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ABSTRACT

An obstacle that prevents the wide adoption of (deep) reinforcement learning (RL)
in control systems is its need for a large number of interactions with the environ-
ment in order to master a skill. The learned skill usually generalizes poorly across
domains and re-training is often necessary when presented with a new task. We
present a framework that combines techniques in formal methods with hierarchi-
cal reinforcement learning (HRL). The set of techniques we provide allows for
the convenient specification of tasks with logical expressions, learns hierarchical
policies (meta-controller and low-level controllers) with well-defined intrinsic re-
wards using any RL methods and is able to construct new skills from existing ones
without additional learning. We evaluate the proposed methods in a simple grid
world simulation as well as simulation on a Baxter robot.

1 INTRODUCTION

Reinforcement learning has received much attention in the recent years because of its achievements
in games Mnih et al. (2015), Silver et al. (2016), robotics manipulation Jang et al., Levine et al.
(2016), Gu et al. (2016) and autonomous driving Isele et al. (2017), Madrigal (2017). However,
training a policy that sufficiently masters a skill requires an enormous amount of interactions with
the environment and acquiring such experience can be difficult on physical systems. Moreover,
most learned policies are tailored to mastering one skill (by maximizing the reward) and are hardly
reusable on a new skill.

Skill composition is the idea of constructing new skills out of existing skills (and hence their policies)
with little to no additional learning. In stochastic optimal control, this idea has been adopted by
authors of Todorov (2009) and Da Silva et al. (2009) to construct provably optimal control laws
based on linearly solvable Markov decision processes. Authors of Haarnoja et al. (2017), Tang
& Haarnoja have showed in simulated manipulation tasks that approximately optimal policies can
result from adding the Q-functions of the existing policies.

Hierarchical reinforcement learning is an effective means of achieving transfer among tasks. The
goal is to obtain task-invariant low-level policies, and by re-training the meta-policy that schedules
over the low-level policies, different skills can be obtain with less samples than training from scratch.
Authors of Heess et al. (2016) have adopted this idea in learning locomotor controllers and have
shown successful transfer among simulated locomotion tasks. Authors of Oh et al. (2017) have
utilized a deep hierarchical architecture for multi-task learning using natural language instructions.

Temporal logic is a formal language commonly used in software and digital circuit verification Baier
& Katoen (2008) as well as formal synthesis Belta et al. (2017). It allows for convenient expression
of complex behaviors and causal relationships. TL has been used by Sadraddini & Belta (2015),
Leahy et al. (2015) to synthesize provably correct control policies. Authors of Aksaray et al. (2016)
have also combined TL with Q-learning to learn satisfiable policies in discrete state and action
spaces.

In this work, we focus on hierarchical skill acquisition and zero-shot skill composition. Once a set of
skills is acquired, we provide a technique that can synthesize new skills without the need to further
interact with the environment (given the state and action spaces as well as the transition remain the
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same). We adopt temporal logic as the task specification language. Compared to most heuristic
reward structures used in the RL literature to specify tasks, formal specification language excels at
its semantic rigor and interpretability of specified behaviors. Our main contributions are:

• We take advantage of the transformation between TL formula and finite state automata
(FSA) to construct deterministic meta-controllers directly from the task specification with-
out the necessity for additional learning. We show that by adding one discrete dimension
to the original state space, structurally simple parameterized policies such as feed-forward
neural networks can be used to learn tasks that require complex temporal reasoning.

• Intrinsic motivation has been shown to help RL agents learn complicated behaviors with
less interactions with the environment Singh et al. (2004), Kulkarni et al. (2016), Jader-
berg et al. (2016). However, designing a well-behaved intrinsic reward that aligns with the
extrinsic reward takes effort and experience. In our work, we construct intrinsic rewards
directly from the input alphabets of the FSA (a component of the automaton), which guar-
antees that maximizing each intrinsic reward makes positive progress towards satisfying the
entire task specification. From a user’s perspective, the intrinsic rewards are constructed
automatically from the TL formula.

• In our framework, each FSA represents a hierarchical policy with low-level controllers that
can be re-modulated to achieve different tasks. Skill composition is achieved by manipu-
lating the FSA that results from their TL specifications in a deterministic fashion. Instead
of interpolating/extrapolating among existing skills, we present a simple policy switching
scheme based on graph manipulation of the FSA. Therefore, the compositional outcome is
much more transparent. We introduce a method that allows learning of such hierarchical
policies with any non-hierarchical RL algorithm. Compared with previous work on skill
composition, we impose no constraints on the policy representation or the problem class.

2 PRELIMINARIES

2.1 THE OPTIONS FRAMEWORK IN HIERARCHICAL REINFORCEMENT LEARNING

In this section, we briefly introduce the options framework Sutton et al. (1998), especially the ter-
minologies that we will inherit in later sections. We start with the definition of a Markov Decision
Process.

Definition 1. An MDP is defined as a tupleM = 〈S,A, p(·|·, ·), R(·, ·, ·)〉, where S ⊆ IRn is the
state space ;A ⊆ IRm is the action space (S andA can also be discrete sets); p : S×A×S → [0, 1]
is the transition function with p(s′|s, a) being the conditional probability density of taking action
a ∈ A at state s ∈ S and ending up in state s′ ∈ S;R : S×A×S → IR is the reward function. let T
be the length of a fixed time horizon. The goal is to find a policy π? : S → A (or π? : S×A→ [0, 1]
for stochastic policies) that maximizes the expected return, i.e.

π? = arg max
π

Eπ[R(τT )] (1)

where τT = (s0, a0, ..., sT , ) denotes the state-action trajectory from time 0 to T .

The options framework exploits temporal abstractions over the action space. An option is defined
as a tuple o = 〈I, πo, β〉 where I is the set of states that option o can be initiated (here we let
I = S for all options), πo : S → A is an options policy and β : S → [0, 1] is the termination
probability for the option at state s. In addition, there is a policy over options πh : S → O (where
O is a set of available options) that schedules among options. At a given time step t, an option o is
chosen according to πh(st) and the options policy πo is followed until the termination probability
β(s) > threshold at time t+ k, and the next option is chosen by πh(st+k).
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2.2 SCTLTL AND AUTOMATA

We consider tasks specified with Truncated Linear Temporal Logic (TLTL). We restrict the set of
allowed operators to be

φ := > | f(s) < c | ¬φ | φ ∧ ψ | φ ∨ ψ |
♦φ | φU ψ | φ T ψ | © φ | φ⇒ ψ

(2)

where f(s) < c is a predicate, ¬ (negation/not), ∧ (conjunction/and), and ∨ (disjunction/or) are
Boolean connectives, and ♦ (eventually), U (until), T (then), © (next), are temporal operators.
Implication is denoted by⇒ (implication). Essentially we excluded the Always operator (2) with
reasons similar to Kupferman & Vardi (2001). We refer to this restricted TLTL as syntactically
co-safe TLTL (scTLTL) (Vasile et al. (2017) used similar idea for LTL). There exists a real-value
function ρ(s0:T , φ) called robustness degree that measures the level of satisfaction of trajectory s0:T

with respective to φ. ρ(s0:T , φ) > 0 indicates that s0:T satisfies φ and vice versa. Definitions for the
boolean semantics and robustness degree are provided in Appendix E.

Any scTLTL formula can be translated into a finite state automata (FSA) with the following defini-
tion:
Definition 2. An FSA is defined as a tuple Aφ = 〈Qφ,Ψφ, q

0, pφ(·|·),Fφ〉, where Qφ is a set
of automaton states; Ψφ is an input alphabet, we denote ψqi,qj ∈ Ψφ the predicate guarding the
transition from qi to qj (as illustrated in Figure 1 ); q0 ∈ Qφ is the initial state; pφ : Qφ × Qφ →
[0, 1] is a conditional probability defined as

pφ(qj |qi) =

{
1 ψqi,qj is true
0 otherwise.

(3)

In addition, given an MDP state s, we can calculate the transition in automata states at s by

pφ(qj |qi, s) =

{
1 ρ(s, ψqi,qj ) > 0

0 otherwise.
(4)

We abuse the notation pφ to represent both kinds of transitions when the context is clear. Fφ is a set
of final automaton states.

The translation from TLTL formula to FSA to can be done automatically with available packages
like Lomap Ulusoy (2017).
Example 1. Figure 1 (left) illustrates the FSA resulting from formula φ = ¬b U a. In English, φ
entails during a run, b cannot be true until a is true and a needs to be true at least once. The FSA
has three automaton states Qφ = {q0, qf , trap} with q0 being the input(initial) state (here qi serves
to track the progress in satisfying φ). The input alphabet is defined as the Ψφ = {¬a ∧ ¬b,¬a ∧
b, a∧¬b, a∧b}. Shorthands are used in the figure, for example a = (a∧b)∨(a∧¬b). Ψφ represents
the power set of {a, b}, i.e. Ψφ = 2{a,b}. During execution, the FSA always starts from state q0 and
transitions according to Equation (3) or (4). The specification is satisfied when qf is reached and
violated when trap is reached. In this example, qf is reached only when a becomes true before b
becomes true.

3 PROBLEM FORMULATION AND APPROACH

We start with the following problem definition:
Problem 1. Given an MDP in Definition 1 with unknown transition dynamics p(s′|s, a) and a
scTLTL specification φ over state predicates (along with its FSA Aφ) as in Definition 2. Find a
policy π?φ such that

π?φ = arg max
πφ

Eπφ [1(ρ(s0:T , φ) > 0)]. (5)

where 1(ρ(s0:T , φ) > 0) is an indicator function with value 1 if ρ(s0:T , φ) > 0 and 0 otherwise.
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Problem 1 defines a policy search problem where the trajectories resulting from following the opti-
mal policy should satisfy the given scTLTL formula in expectation.
Problem 2. Given two scTLTL formula φ1 and φ2 along with policy πφ1

that satisfies φ1 and πφ2

that satisfies φ2. Obtain a policy πφ that satisfies φ = φ1 ∧ φ2.

Problem 2 defines the problem of task composition. Given two policies each satisfying a scTLTL
specification, construct the policy that satisfies the conjunction of the given specifications. Solving
this problem is useful when we want to break a complex task into simple and manageable compo-
nents, learn a policy that satisfies each component and ”stitch” all the components together so that
the original task is satisfied. It can also be the case that as the scope of the task grows with time, the
original task specification is amended with new items. Instead of having to re-learn the task from
scratch, we can only learn a policy that satisfies the new items and combine them with the old policy.

We propose to solve Problem 1 by constructing a product MDP from the given MDP and FSA
that can be solved using any state-of-the-art RL algorithm. The idea of using product automaton
for control synthesis has been adopted in various literature Leahy et al. (2015), Chen et al. (2012).
However, the methods proposed in these works are restricted to discrete state and actions spaces.
We extend this idea to continuous state-action spaces and show its applicability on robotics systems.

For Problem 2, we propose a policy switching scheme that satisfies the compositional task spec-
ification. The switching policy takes advantage of the characteristics of FSA and uses robustness
comparison at each step for decision making.

4 FSA AUGMENTED MDP

Problem 1 can be solved with any episode-based RL algorithm. However, doing so the agent suffers
from sparse feedback because a reward signal can only be obtained at the end of each episode. To
address this problem as well as setting up ground for automata guided HRL, we introduce the FSA
augmented MDP
Definition 3. An FSA augmented MDP corresponding to scTLTL formula φ is defined as Mφ =

〈S̃, A, p̃(·|·, ·), R̃(·, ·)〉 where S̃ ⊆ S × Qφ, A is the same as the original MDP. p̃(s̃′|s̃, a) is the
probability of transitioning to s̃′ given s̃ and a, in particular

p̃(s̃′|s̃, a) = p
(
(s′, q′)|(s, q), a

)
=

{
p(s′|s, a) pφ(q′|q, s) = 1

0 otherwise.
(6)

Here pφ is defined in Equation (4). R̃ : S̃ × S̃ → IR is the FSA augmented reward function, defined
by

R̃(s̃, s̃′) = 1
(
ρ(s′,Dq

φ) > 0
)

1 (7)

where Ωq is the set of automata states that are connected with q through outgoing edges. Dq
φ =∨

q′∈Ωq
ψq,q′ represents the disjunction of all predicates guarding the transitions that originate from

q. The goal is to find the optimal policy that maximizes the expected sum of discounted return, i.e.

π? = arg max
π

Eπ
[
T−1∑
t=0

γt+1R̃(st, st+1)

]
, (8)

where γ < 1 is the discount factor, T is the time horizon.

As a quick example to the notation Dq
φ, consider the state q0 in the FSA in Figure 1 , Ωq0 =

{trap, qf}, Dq0
φ = ψq0,trap ∨ ψq0,qf = b ∨ a. The goal is then to find a policy π : S̃ → A that

maximizes the expected sum of R̃ over the horizon T .
1Because Dq

φ is a predicate without temporal operators, the robustness ρ(st:t+k, Dq
φ) is only evaluated at

st(refer to Appendix E). Therefore, we use the shorthand ρ(st, Dq
φ) = ρ(st:t+k, D

q
φ)
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Figure 1 : FSA constructed from φ = ¬b U a. (right): Specification amendment example. Aφ1 is constructed
from φ1 = ♦a ∧ ♦b. Aφ2 is constructed from φ2 = ¬bUa. Aφ is constructed from φ = φ1 ∧ φ2. The
automaton state pair in parenthesis denote the corresponding states from Qφ1 and Qφ2 that the product state is
constructed from. q0i denotes the initial state of Aφi , qi,j denotes the jth state of Qφi .

The FSA augmented MDP can be constructed with any standard MDP and a scTLTL formula. And
it can be solved with any off-the-shelf RL algorithm. By directly learning the flat policy π we
bypass the need to learn multiple options policies separately. After obtaining the optimal policy
π?, the optimal options policy for any option oqcan be extracted by executing π?(a|s, q) without
transitioning the automata state, i.e. keeping qi fixed (denoted π?q ). And π?q satisfies

π?qi = arg max
πqi

Eπq1
[
T−1∑
t=0

γt+1
1
(
ρ(st+1, D

qi
φ ) > 0

)]
. (9)

In other words, the purpose of πqi is to activate one of the outgoing edges of qi as soon as possible
and by doing so repeatedly eventually reach qf .

The reward function in Equation (7) encourages the system to exit the current automata state and
move on to the next, and by doing so eventually reach the final state qf . However, this reward does
not distinguish between the trap state and other states and therefore will also promote entering of
the trap state. One way to address this issue is to impose a terminal reward on both qf and trap.
Because the reward is an indicator function with maximum value of 1, we assign terminal rewards
Rqf = 2 and Rtrap = −2.

Appendix D describes the typical learning routine using FSA augmented MDP. The algorithm uti-
lizes memory replay which is popular among off-policy RL methods (DQN, A3C, etc) but this is
not a requirement for learning with M̃φ. On-policy methods can also be used.

5 AUTOMATA GUIDED TASK COMPOSITION

In section, we provide a solution for Problem 2 by constructing the FSA of φ from that of φ1 and φ2

and using φ to synthesize the policy for the combined skill. We start with the following definition.

Definition 4. Given Aφ1
= 〈Qφ1

,Ψφ1
, q0

1 , pφ1
,Fφ1

〉 and Aφ2
= 〈Qφ2

,Ψφ2
, q0

2 , pφ2
,Fφ2

〉,
The FSA of φ is the product automaton of Aφ1

and Aφ1
, i.e. Aφ=φ1∧φ2

= Aφ1
× Aφ2

=
〈Qφ,Ψφ, q

0, pφ,Fφ〉 where Qφ ⊆ Qφ1
×Qφ2

is the set of product automaton, states, q0 = (q0
1 , q

0
2)

is the product initial state, F ⊆ Fφ1
∩ Fφ2

is the final accepting states. Following Definition 2, for
states q = (q1, q2) ∈ Qφ and q′ = (q′1, q

′
2) ∈ Qφ, the transition probability pφ is defined as

pφ(q′|q) =

{
1 pφ1(q′1|q1)pφ2(q′2|q2) = 1

0 otherwise.
(10)

Example 2. Figure 1 (right) illustrates the FSA of Aφ1
and Aφ2

and their product automaton Aφ.
Here φ1 = ♦a ∧ ♦b which entails that both a and b needs to be true at least once (order does not
matter), and φ2 = ¬b U a which is the same as Example 1. The resultant product corresponds to
the formula φ = (♦a∧♦b)∧(¬b U a) which dictates that a and b need to be true at least once, and
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a needs to be true before b becomes true (an ordered visit). We can see that the trap state occurs
in Aφ2

and Aφ, this is because if b is ever true before a is true, the specification is violated and
qf can never be reached. In the product automaton, we aggregate all state pairs with a trap state
component into one trap state.

For q = (q1, q2) ∈ Qφ, let Ψq , Ψq1 and Ψq2denote the set of predicates guarding the outgoing edges
of q, q1 and q2 respectively. Equation (10) entails that a transition at q in the product automaton
Aφ exists only if corresponding transitions at q1, q2exist in Aφ1

and Aφ2
respectively. Therefore,

ψq,q′ = ψq1,q′1 ∧ ψq2,q′2 , for ψq,q′ ∈ Ψq, ψq1,q′1 ∈ Ψq1 , ψq2,q′2 ∈ Ψq2 (here q′i is a state such that
pφi(q

′
i|qi) = 1). Following Equation (9),

π?q = arg max
πq

Eπq
[ T−1∑
t=0

γt+1
1
(
ρ(st+1, D

q
φ) > 0

)]
,

where Dq
φ =

∨
q′1,q

′
2

(ψq1,q′1 ∧ ψq2,q′2).
(11)

Repeatedly applying the distributive law (∆∧Ω1)∨ (∆∧Ω2) = ∆∧ (Ω1∨Ω2) to the logic formula
Dq
φ transforms the formula to

Dq
φ =

(∨
q′1

ψq1,q′1
)
∧
(∨
q′2

ψq2,q′2
)

= Dq1
φ1
∧Dq2

φ2
. (12)

Therefore,

π?q = arg max
πq

Eπq
[ T−1∑
t=0

γt+1
1
(
ρ(st+1, D

q1
φ1
∧Dq2

φ2
) > 0)

)]
= arg max

πq

Eπq
[ T−1∑
t=0

γt+1
1
(

min(ρ(st+1, D
q1
φ1

), ρ(st+1, D
q2
φ2

)) > 0)
)] (13)

The second step in Equation (13) follows the robustness definition. Recall that the optimal options
policies for q1 and q2 satisfy

π?qi = arg max
πqi

Eπφi
[ T−1∑
t=0

γt+1
1
(
ρ(st+1, D

qi
φi

) > 0)
)]
, i = 1, 2. (14)

Equation (13) provides a relationship among π?q , π?q1 and π?q2 . Given this relationship, We propose
a simple switching policy based on stepwise robustness comparison that satisfies φ = φ1 ∧ φ2 as
follows

πφ(s, q) =

{
πφ1

(s, q1) ρ(st, D
q1
φ1

) < ρ(st, D
q2
φ2

)

πφ2
(s, q2) otherwise

(15)

We show empirically the use of this switching policy for skill composition and discuss its limitations
in the following sections.

6 EXPERIMENTS AND DISCUSSION

6.1 GRID WORLD SIMULATION

In this section, we provide a simple grid world navigation example to illustrate the techniques pre-
sented in Sections 4 and 5. Here we have a robot navigating in a discrete 1 dimensional space. Its
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Figure 2 : upper left: Optimal policy for φ1 = ♦a ∧ ♦b trained using Q-Learning. The arrows represent the
action at each state and the dot represents stay still at that state. (upper right): Optimal policy for φ2 = ¬b U a.
(lower left):Optimal policy for φ = (♦a ∧ ♦b) ∧ (¬b U a). (lower right ): Robustness comparison used for
construction of policy π?φ1∧φ2

. The robustness value is zero for states where bars disappear.

MDP state space S = {s|s ∈ [−5, 5), s is discrete}, its action space A = {left, stay, right}. The
robot navigates in the commanded direction with probability 0.8, and with probability 0.2 it ran-
domly chooses to go in the opposite direction or stay in the same place. The robot stays in the same
place if the action leads it to go out of bounds.

We define two regions a : −3 < s < −1 and b : 2 < s < 4. For the first task, the scTLTL
specification φ1 = ♦ a ∧ ♦b needs to be satisfied. In English, φ1 entails that the robot needs to
visit regions a and b at least once. To learn a deterministic optimal policy π?φ1

: S × Q → A, we
use standard Q-Learning Watkins (1989) on the FSA augmented MDP for this problem. We used a
learning rate of 0.1, a discount factor of 0.99, epsilon-greedy exploration strategy with ε decaying
linearly from 0.0 to 0.01 in 1500 steps. The episode horizon is T = 50 and trained for 500 iterations.
All Q-values are initialized to zero. The resultant optimal policy is illustrated in Figure 2 .

We can observe from the figure above that the policy on each automaton state q serves a specific
purpose. π?q0 tries to reach region a or b depending on which is closer. π?q1 always proceeds to region
a. π?q2 always proceeds to region b. This agrees with the definition in Equation 9. The robot can start
anywhere on the s axis but must always start at automata state q0. Following πφ1

, the robot will first
reach region a or b (whichever is nearer), and then aim for the other region which in turn satisfies φ.
The states that have stay as their action are either goal regions (states (−2, q0), (3, q1), etc) where
a transition on q happens or states that are never reached (states (−3, q1), (−4, q2), etc) because a
transition on q occurs before they can be reached.

To illustrate automata guided task composition described in Example 2, instead of learning the
task described by φ from scratch, we can simply learn policy πφ2

for the added requirement φ2 =
¬b U a. We use the same learning setup and the resultant optimal policy is depicted in Figure 4
. It can be observed that πφ2 tries to reach a while avoiding b. This behavior agrees with the
specification φ2 and its FSA provided in Figure 2 . The action at s = 4 is stay because in order for
the robot to reach a it has to pass through b, therefore it prefers to obtain a low reward over violating
the task.

Having learned policies πφ1
and πφ2

, we can now use Equation 15 to construct policy πφ1∧φ2
. The

resulting policy for πφ1∧φ2
is illustrated in Figure 2 (upper right). This policy guides the robot to

first reach a (except for state s = 4) and then go to b which agrees with the specification.

Looking at Figure 1 , the FSA of φ = φ1∧φ2 have two options policies πφ(·, q0) and πφ(·, q1) 2 (trap
state and qf are terminal states which don’t have options). State q1 has only one outgoing edge with
the guarding predicate ψq1,qf : b, which means πφ(·, q1) = πφ1

(·, q2)(they have the same guarding
predicate). Policy πφ(·, q0) is a switching policy between πφ1

(·, q0) and πφ2
(·, q0). Figure 2 (lower

2πφ(·, qi) is the options policy of πφ at automata state qi (definiton in Equation (9)). Writing in this form
prevents cluttered subscripts
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Figure 3 : (left): Baxter simulation Environment with three square regions (black,red, blue), two circular
regions (red, blue), two boxes (red, blue) that the robot can manipulate and an interactive ball that the user can
place anywhere on the table. Tasks are specified using these elements in Appendix A. (upper right): Learning
curve for task φ1 over 5 random seeds. (lower right): Policy deployment success rate

left) shows the robustness comparison at each state. The policy with lower robustness is chosen
following Equation (15). We can see that the robustness of both policies are the same from s = −5
to s = 0. And their policies agree in this range (Figures 3 and 4 ). As s becomes larger, disagreement
emerge because πφ1(·, q0) wants to stay closer to b but πφ2(·, q0) wants otherwise. To maximize the
robustness of their conjunction, the decisions of πφ2(·, q0) are chosen for states s > 0.

6.2 SIMULATED BAXTER

In this section, we construct a set of more complicated tasks that require temporal reasoning and
evaluate the proposed techniques on a simulated Baxter robot. The environment is shown in Figure 3
(left). In front of the robot are three square regions and two circular regions. An object with planar
coordinates p = (x, y) can use predicates Sred(p),Sblue(p),Sblack(p), Cred(p), Cblue(p) to evaluate
whether or not it is within the each region. The predicates are defined by S : (xmin < x < xmax)∧
(ymin < y < ymax) and C : dist((x, y), (x, y)center) < r. (xmin, ymin) and (xmax, ymax) are the
boundary coordinates of the square region, (x, y)center and r are the center and radius of the circular
region. There are also two boxes which planar positions are denoted as predbox = (x, y)redbox and
pbluebox = (x, y)bluebox. And lastly there is an interactive ball that a user can move in space which
2D coordinate is denoted as psphere = (x, y)sphere (all objects move in the table plane).

We design seven tasks each specified by a scTLTL formula. The task specifications and their En-
glish translations are provided in Appendix A. Throughout the experiments in this section, we use
proximal policy search Schulman et al. (2017) as the policy optimization method. The hyperparam-
eters are kept fixed across the experiments and are listed in Appendix B. The policy is a Gaussian
distribution parameterized by a feed-forward neural network with 2 hidden layers, each layer has 64
relu units. The state and action spaces vary across tasks and comparison cases, and are described in
Appendix C.

We use the first task φ1 to evaluate the learning outcome using the FSA augmented MDP. As com-
parisons, we design two other rewards structures. The first is to use the robustness ρ(s0:T , φ) as
the terminal reward for each episode and zero everywhere else, the second is a heuristic reward that
aims to align with φ1. The heuristic reward consists of a state that keeps track of whether the sphere
is in a region and a set of quadratic distance functions. For φ1, the heuristic reward is

rφ1
=

{
−dist(predbox, predsquarecenter) psphere is in red circle
−dist(predbox, Pblack square center) otherwise.

(16)

Heuristic rewards for other tasks are defined in a similar manner and are not presented explicitly.
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Figure 4 : (left): Learning curves for tasks φ6 and φ7 (task definitions provided in Appendix A). (right): Policy
deployment success rate for tasks φ6 and φ7

The results are illustrated in Figure 3 (right). The upper right plot shows the average robustness over
training iterations. Robustness is chosen as the comparison metric for its semantic rigor (robustness
greater than zero satisfies the task specification). The reported values are averaged over 60 episodes
and the plot shows the mean and 2 standard deviations over 5 random seeds. From the plot we can
observe that the FSA augmented MDP and the terminal robustness reward performed comparatively
in terms of convergence rate, whereas the heuristic reward fails to learn the task. The FSA augmented
MDP also learns a policy with lower variance in final performance.

We deploy the learned policy on the robot in simulation and record the task success rate. For each
of the three cases, we deploy the 5 policies learned from 5 random seeds on the robot and perform
10 sets of tests with randomly initialized states resulting in 50 test trials for each case. The average
success rate is presented in Figure 3 (lower right). From the results we can see that the FSA aug-
mented MDP is able to achieve the highest rate of success and this advantage over the robustness
reward is due to the low variance of its final policy.

To evaluate the policy switching technique for skill composition, we first learn four relatively simple
policies πφ2

, πφ3
, πφ4

, πφ5
using the FSA augmented MDP. Then we construct πφ6

= πφ2∧φ3
and

πφ7
= πφ2∧φ3∧φ4∧φ4

using Equation (15) (It is worth mentioning that the policies learned by the
robustness and heuristic rewards do not have an automaton state in them, therefore the skill compo-
sition technique does not apply). We deploy πφ6 and πφ7 on tasks 6 and 7 for 10 trials and record the
average robustness of the resulting trajectories. As comparisons, we also learn tasks 6 and 7 from
scratch using terminal robustness rewards and heuristic rewards, the results are presented in Figure 4
. We can observe from the plots that as the complexity of the tasks increase, using the robustness
and heuristic rewards fail to learn a policy that satisfies the specifications while the constructed pol-
icy can reliably achieve a robustness of greater than zero. We perform the same deployment test as
previously described and looking at Figure 4 (right) we can see that for both tasks 6 and 7, only the
policies constructed by skill composition are able to consistently complete the tasks.

7 CONCLUSION

In this paper, we proposed the FSA augmented MDP, a product MDP that enables effective learning
of hierarchical policies using any RL algorithm for tasks specified by scTLTL. We also introduced
automata guided skill composition, a technique that combines existing skills to create new skills
without additional learning. We show in robotic simulations that using the proposed methods we
enable simple policies to perform logically complex tasks.

Limitations of the current framework include discontinuity at the point of switching (for Equa-
tion (15)), which makes this method suitable for high level decision tasks but not for low level
control tasks. The technique only compares robustness at the current step and chooses to follow
a sub-policy for one time-step, making the switching policy short-sighted and may miss long term
opportunities. One way to address this is to impose a termination condition for following each sub-
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policy and terminate only when the condition is triggered (as in the original options framework).
This termination condition can be hand designed or learned
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Appendix

A TASK SPECIFICATIONS

Task scTLTL Formula English Description

φ1

(
Cred(pball)→ ♦Sred(predbox)

)
∧(

¬Cred(pball)→ ♦Sblack(predbox)
) If ball in red circle,

then red box eventually in
red square. Otherwise red box

eventually in black square

φ2

(
Cred(pball)→ ♦Sred(predbox)

)
∧(

¬(Cred(pball) ∨ (Sback(pball))→ ♦Sblack(predbox)
)

If ball in red circle,
then red box eventually in

red square. If ball is
not in red circle or

black square, then red box
eventually in black square

φ3

(
Cblue(pball)→ ♦Sblue(pbluebox)

)
∧(

¬(Cred(pball) ∨ (Sback(pball))→ ♦Sblack(pbluebox)
)

If ball in blue circle,
then blue box eventually in

blue square. If red ball
is not in blue circle

or black square, then blue
box eventually in black square

φ4 Sblack(pball)→ ♦Sblue(predbox)
If ball in black square,
then eventually red box

in blue square

φ5 Sblack(pball)→ ♦Sred(pbluebox)
If ball in black square,

then eventually blue box
in red square

φ6 φ2 ∧ φ3 Conjunction of task 2 and 3
φ7 φ2 ∧ φ3 ∧ φ4 ∧ φ5 Conjunction of tasks 2, 3, 4, 5

B HYPERPARAMETERS FOR PROXIMAL POLICY OPTIMIZATION

Hyperparameter Value

Num. Hidden Layers 2
Num. Units per layer 64
Activation Relu
Policy Learning Rate 0.009
Value Learning Rate 0.009
Discount 0.99
Batch Size 60
GAE parameter 0.99
Num. Iterations 100
Num. Epochs 20
Clipping Parameter ε 0.2
Horizon 20
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C STATE AND ACTION SPACES

For experiments with the simulated Baxter robot, we delegate low level control to motion planning
packages and only learn high level decisions. Depending on the task, the states are the planar
positions of objects (red box, blue box, ball) and the automata state. The actions are the target
positions of the objects. We assume that the low level controller can take objects to the desired
target position with minor uncertainty that will be dealt with by the learning agent. The table below
shows state and action spaces used for each task. sM and aM denote the spaces for regular MDP
(used for terminal robustness rewards and heuristic rewards). sM̃ and aM̃ denote the spaces for
FSA augmented MDP. q denotes the automata state.

Task State Space Action Space

φ1
sM = (pball, predbox)
sM̃ = (pball, predbox, q)

aM/M̃ = (predbox)target

φ2
sM = (pball, predbox)
sM̃ = (pball, predbox, q)

aM/M̃ = (predbox)target

φ3
sM = (pball, pbluebox)
sM̃ = (pball, pbluebox, q)

aM/M̃ = (pbluebox)target

φ4
sM = (pball, predbox)
sM̃ = (pball, predbox, q)

aM/M̃ = (predbox)target

φ5
sM = (pball, pbluebox)
sM̃ = (pball, pbluebox, q)

aM/M̃ = (pbluebox)target

φ6
sM = (pball, predbox, pbluebox)

sM̃ = (pball, predbox, pbluebox, qφ2
, qφ3

)
aM/M̃ = (p, d)target

φ7
sM = (pball, predbox, pbluebox)

sM̃ = (pball, predbox, pbluebox, qφ2
, qφ3

, qφ4
, qφ5

)
aM/M̃ = (p, d)target

For tasks φ6 and φ7, the action space is three dimensional, the first two dimension p = (x, y) is a
target position, the third dimension d controls which object should be placed at p. If d < 0.5, then
p = predbox and if d > 0.5, then p = pbluebox.
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D LEARNING WITH FSA AUGMENTED MDP (OFF-POLICY VERSION)

Algorithm 1 Automata Guided RL (off-policy version)

1: Inputs: Episode horizon T , M̃φ (consisting of an MDP and FSAAφ), maximum size for replay
pool N

2: Initialize parameterized policy πθ . θ is the policy parameters
3: Initialize replay pool B ← {}
4: for n = 1 to number of training episodes do
5: Select initial state s̃0 = (s0, q0) . s0 can be randomly selected, q0 is always the initial

automaton state q0

6: for t =0 to T do at = π(s̃t)
7: s̃t+1 = GetNextState(s̃t, at)
8: if qt+1 == qf then
9: r̃t = 2 . terminal reward for satisfying φ

10: break . φ is satisfied, restart episode
11: else if qt+1 == trap then
12: r̃t = −2 . terminal reward for violating φ
13: break . φ is violated, restart episode
14: else
15: r̃t = GetReward(s̃t, s̃t+1) . using Equation 7
16:
17: end if
18: B ← (s̃t, at, s̃t+1, r̃t) . store experience in replay pool
19: if size(B) > N then
20: pop(B[0])
21: end if
22: θ ← UpdatePolicy(B) . this can be any RL update rule and doesn’t necessarily have to

occur at this location
23: end for
24: end for
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E SEMANTICS FOR SCTLTL

Following the syntax for scTLTL provided in Section 2.2, here we define the semantics for the
language. We denote st ∈ S to be the state at time t, and st:t+k to be a sequence of states (state
trajectory) from time t to t + k, i.e., st:t+k = stst+1...st+k. The Boolean semantics of scTLTL is
defined as:

st:t+k |= f(s) < c ⇔ f(st) < c,

st:t+k |= ¬φ ⇔ ¬(st:t+k |= φ),

st:t+k |= φ⇒ ψ ⇔ (st:t+k |= φ)⇒ (st:t+k |= ψ),

st:t+k |= φ ∧ ψ ⇔ (st:t+k |= φ) ∧ (st:t+k |= ψ),

st:t+k |= φ ∨ ψ ⇔ (st:t+k |= φ) ∨ (st:t+k |= ψ),

st:t+k |=©φ ⇔ (st+1:t+k |= φ) ∧ (k > 0),

st:t+k |= ♦φ ⇔ ∃t′ ∈ [t, t+ k) st′:t+k |= φ,

st:t+k |= φ U ψ ⇔ ∃t′ ∈ [t, t+ k) s.t. st′:t+k |= ψ

∧ (∀t′′ ∈ [t, t′) st′′:t′ |= φ),

st:t+k |= φ T ψ ⇔ ∃t′ ∈ [t, t+ k) s.t. st′:t+k |= ψ

∧ (∃t′′ ∈ [t, t′) st′′:t′ |= φ).

A trajectory s of horizon T is said to satisfy formula φ if s0:T |= φ.

We also define the quantitative semantics for scTLTL (robustness degree) , i.e., a real-valued function
ρ(st:t+k, φ) of state trajectory st:t+k and a scTLTL specification φ that indicates how far st:t+k is
from satisfying or violating the specification φ. The quantitative semantics of scTLTL is defined as
follows:

ρ(st:t+k,>) = ρmax,

ρ(st:t+k, f(st) < c) = c− f(st),

ρ(st:t+k,¬φ) = − ρ(st:t+k, φ),

ρ(st:t+k, φ ⇒ ψ) = max(−ρ(st:t+k, φ), ρ(st:t+k, ψ))

ρ(st:t+k, φ1 ∧ φ2) = min(ρ(st:t+k, φ1), ρ(st:t+k, φ2)),

ρ(st:t+k, φ1 ∨ φ2) = max(ρ(st:t+k, φ1), ρ(st:t+k, φ2)),

ρ(st:t+k,©φ) = ρ(st+1:t+k, φ) (k > 0),

ρ(st:t+k,♦φ) = max
t′∈[t,t+k)

(ρ(st′:t+k, φ)),

ρ(st:t+k, φ U ψ) = max
t′∈[t,t+k)

(min(ρ(st′:t+k, ψ),

min
t′′∈[t,t′)

ρ(st′′:t′ , φ))),

ρ(st:t+k, φ T ψ) = max
t′∈[t,t+k)

(min(ρ(st′:t+k, ψ),

max
t′′∈[t,t′)

ρ(st′′:t′ , φ))),

where ρmax represents the maximum robustness value. Moreover, ρ(st:t+k, φ) > 0 ⇒ st:t+k |= φ
and ρ(st:t+k, φ) < 0 ⇒ st:t+k 6|= φ, which implies that the robustness degree can substitute
Boolean semantics in order to enforce the specification φ (refer to Li et al. (2016) for a more detailed
description of TLTL and robustness).
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