers with a small number of neurons. Our choice of a smaller network design is motivated both from
our desire to reduce the risk of over-fitting as well as to simplify the nature of the classification. All
three color channels, i.e., RGB, are processed directly by the network. The subsequent convolutional
and fully connected layers are then defined as follows:

o 32 filters of size 3 x 3 pixels are applied to the input in the first convolutional layer, followed
by a rectified linear operator (ReLU), a Max-pooling layer taking the maximal value of 2 x 2
regions with two-pixel strides and a local response normalization layer.

e The output of the previous layer is then processed by the second convolutional layer,
containing 32 filters of size 3 x 3 pixels. Again, this is followed by ReL U, a Max-pooling
layer and a local response normalization layer with the same hyper-parameters as before.

o First fully connected layer that receives the output of the second convolutional layer and
contains 128 neurons, followed by ReLU and a dropout layer.

e Second fully connected layer that receives the output of the first fully connected layer and
output three neurons, followed by ReL.U and a dropout layer.

Finally, the output of the last fully-connected layer is fed to a Soft-max layer that assigns a probability
to each class. The prediction itself is performed by applying Soft-max to choose the class with
maximal probability for the given test image.

Aside from using a lean network architecture, i.e., fewer layers, we apply two additional methods to
further limit the risk of over-fitting. First, we apply dropout learning, i.e., randomly setting the output
value of the network neurons to zero. The network includes three dropout layers with a dropout ratio
of 0.5 (50% chance of setting a neuron’s output value to zero). Second, we use data augmentation by
taking a random input image, and scaling and mirroring it in each forward-backward training pass.
Training is done using the Adam optimizer (Kingma and Ba, [2014).

3 EXPERIMENTAL RESULTS

To assess the performance of iSOM-GSN, the data was divided into training and test datasets with a
ratio 70:30. Minmax scaling was then applied on the test dataset followed by ranging the training
dataset accordingly. Note that the test data is scaled using the same criterion applied to the training
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Figure 4: Evaluation of performance of the classifier per epoch.

dataset, and without any information about the classes. We then calculated the main performance
measures that include categorical accuracy, precision, recall, F1-score and mean absolute error.

3.1 RESULTS

iSOM-GSN has been run on two multi-omic datasets namely PRCA (National Cancer Institute} |2013)
and BRCA (National Cancer Institute} 2015) using the model and parameters described earlier in this
paper. Figure {|depicts the plot of how various performance measures convolve with an increasing
number of epochs. In general, it can be seen that the predictive performance is almost perfect with
respect to various parameters. However, regarding the number of genes obtained after filtering, both
datasets used the exact number of genes retained for effective classification.

In addition, Figure [6] of the Supplementary Material depicts the plot of the receiver operating
characteristic (ROC), area under curve (AUC). In general terms, it can be seen that the predictive
performance is in the range 94-98% with respect to various parameters. However, regarding the
number of genes obtained after filtering, both datasets used the same number of genes retained for
effective classification. This shows that only 14 genes are enough to classify any clinical variable
using the proposed model, and those genes are significantly mutated.

3.2 BIOLOGICAL VALIDATION

We illustrate the ability to discover and visualize patterns of genomic interactions in biological
comprehensive context for classification. When the goal is to identify potential biomarkers and
factors that characterize biological and clinical aspects, the proposed approach comes to the rescue.
As part of a feature selection step, we narrowed down the relevant features to just 14 genes, which are
sufficient for classification and achieve 96% accuracy. These genes are listed in Table[5] All genes
are identified either as tumor suppressor genes or oncogenes for known pathways as shown in Table
[3] TP53 and PTEN are the common genes that are highly mutated in both PRCA and BRCA datasets.
These gene are tumor suppressor genes, which are well known to express high gene expression values
and are considered as biomarkers for cancer in general (https://www.genecards.org/,|2019). On the
other hand, SALL1 and PITPNM?2 are genes that are not known as cancer related genes.

While validating the genes related to BRCA data set, we have found in that genes MAP3K1 and
MAP2K4 are strong predictors of MEK inhibitors which are frequently found in breast, prostate
and colon cancers. These can be potential targets for drugs (Xue et al.,|2018). In another study, we
have found co-occurring mutations of PIK3CA and MAP3K1 are functionally significant in breast
cancer and MAP3K 1 mutational status may be considered as a predictive biomarker for efficacy in
PI3K pathway inhibitor trials (Avivar-Valderas et al.,|2018). We have also found that expression of
genes GATA-3 and FOXAL1 are sufficient to differentiate breast carcinoma from other and hence
are excellent bio-markers (Davis et al.,|2016). This is also supported by the findings reported in
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Figure 5: Most relevant genes found to predict Gleason groups of PRCA and stages of BRCA.

(Hisamatsu et al., [2015)), which claim that these two genes are associated with a less aggressive
phenotype and they give better prognosis in patients with HR-positive or HER2-negative breast
cancer. Thus, we confirm that the GSN’s formed are helpful to find potential novel bio-markers.

3.3 COMPARISON WITH OTHER APPROACHES

A practical challenge for validating this framework is the unavailability of independent datasets with
all data types. An intrinsic question arises as to what extent a single data type (e.g., gene expression)
is effective in classifying, based on our framework. The closest method to compare our work with is
the one that uses gene expression and DNA methylation 2018), though they use the two
types of data separately, and apply it to a single disease. To that end, we ran iISOM-GSN on a single
omic data at a time. We discovered that gene expression data alone yielded 90% accuracy, whereas
DNA methylation and CNA, alone, yielded 87% and 89% classification accuracy, respectively. This
demonstrates the advantages of combining multi-omics, the strengths of the SOMs for representation
learning combined with the power of deep CNNs for image-based data classification.

4 CONCLUSIONS

This paper presents a framework that uses a self-organizing map and a convolutional neural network
used to conduct data integration, representation learning, dimensionality reduction, feature selection
and classification simultaneously to harness the full potential of integrated high-dimensional large
scale cancer genomic data. We have introduced a new way to create gene similarity networks, which
can lead to novel gene interactions. We have also provided a scheme to visualize high-dimensional,
multi-omics data onto a two-dimensional grid. In addition, we have devised an approach that could
also be used to integrate other types of multi-omic data and predict any clinical aspects or states of
diseases, such as laterality of the tumor, survivability, or cancer sub types, just to mention a few.

This work can also be extended to classify Pan-cancer data. Omics can be considered as a vector
and more than three types of data (i.e., beyond RGB images) can be incorporated for classification.
Apart from integrating multi-omics data, the proposed approach can be considered as an unsupervised
clustering algorithm, because of the competitive learning nature of SOMs. We can also apply iSOM-
GSN on other domains, such as predicting music genre’s for users based on their music preference.
As a first step, we have applied the SOM to a Deezer dataset and the results are encouraging [14]
Applications of iISOM-GSN can also be in drug response or re-purposing, prediction of passenger or
oncogenes, revealing topics in citation networks, and other prediction tasks.
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SUPPLEMENTARY MATERIAL

SOURCE CODE

The source code has been posted on a Github project, available at the following anonymous website:
https://gitlab.com/NF2610/isom_gsn.

ADDITIONAL FIGURES AND TABLES
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Figure 6: ROC plots for the proposed model run on the PRCA dataset.
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Figure 7: Schematic diagram of the convolutional neural network architecture.

Figure 8: Sample SOMs obtained from the training dataset.
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Figure 9: Sample SOMs obtained from the training dataset for each class.
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Figure 10: GSN after 5 Epochs for PRCA.
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Figure 11: GSN after 1500 Epochs for PRCA.
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Figure 12: GSN after 5 Epochs for BRCA.
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Figure 14: Sample organization of Genres after 1000 epochs
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