
Under review as a conference paper at ICLR 2019

THE BODY IS NOT A GIVEN: JOINT AGENT POLICY
LEARNING AND MORPHOLOGY EVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) has proven to be a powerful paradigm for deriving
complex behaviors from simple reward signals in a wide range of environments.
When applying RL to continuous control agents in simulated physics environ-
ments, the body is usually considered to be part of the environment. However,
during evolution the physical body of biological organisms and their controlling
brains are co-evolved, thus exploring a much larger space of actuator/controller
configurations. Put differently, the intelligence does not reside only in the agent’s
mind, but also in the design of their body. We propose a method for uncovering
strong agents, consisting of a good combination of a body and policy, based on
combining RL with an evolutionary procedure. Given the resulting agent, we also
propose an approach for identifying the body changes that contributed the most to
the agent performance. We use the Shapley value from cooperative game theory
to find the fair contribution of individual components, taking into account syner-
gies between components. We evaluate our methods in an environment similar
to the the recently proposed Robo-Sumo task, where agents in a 3D environment
with simulated physics compete in tipping over their opponent or pushing them
out of the arena. Our results show that the proposed methods are indeed capable
of generating strong agents, significantly outperforming baselines that focus on
optimizing the agent policy alone. 1

1 INTRODUCTION

Reinforcement Learning (RL) uses a simple reward signal to derive complex agent policies, with
recent progress on representing the policy using deep neural networks leading to strong results in
game playing (Mnih et al., 2015; Silver et al., 2016), robotics (Kober et al., 2013; Levine et al., 2016)
and dialog systems (Li et al., 2016). Such algorithms were designed for stationary environments,
but having multiple learning agents interact yields a non-stationary environment (Littman, 1994;
Bernstein et al., 2002). Various approaches were proposed for continuous control, required for loco-
motion in an physics simulator environment (Heess et al., 2017; Schulman et al., 2017; Rajeswaran
et al., 2017; Al-Shedivat et al., 2017). Although very successful, such approaches consider the body
of the agent to be fixed, simply a part of the environment. However, during evolution the physical
body of biological organisms is constantly changing; thus, the controlling brain and physical body
are jointly optimized, exploring a larger space of actuator-controller configurations.

The interaction of evolution with learning by individual animals over their lifetime can result in
superior performance (Simpson, 1953). Researchers refer to how individual learning can enhance
evolution at the species level as the “Baldwin Effect” (Weber & Depew, 2003), where learning
guides evolution by smoothing the fitness landscape. In learning agents, the physical shape of the
body plays a double role. First, a good body has the capability of effectively exerting many forces in
the environment. Second, a well-configured body is easier to learn to control, by making it simpler
to identify good policies for exerting the forces. Consider a physical task which requires exerting
certain forces at the right time, such as locomotion. Some bodies can exert the required forces,
while others cannot. Further, some bodies exert the required forces only under a small set of exactly
correct policies, whereas others have a wide range of policies under which they exert the required
forces (at least approximately). In other words, some bodies have a wide “basin of attraction” where

1A video is available at: www.youtube.com/watch?v=eei6Rgom3YY.

1

https://www.youtube.com/watch?v=eei6Rgom3YY

Under review as a conference paper at ICLR 2019

Figure 1: Left: conventional RL optimizes the controller. Right: this work aims to jointly optimize
both the controller and the body. Components to be optimized shown in shaded boxes.

a learner can find a policy that exerts at least a part of the required forces; once discovering a policy
in this wide basin, the learner can optimize the policy to exert the required forces.

This indicates that the intelligence of agents resides not only in their mind (the controller), but also
in the design of their body. Our contribution is proposing a method for uncovering strong agents,
consisting of a good combination of a body and policy. This stands in contrast to the traditional
paradigm, which takes the body as a given (i.e. a fixed part of the environment), as shown in
Figure 1. Our technique combines RL with an evolutionary procedure. We also show how to identify
the body changes that contributed the most to agent performance, taking into account synergies
between them. We demonstrate our method in an environment similar to the Robo-Sumo task (Al-
Shedivat et al., 2017), where agents in a 3D environment with simulated physics compete in pushing
the opponent out of the arena or tipping it over. This environment is based on the MuJoCo physics
simulator (Todorov et al., 2012), allowing us to easily modify the agent’s body. Our results show that
the proposed methods are indeed capable of generating superior agents, significantly outperforming
baselines that focus on optimizing the agent policy alone.

Related Work Evolving virtual creatures (EVCs) work uses genetic algorithms to evolve the
structure and controllers of virtual creatures in physically simulated environments, without learning
(Sims, 1994). EVCs have a genetically defined morphology and control system that are co-evolved
to perform locomotion tasks (Sims, 1994; Dan Lessin, 2013; Cheney, 2013), with some methods
using a voxel-based “soft-body” (Cheney, 2013; Hiller & Lipson, 2012; Micha Joachimczak, 2012).
Most such attempts have yielded relatively simple behaviors and morphologies (Dan Lessin, 2013;
Cheney, 2016). One approach to enable continually increasing complex behavior is using a cur-
riculum (Dan Lessin & Miikkulainen, 2014). Researchers hypothesized that embodied cognition,
where a controller expresses its behavior through a body, may cause morphological changes to have
an immediate detrimental impact on a behavior (Cheney, 2016). For example, a mutation generat-
ing longer legs may harm performance with a controller optimized for shorter legs. This results in
pressure to converge on a body design early in evolution, to give the controller a stable platform to
optimize. This interdependence can be mitigated by giving the controller time to adapt to morpho-
logical changes, so bodies that are easier to learn to control would have an evolutionary advantage,
and learning would smooth the fitness landscape; this may speed up body evolution, with the extent
of learning required for new bodies decreasing over time (Simpson, 1953; Weber & Depew, 2003).

Scenarios where learning is used only in the evaluation phase of evolved agents are referred to as
Baldwinian evolution (Weber & Depew, 2003), where the results of learning are discarded when an
offspring is generated. This is in contrast to “Lamarkian evolution” (Whitley et al., 1994; Jelisavcic
et al., 2017), where the result of learning is passed on to offspring. Typically the adaption stage
uses a genetic algorithm operating to evolve the controller (Cheney, 2016; Jelisavcic et al., 2017).
In contrast, we use an RL algorithm to learn to control an evolving body. RL has achieved complex
behaviours in continuous control tasks with fixed morphology (Heess et al., 2017; Schulman et al.,
2017; Rajeswaran et al., 2017; Al-Shedivat et al., 2017), and has the potential to adapt to morpho-
logical changes. Our experiments evaluate the potential of evolving the bodies of a population of
learning agents. We leverage Population Based Training (Jaderberg et al., 2017; 2018) (PBT), orig-
inally proposed to evolve parameters of the controller. To our knowledge, this is the first attempt at
evolving the body of continuously controlled RL agents in a physically simulated environment.

2

Under review as a conference paper at ICLR 2019

Preliminaries We apply multi-agent reinforcement learning in partially-observable Markov
games (i.e. partially-observable stochastic games) (Shapley, 1953a; Littman, 1994; Hansen et al.,
2004). In every state, agents take actions given partial observations of the true world state, and each
obtains an individual reward. Agents learn an appropriate behavior policy from past interactions.
In our case, given the physics simulator state, agents observe an egocentric view consisting of the
positions and velocities of their and their opponent’s bodies (end effectors and joints) and distances
from the edges of the pitch. Our agents have actuated hinges (one at the “knee” and one at the “hip”
of every limb). The full specification for our environment (observations and actions) are given in the
Appendix, and are similar to other simulated physics locomotion tasks (Heess et al., 2017). Every
agent has its own experience in the environment, and independently learns a policy, attempting to
maximize its long term γ-discounted utility, so learning is decentralized (Bernstein et al., 2002).

Our analysis of the relative importance of the body changes uses cooperative game theory. We view
the set of body changes as a “team” of players, and quantify the impact of individual components,
taking into account synergies between them. Game theory studies players who can form teams,
looking for fair ways of estimating the impact of individual players in a team. A cooperative game
consists of a set A of n players, and a characteristic function v : 2A → R which maps any team
C ⊆ A of players to a real value, showing the performance of the team as a whole. In our case, A
consists of all changes to body components resulting in the final body configuration. The marginal
contribution of a player i in a team C that includes it (i.e. i ∈ C) is the change in performance
resulting from excluding i: ∆C

i = v(C)−v(C \{i}). We define a similar concept for permutations.
Denote by π a permutation of the players (i.e. π : {1, 2, . . . , n} → {1, 2, . . . , n} where π is a
bijection), and by Π the set of all player permutations. We refer to the players occurring before i in
the permutation π as the predecessors of i in π, and denote by Sπ(i) the predecessors of i in π, i.e.
Sπ(i) = {j|π(j) < π(i)}. The marginal contribution of a player i in a permutation is the change
in performance between i’s predecessors and including i, and the performance of i’s predecessors
alone: ∆π

i = v(Sπ(i) ∪ {i}) − v(Sπ(i)). The Shapley value (Shapley, 1953b) is considered a fair
allocation of the overall reward achieved by a team to the individual players in a team, reflecting
the contribution of each individual player to the team’s success (Gul, 1989; Straffin, 1988). It is the
unique value exhibiting various fairness axioms (Dubey, 1975; Feltkamp, 1995), taking into account
synergies between agents (see Section 8 in the Appendix for a detailed discussion and examples of
how the Shapley value captures such synergies between body components). The Shapley value is
the marginal contribution of a player, averaged across all player permutations, given by the vector
φ(v) = (φ1(v), φ2(v), . . . , φn(v)) where: φi(v) = 1

n!

∑
π∈Π[v(Sπ(i) ∪ {i})− v(Sπ(i))].

2 METHOD

We consider agents who compete with one another in a physical environment, and propose a method
for optimizing both the agent’s policy and its physical characteristics. We refer to the agent’s policy
as the controller, and to the configuration of its physical structure as the body. Our method begins
with an initial agent body and a random policy and repeatedly competes agents with each other,
identifying beneficial changes to both the agent’s policy and the agent’s body. Finally, the procedure
outputs high performing agents, consisting of both a body configuration and a controller.

Our high level approach combines a reinforcement learning procedure that optimizes each agent’s
controller with an evolutionary procedure that optimizes the agent’s body (as well as the learner’s
parameters). We thus simultaneously improve the agents’ bodies, while improving and fitting each
agent’s controller to its current body. Specifically, we employ a variant of Population Based Train-
ing (Jaderberg et al., 2017; 2018)(PBT), which maintains a population of RL agents and leverages
an evolutionary procedure to improve their controllers, except we apply evolution to not only the
policy learner, but also to the physical agent body. Further, given a final agent body, we decompose
the overall agent performance to the contribution of each individual body change.

2.1 OUR APPROACH: POLICY OPTIMIZATION WHILE EVOLVING MORPHOLOGY (POEM)

POEM maintains a population of agents and lets them participate in contests with each other. It uses
the data from the contests in two ways: first, it uses the experience from these episodes to improve
the controller by applying RL; second, it analyzes the outcomes of the contests to rank agents by
their performance, and uses this ranking to apply an evolutionary process to improve the agents’

3

Under review as a conference paper at ICLR 2019

bodies (and controllers). POEM retains two sub-populations of agents, a body-fixed population
where only the agent policy is optimized, and a body-improving population, where the agent body
as well as the controller are improved over time. The individual agents, in both sub-populations,
are continuous policy agents. For the evolutionary procedure, POEM uses a variant of PBT which
improves model parameters and learner hyper-parameters (in both body-fixed and body-improving
sub-populations), and also evolves the agent bodies in the body-improving population.

2.1.1 CONTROLLER (POLICY LEARNER): RL AGENTS

We examine continuous control RL agents, based on Stochastic Value Gradients (SVG) (Heess et al.,
2015) and employing off-policy Retrace-correction (Munos et al., 2016). SVG is a policy gradi-
ent algorithm that learns continuous control policies, allowing for stochastic control by modelling
stochasticity in the Bellman equation as a deterministic function of external noise. Our implemen-
tation augments SVG with an experience replay buffer for learning the action-value function with
k-step returns, applying off-policy Retrace-corrections (Munos et al., 2016) (several papers cover
this in detail (Hausman et al., 2018; Riedmiller et al., 2018)).

2.1.2 EVOLUTIONARY PROCEDURE

POEM uses an evolutionary procedure jointly with policy learners to evolve agent bodies and learner
parameters, adapting PBT. In PBT, agents play against each other in multiple contests, and Elo rat-
ings (Elo, 1978) are used to measure agents’ performance, and “evolve” them, with low-ranked
agents copying the parameters of highly-ranked agents. Both the episode traces fed to the pol-
icy learner and the agent performance ratings that drive the evolution depend on the tournaments
played. The original PBT procedure is designed for “monolithic” agents, but we maintain two sub-
populations with an important asymmetry between them; the action space is the same for all agents,
but the outcome of taking the same action depends on the body of the agent (agents in the body-fixed
population are identical, but the body-improving population agents have different bodies, yielding
different outcomes for the same action). POEM ensures that agents from both sub-populations
constantly encounter one another, by applying random match-making: each agent faces another
agent chosen uniformly at random from the whole population in a contest yielding a single episode.
However, the evolution procedure differs between the two sub-populations; both use the evolution
procedure to periodically copy policy parameters and copy and perturb learner hyperparameters, but
only the body-improving agents also evolve the body parameters during evolution.

Evolution Agents in our framework face their peers in multiple contests, so each agent faces op-
ponents that learn and change their policy, and also evolve and change their body. This makes the
environment an agent faces highly non-stationary. Further, changes in the agent’s own body also
contribute to the non-stationary nature of the environment. The optimal body configuration and
controller thus depend on the configuration of the other agents in the population (i.e. their bodies
and policies, which are the result of the learning and evolution procedure). We apply PBT to opti-
mize different parts of the agent configuration, including policy parameters, hyperparameters of the
learner, and the shape of the agent’s body. We now provide a short description of the PBT procedure
we use (full details are given in the Appendix). The high-level pseudocode is given in Algorithm 1,
and the subroutines are described below. Fitness: PBT uses ratings that quantify agents’ relative
performance based on the outcomes of previous contests. Following the original PBT work, we use
the Elo rating system (Elo, 1978) which was originally introduced to rate chess players (the specific
update details of the Elo procedure are given in the Appendix). Evolution eligibility: Agents are
examined using evolution eligibility criteria, designed to avoid early conversion of the agent popu-
lation. Initially there is a warm-up period, during which only the RL learner is used and no evolution
steps are performed. Following the warm-up period, agents are only considered for evolution if they
meet these criteria: a certain number of steps must have passed since they last became eligible for
evolution, and a certain number of steps must have passed since their parameters were modified by
the evolution. Selection: Not every agent eligible for evolution immediately modifies its parame-
ters: eligible agents are examined using a selection procedure to determine whether the agent would
modify its parameters. Each eligible agent i is compared to another agent j sampled uniformly at
random from the sub-population, and the ratings are used to compute si,j , the probability of agent i
to win in a contest against j. If this probability (win-rate) is lower than a certain threshold, an agent
undergoes inheritance and mutation. Inheritance: PEOM uses an inheritance procedure to mod-

4

Under review as a conference paper at ICLR 2019

(a) Unevolved Ant body (b) Ant body schematic (c) Ant genotype (d) An evolved Ant Body

Figure 2: Ant model

ify i’s configuration to be more similar to j’s, affecting three types of parameters: neural network
weights, learner hyper-parameters, and body configuration parameters. Neural network parameters
and body configuration parameters are set to the target j’s configuration. Each hyper-parameter is
taken either from the evolving agent i or from the target j depending on a (possibly-biased) coin-
flip. The inheritance procedure is given in Algorithm 2. Mutation: After inheritance, parameters
undergo mutation, which modifies each parameter p by a factor fp following a uniform distribution
fp ∼ U(1 −m, 1 + m). After mutation, body parameters are capped at their individual upper and
lower bounds (see Algorithm 4 in the Appendix for full details).

Algorithm 1 POEM PBT Procedure

1: A: set of population agents
2: procedure POEM-PBT
3: for agent ai in population do
4: Fitness: Rank agents by ability
5: if Evolution-Eligible(ai) then
6: Choose random target aj
7: if Selection(ai, aj) then
8: Inherit(ai, aj)
9: Mutate(ai)

10: end if
11: end if
12: end for
13: end procedure

Algorithm 2 Agent i inherits from agent j by
cross-over.

1: Agent i, j with respective network parame-
ters θi, θj , hyper-parameters θhi , θ

h
j , and body

configuration parameters θbi , θ
b
j .

2: procedure INHERIT(θi, θj , θhi , θ
h
j , θ

b
i , θ

b
j)

3: θi ← θj
4: θbi ← θbj
5: m ∼ B(0.5)
6: θhi ←mθhi + (1−m)θhj
7: end procedure

3 EXPERIMENTS

We now describe our experiments for evaluating the performance of the POEM framework. We
examine several research questions. First, does POEM allow obtaining high performing agents (in
controller and body)? Second, is the advantage achieved by the resulting agent due solely to their
improved body, or does the process allow us to obtain superior controllers even for the original agent
body? Finally, which body changes are most influential in achieving an improved performance?

Environment Our experiments involve contests between agents, conducted using the MuJoCo
physics simulator (Todorov et al., 2012). We focus on the Robo-Sumo task (Al-Shedivat et al.,
2017), where ant shaped robots must tip their opponent over or force them out of the arena.

Agent Body We use a quadruped body, which we refer to as the “ant body”, an example of which
is shown in Figure 2a. The body is composed of a root sphere and 8 capsules (cylinders capped by
hemispheres) connected via hinges (single DoF joints), each of which are actuated. All the rigid
bodies have unit density. A schematic configuration is shown in Figure 2b. In our experiments, the
morphology is represented as a directed graph-based genotype where the nodes represent physical
component specifications and the edges describe relationships between them (Sims, 1994). An
agent’s morphology is expressed by parsing its genotype.

Each node describes the shape of a 3D rigid body (sphere or capsule), and the limits of the hinge
joint attaching it to its parent (see Figure 3). Edges contain parameters used to position, orient and

5

Under review as a conference paper at ICLR 2019

Figure 3: Ant body configuration parameters

Figure 4: Selection of initial bodies for the body-improving population

scale the child node, illustrated in Figure 3. Edges have a “reflection” parameter to facilitate body
symmetry; when enabled, the body of the child node is created twice: once in its specified position
and orientation, and a second time reflected across the parent’s Z-Y plane. No control systems are
specified by the genotype, instead all the actuators are made available to the RL algoithm as its
actions. The genotype constructed for our ant consists of three nodes and three edges connected as
shown in Figure 2c. The root node specifies the spherical torso, with two edges connected to an
“upper leg” node, one for the upper segment of the rear legs, and one for the front legs. The lower
segments of the ant’s legs are all specified by the same “lower leg” node. The full physical structure
of the body is determined by 25 parameters in these nodes and edges (detailed in the Appendix).

Population Configuration Our experiments are based on two sub-populations, a body-fixed and
body-improving subpopulations. Each of these consists of n = 64 agents. In the body-fixed sub-
population all agents have the same body configuration, but have different policy parameters and
learner hyper-parameters, whereas the body-improving sub-population has agents with different
bodies. Both sub-populations are initialized with random policy parameters and the same hyper-
parameters. The body-fixed agents are all initialized to the same standard body-configuration (as
shown in Figure 2a, with full details given in Appendix). The body-improving agents are each
initialized with a different body by sampling body configurations around the original body config-
uration as detailed in the Appendix. Figure 4 shows example initial bodies for the body-improving
population (more examples appear in Figure 7 in the Appendix).

3.1 COMPARING BODY-FIXED POPULATIONS WITH BODY-EVOLVING POPULATION

Our experiment is based on data from k = 50 runs of the POEM method of Section 2.1, with two
sub-populations (a body-fixed and a body-improving sub-population), each with n = 64 agents.
POEM matches agents for contests uniformly at random across the entire population, so the body-
fixed agents to adapt the controller so as to best match the body-improving agents, making them
increasingly stronger opponents. Note that finding a good controller for the body-improving popu-
lation is challenging, as the controller must cope with having many different possible bodies it may
control (i.e. it must be robust to changes in the physical body of the agent). We examine agent per-
formance, as reflected by agent Elo scores. Figure 5a shows agent Elo ratings over time, in one run,
where agents of the body-improving sub-population outperform the body-fixed agents (body-fixed
agents are shown in red, and body-improving agents in blue). Both populations start with similar
Elo scores, but even early in training there is a gap in favor of the body-improving agents.

To determine whether POEM results in a significant advantage over optimizing only the controller,
we study outcomes in all k = 50 runs. We run POEM for a fixed number of training steps, 10 training
hours (equivalently, 2e9 training steps), and analyze agent performance. At the evaluation time, each

6

Under review as a conference paper at ICLR 2019

(a) Agent Elo scores over time. (b) Elo histogram. (c) Convergence of front hip’s rotation (left)
and scale (right) across agents over time.

Figure 5: Elos progression and evolution of two body parameters during training. Vertical bars
represents 10 hours/2e9 steps of training.

agent (in either sub-population) has its own Elo rating, reflecting its win-rate against others. As our
goal is to identify the strongest agents, we examine the highest Elo agent in each sub-population.
Figure 5b shows a histogram of Elo scores on the run of Figure 5a, at evaluation time, showing that
in this run all body-improving agents outperform all body-fixed agents. We examine the proportion
of runs where the highest Elo agent is a body-improving agent (rather than a body-fixed one). In over
70% of the runs, the top body-improving agent outperforms the top body-fixed agent. A binomial
test shows this to be significant at the p < 0.001 level. When one can change physical traits of
agents, this shows that POEM can find the configuration of strong agents (a body and matching
controller), typically outperforming agents with the original body and a controller optimized for that
body. Figure 2d shows an example evolved ant from the body-improving population. On average the
evolved body is 15% wider and 6% higher (thus 25% heavier), and has a lower center of gravity; the
caps on parameters during evolution allow the body to evolve to be much heavier, so the advantage
is not only due to mass. Figure 5c shows how some body parameters evolve over time within
the population. Initially the variance is high, but by 1.5e9 steps it is negligible. This shows the
population converges early in training, to a possibly sub-optimal body.

Using Body-Improving Controllers in the Original Body POEM uncovers good combinations
of a body and controller. One might conjecture that the advantage stems from the agent’s modified
body, rather than from the controller. As the overall structure of the ant remains the same, with only
sizes, locations and angles of joints modified, we can use any controller in any body. Thus we can
test the performance of the controller discovered for the evolved body in the original, unevolved
body. We compared the win-rate of the body-fixed population against that of the body-improving
controllers fit into the unevolved body. Controllers were taken after 10 hours of training. The results
show that in 64% of the runs, the controllers taken from the body-improving population outperform
those of the body-fixed population, when used in the unevolved body (similar to recent observations
in EVCs by Jelisavcic et al. (2018)). This shows POEM can find strong controllers even for the
original body, and is thus useful even when we cannot modify the physical body of agents.

3.2 IDENTIFYING INFLUENTIAL BODY CHANGES

Section 3.1 shows we can find a set of changes to the original body, that allow significantly improv-
ing its performance (given an appropriate controller). However, which of these changes had the most
impact on agent’s performance? This question is not completely well-defined, as the performance
of agent is not a simple sum of the “strengths” of individual body changes. The different body
components depend on each other, and may exhibit synergies between components. For instance,
changing the orientation of the leg may only be helpful when changing its length. We thus view
the set of body changes as a “team” of components, and attempt to fairly attribute the improvement
in performance to each of the parts, taking into account synergies between components, using the
Shapley value. We thus define a cooperative game where “players” are the changes to body parts.
As we have 25 body configuration parameters, we obtain a cooperative game with 25 players. 2

2Our approach is akin to using the Shapley value to measure the importance of features in predictive models
(Cohen et al., 2005; Datta et al., 2016). Appendix Section 8 contains a discussion and a motivating example.

7

Under review as a conference paper at ICLR 2019

(a) Relative importance of body changes using the
Shapley decomposition (single POEM run).

(b) Performance as body parameters are incrementally
changed from unevolved to evolved body (descending
and ascending Shapley value order, and descending
through parameter-heuristic importance).

Figure 6: Shapley analysis of importance of evolved body parameters.

We define the value v(S) of a subset S of body changes as follows. Given the original body b and
the evolved body b′ and a set S of body parts, we define the body b(S) as the body where each body
part p ∈ S takes the configuration as in the evolved body, and where each part p /∈ S takes the
configuration as in the unevolved body b. The body b(S) is a hybrid body with some parameters
configured as in the original body and some as in the evolved body. To evaluate the performance of a
hybrid body we use the evolved controller discussed in Section 3.1. This controller has been learned
over many different bodies, and can thus likely handle a hybrid body well. Given an (evolved)
controller c and a fixed baseline agent d (consisting of a fixed body and a fixed policy), we define
the value v(S) of a set S of body changes as the win probability of an agent with the body b(S)
and controller (policy) c against the baseline agent d. v(S) defines a cooperative game over the
body parts, so we can use the formula in Section 1 to compute the Shapley value of each body part.
For computational reasons, we settle for an approximation (Bachrach et al., 2010) (see Appendix
for details). Figure 6a shows Shapley values measuring relative importance of body changes (for
the top body-improving agent from Section 3.1), showing that body changes are unequal in their
contribution to agent performance. The high impact body parameters are the orientation of the front
and rear upper leg, whereas changing the body radius and scale parameters have a lower impact.

We conduct another experiment to confirm that high Shapley components indeed yield a bigger
performance boost than low Shapley ones. We rank body parameters by their Shapley value and use
the ranking to incrementally apply evolved-body parameter values to an unevolved body-fixed body.
We do this twice; once descending through the ranking starting with the highest Shapley-valued
parameters, and a second time in an ascending order. This process generates 26 body variants, where
the first variant has no evolved body parameters and the last has all 25. Each body variant competes
against a fixed baseline agent (with fixed body and policy) in 25, 000 matches to get the proportion
of won matches, used as a performance measure. Figure 6b depicts the resulting agent performance.
The curves show that introducing the highest Shapley valued parameters first has a large impact
on performance. The figure also shows that the Shapley ranking also outperforms another baseline
heuristic, which ranks parameters by the magnitude of their change from the unevolved body.

4 CONCLUSION

We proposed a framework for jointly optimizing agent body and policy, combining continuous con-
trol RL agents with an evolutionary procedure for modifying agent bodies. Our analysis shows that
this technique can achieve stronger agents than obtained by optimizing the controller alone. We
also used game theoretic solutions to identify the most influential body changes. Several questions
remain open. First, can we augment our procedure to also modify the neural network architecture of
the controller, similarly to recent neural architecture optimizers (Liu et al., 2017)? Second, can we
use similar game theoretic methods to guide the evolutionary process? Finally, How can we ensure
the diversity of agents’ bodies so as to improve the final performance?

8

Under review as a conference paper at ICLR 2019

REFERENCES

Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch, and Pieter Abbeel.
Continuous adaptation via meta-learning in nonstationary and competitive environments. arXiv
preprint arXiv:1710.03641, 2017.

Yoram Bachrach, Evangelos Markakis, Ezra Resnick, Ariel D Procaccia, Jeffrey S Rosenschein,
and Amin Saberi. Approximating power indices: theoretical and empirical analysis. Autonomous
Agents and Multi-Agent Systems, 20(2):105–122, 2010.

D. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complexity of decentralized control
of markov decision processes, 2002.

Bongard J. SunSpiral V. Lipson H. Cheney, N. On the difficulty of co-optimizing morphology and
control in evolved virtual creatures. ALIFE XV, The Fifteenth International Conference on the
Synthesis and Simulation of Living Systems, 2016.

MacCurdy R. Clune J. Lipson H. Cheney, N. Unshackling evolution: Evolving soft robots with
multiple materials and a powerful generative encoding. In Genetic and Evolutionary Computation
Conference (GECCO’13), Amsterdam, The Netherlands., 2013.

Shay B Cohen, Eytan Ruppin, and Gideon Dror. Feature selection based on the shapley value. In
IJCAI, volume 5, pp. 665–670, 2005.

Don Fussell Dan Lessin and Risto Miikkulainen. Adapting morphology to multiple tasks in evolved
virtual creatures. In The Fourteenth International Conference on the Synthesis and Simulation of
Living Systems (ALIFE 14), 2014.

Risto Miikkulainen Dan Lessin, Don Fussell. Open-ended behavioral complexity for evolved virtual
creatures. In Genetic and Evolutionary Computation Conference (GECCO’13), Amsterdam, The
Netherlands., 2013.

Anupam Datta, Shayak Sen, and Yair Zick. Algorithmic transparency via quantitative input influ-
ence: Theory and experiments with learning systems. In Security and Privacy (SP), 2016 IEEE
Symposium on, pp. 598–617. IEEE, 2016.

Pradeep Dubey. On the uniqueness of the shapley value. International Journal of Game Theory, 4
(3):131–139, 1975.

Arpad E. Elo. The rating of chessplayers, past and present. Arco Pub., New
York, 1978. ISBN 0668047216 9780668047210. URL http://www.amazon.com/
Rating-Chess-Players-Past-Present/dp/0668047216.

Vincent Feltkamp. Alternative axiomatic characterizations of the shapley and banzhaf values. Inter-
national Journal of Game Theory, 24(2):179–186, 1995.

Faruk Gul. Bargaining foundations of shapley value. Econometrica, 57(1):81–95, 1989.

Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein. Dynamic programming for partially
observable stochastic games. In Proceedings of the 19th National Conference on Artifical Intelli-
gence, AAAI’04, pp. 709–715. AAAI Press, 2004.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on Learn-
ing Representations, 2018.

Nicolas Heess, Gregory Wayne, David Silver, Tim Lillicrap, Tom Erez, and Yuval Tassa. Learning
continuous control policies by stochastic value gradients. In Advances in Neural Information
Processing Systems, pp. 2944–2952, 2015.

Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa,
Tom Erez, Ziyu Wang, S. M. Ali Eslami, Martin A. Riedmiller, and David Silver. Emergence
of locomotion behaviours in rich environments. CoRR, abs/1707.02286, 2017. URL http:
//arxiv.org/abs/1707.02286.

9

http://www.amazon.com/Rating-Chess-Players-Past-Present/dp/0668047216
http://www.amazon.com/Rating-Chess-Players-Past-Present/dp/0668047216
http://arxiv.org/abs/1707.02286
http://arxiv.org/abs/1707.02286

Under review as a conference paper at ICLR 2019

Jonathan Hiller and Hod Lipson. Automatic design and manufacture of soft robots. 2012.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based train-
ing of neural networks. arXiv preprint arXiv:1711.09846, 2017.

Max Jaderberg, Wojciech Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcı́a
Castañeda, Charles Beattie, Neil C. Rabinowitz, Ari S. Morcos, Avraham Ruderman, Nico-
las Sonnerat, Tim Green, Louise Deason, Joel Z. Leibo, David Silver, Demis Hassabis, Koray
Kavukcuoglu, and Thore Graepel. Human-level performance in first-person multiplayer games
with population-based deep reinforcement learning. CoRR, abs/1807.01281, 2018.

Milan Jelisavcic, Rafael Kiesel, Kyrre Glette, Evert Haasdijk, and A. E. Eiben. Analysis of lamar-
ckian evolution in morphologically evolving robots. In Proceedings of the 14th European Con-
ference on Artificial Life, pp. 214–221. MIT Press, 2017. ISBN 978-0-262-34633-7.

M.J. Jelisavcic, D.M. Roijers, and A.E. Eiben. Analysing the relative importance of robot brains
and bodies. In ALIFE 2018 Proceedings of the Artificial Life Conference 2018, Artificial Life
Conference Proceedings, pp. 327–334, United States, 2018. MIT Press Journals. doi: 10.1162/
isal a 00063.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky. Deep reinforce-
ment learning for dialogue generation. arXiv preprint arXiv:1606.01541, 2016.

Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
In Proceedings of the Eleventh International Conference on Machine Learning, pp. 157–163.
Morgan Kaufmann, 1994.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hier-
archical representations for efficient architecture search. arXiv preprint arXiv:1711.00436, 2017.

Borys Wrbel Micha Joachimczak. Co-evolution of morphology and control of soft-bodied multicel-
lular animats. In Genetic and Evolutionary Computation Conference (GECCO’12), Philadelphia,
Pennsylvania, USA., 2012.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. In Advances in Neural Information Processing Systems, pp. 1054–1062,
2016.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, John Schulman, Emanuel Todorov, and
Sergey Levine. Learning complex dexterous manipulation with deep reinforcement learning and
demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Van de
Wiele, Volodymyr Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing-
solving sparse reward tasks from scratch. arXiv preprint arXiv:1802.10567, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences of the United
States of America, 39(10):1095–1100, 1953a.

Lloyd S Shapley. A value for n-person games. 1953b.

10

Under review as a conference paper at ICLR 2019

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

George Gaylord Simpson. The baldwin effect. Evolution, 7(2):110–117, 1953.

K. Sims. Evolving virtual creatures. 21st annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’94, 1994.

P Straffin. The shapleyshubik and banzhaf power indices as probabilities. The Shapley value. Essays
in honor of Lloyd S. Shapley, pp. 71–81, 1988.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–
5033. IEEE, 2012.

Bruce H Weber and David J Depew. Evolution and learning: The Baldwin effect reconsidered. Mit
Press, 2003.

Darrell Whitley, V Scott Gordon, and Keith Mathias. Lamarckian evolution, the baldwin effect and
function optimization. In International Conference on Parallel Problem Solving from Nature, pp.
5–15. Springer, 1994.

11

Under review as a conference paper at ICLR 2019

5 APPENDIX: ANT STRUCTURE AND GENOTYPE

We now describe the full details regarding the structure of the ant, and the genotype containing the
parameters governing the shape of the body. Section 3 in the main text describes the configuration
of the ant body as a graph-based genotype consisting of three nodes and three edges (shown in
Figure 2c), with a root node specifying the spherical torso and two edges specifying the rear and
front sets of legs. The parameters for the body-fixed ant nodes and edges are shown in Table 1 and
Table 2 respectively. In the body-improving ant all these parameters are mutable with the exception
of a node’s Shape and the edge’s Reflection. These are immutable to keep the number of mutable
parameters in the genotype constant and ensure a fixed topology for the ant.

Shape Radius (m) Length (m) Joint Limit (radians)
Torso Sphere 0.2 n/a n/a
Upper leg Capsule 0.08 0.28 0.52
Lower leg Capsule 0.08 0.56 0.35

Table 1: Node parameters

x rotation y rotation z rotation Scale Parent position Parent rotation Reflection
Front hip π/2 0 π/2 1.0 0.5 3π/4 True
Rear hip π/2 0 π/2 1.0 0.5 π/4 True
Knee π/4 0 0 1.0 1.0 -π/2 False

Table 2: Edge parameters

6 APPENDIX: FORMAL DEFINITION OF MULTI-AGENT RL AND FULL
ENVIRONMENT SPECIFICATION

Our analysis is based on independent multi-agent RL, in a physics simulator environment. At a
high level, we use multiple independent learners in a partially-observable Markov game, often called
partially-observable stochastic games (Hansen et al., 2004). In every state, agents take actions given
partial observations of the true world state, and each agent obtains an individual reward. Agents re-
ceive a shaping reward to encourage them to approach their opponent, +100 if they win and −100
if they lose. Through their individual experiences interacting with one another in the environment,
agents learn an appropriate behavior policy. More formally, consider an N -player partially observ-
able Markov gameM (Shapley, 1953a; Littman, 1994) defined on a finite state set S. An observa-
tion function O : S × {1, . . . , N} → Rd gives each agent’s d-dimensional restricted view of the
true state space. On any state, the agents may apply an action from A1, . . . ,AN (one per agent).
Given the joint action a1, . . . , aN ∈ A1, . . . ,AN the state changes, following a transition function
T : S × A1 × · · · × AN → ∆(S) (this is a stochastic transition, and we denote the set of discrete
probability distributions over S as ∆(S)). We use Oi = {oi | s ∈ S, oi = O(s, i)} to denote the
observation space of agent i. Every agent gets an individual reward ri : S × A1 × · · · × AN → R
for player i.

Every agent has its own experience in the environment, and independently learns a policy πi : Oi →
∆(Ai) (denoted π(ai|oi)) given its own observation oi = O(s, i) and reward ri(s, a1, . . . , aN)).
We use the notation ~a = (a1, . . . , aN), ~o = (o1, . . . , oN) and ~π(.|~o) = (π1(.|o1), . . . , πN (.|oN)).
Every agent attempts to maximize its long term γ-discounted utility:

V i~π(s0) = E

[∞∑
t=0

γtri(st,~at)|~at ∼ ~πt, st+1 ∼ T (st,~at)

]
(1)

6.1 ACTIONS AND OBSERVATIONS IN OUR ENVIRONMENT

Given the above definitions, to fully describe the environment in which our agents interact, we
must define the partial observations they receive of the true world state, and the actions they may
take. As discussed in Section 2 and Section 3, the physics simulator holds the true world state, but

12

Under review as a conference paper at ICLR 2019

agents only receive partial observations in the form of an egocentric view. The full list of observed
variables include the 3D positions of each end effector of the body, the 3D positions of each joint,
the velocities and acceleration of the joints, distances (on 3 axes) to the corners of the pitch. The
agents observe all of these variables for both their own body, and the relative ones of the opponents
body.

The action space of the agents relates to the actuated hinges. Each limb of the ant body has two
hinges, one at the “hip” (attaching it to the spherical torso), and one at the “knee”. Each of these is
a single degree of freedom (DoF) joint, responding to a continuous control signal. The full action
space is thus the Cartesian product of the allowed action for each of the hinges (8 hinges in total,
with a single DoF each).

7 APPENDIX: FULL PBT IMPLEMENTATION DETAILS

Our POEM framework uses population based training (Jaderberg et al., 2017; 2018) (PBT) to evolve
agents. Algorithm 1 in Section 2 presents a high level view of the procedure, applying 5 sub-
procedures: measuring fitness, checking whether an agent is eligible for evolution, selection, inher-
itance and mutation. As discussed in Section 2, we use Elo ranking (Elo, 1978) for fitness, based on
the outcomes of previous contests. The specific Elo computation we use is given in Algorithm 3.

Algorithm 3 Iterative Elo rating update.

1: Initialize rating ri for each agent in the agent population.
2: K: step size of Elo rating update given one match result.
3: si, sj : score for agent i, j in a given match.
4: procedure UPDATERATING(ri, rj , si, sj)
5: s← (sign(si − sj) + 1)/2

6: selo ← 1/(1 + 10(rj−ri)/400)
7: ri ← ri +K(s− selo)
8: rj ← rj −K(s− selo)
9: end procedure

Periodically evolutionary events take place, whereby selected agents are potentially updated with the
parameters of the other agents. Each evolutionary event consists of a pairwise comparison between
agents within each sub-population. Each pair consist of an eligible recipient and an eligible donor.
To be eligible both agents need to have processed 1 × 108 frames for learning since the beginning
of training or the last time they received parameters (whichever is most recent). Further, a recipient
agent needs to have also processed 4× 106 frames for learning since the last time it was involved in
an evolutionary event.

POEM’s pairwise-matching procedure is simple. For each sub-population, recipient-donor pairs
(i, j) are uniformly sampling from the eligible recipients and eligible donors within that sub-
population. The Elo ratings are used to compute si,j , the probability of agent i to win in a contest
against j. If this probability (win-rate) is lower than a certain threshold t then the recipient agent
i will be receive an update based on the donor j. We use a threshold of t = 45% (i.e. an agent i
inherits only if its probability of winning against the target is 45% or less).

When the win-rate of a recipient i against a donor j is lower than the threshold, we change i to
be more similar to j by applying two sub-procedures: an inheritance procedure and a mutation
procedure. The inheritance procedure is given in Algorithm 2. We have opted to simply copy all
of the donor’s body configuration parameters to the recipient although other possible variants can
be considered, such as taking only some parameters at random, or modifying the parameters to be
closer to those of the donor. Following the inheritance procedure, we apply random mutations to
the parameters. The mutation procedure is given in Algorithm 4. It multiplies each parameter by
a factor sampled uniformly at random from the range [1 − m, 1 + m] (we use m = 0.01), but
maintains caps for each of the parameters. The caps avoid the body-improving morphology from
diverging too far from the body-fixed morphology, and we impose upper and lower bounds on each
mutable parameter at ±10% of the parameter’s value in the body-fixed configuration.

13

Under review as a conference paper at ICLR 2019

Algorithm 4 Mutate

P set of mutable parameters in genotype
m mutation level
procedure MUTATE(P,m)

for mutable parameter pi in P do
bu upper bound for pi
bl lower bound for pi
r ∼ U(1−m, 1 +m)
pi ← pi · r
if pi > bu then

pi←bu
end if
if pi < bl then

pi←bl
end if

end for
end procedure

Figure 7: Selection of initial bodies for the body-improving population

7.1 BODY-IMPROVING GENOTYPE INITIALIZATION

The initial body-improving agent population is generated by sampling body configurations around
the body-fixed configuration. Specifically, a random genotype is generated by uniformly sampling a
value for each mutable parameter within the mutable parameter’s lower and upper bounds. Examples
of an initial population of bodies is show in Figure 7.

8 APPENDIX: SHAPLEY VALUE APPROXIMATION FOR BODY PARTS

Section 3.2 defines a cooperative game where the players are the body parts changes converting
the original unevolved body into the final evolved body. Given this game, one can in theory sim-

14

Under review as a conference paper at ICLR 2019

ple compute the Shapley value of this game using the formula in Section 1, to obtain the vector
φ = (φ1, . . . , φn), reflecting the fair contribution of each body change, taking into account the
interdependence and synergies between components.

To motivate the use of the Shapley consider a simple example, where there are three possible changes
that can be made to the body: a) increase the length of the leg, b) change the angle of the leg, and
c) change the size of the torso. Further suppose that the changes a and b in isolation each increase
the agent win-rate against a baseline from 50% to 56% (an increase of 6%), while applying c in
isolation increases the win-rate from 50% to 54% (an increase of 4%). Based solely on this, one
might claim that a and b are more impactful changes (as they increase the performance more, in
isolation). However, suppose that a and b are substitutes so that applying both changes a and b
only increases the win-rate to 56% (i.e. once one of these changes has been applied, applying the
other change does not further improve the win-rate). In contrast, while applying c in isolation only
increases performance by 4%, it is synergetic with a and b, so when combined with either a or b,
it improves performance by 5%; for instance, applying both a and c (or both b and c) result in a
win rate of 50% + 6% + 5% = 61%. Finally, applying all three changes (a,b,c) still achieves a
win-rate of 61%. As a and b are substitutes, their fair contribution should be lower than one would
assume based on applying changes in isolation. Similarly, as c complements the other changes, it
contribution should be higher than one would assume based on applying changes in isolation.

The Shapley value examines the average marginal contribution of components in all permutations,
as given in the table below. It would thus be 3% for a and b, and 4.67% for c (i.e. the fair impact of
c is higher than of a or b, when taking synergies into account).

permutation mc(a) mc(b) mc(c)
abc 0.06 0.0 0.05
acb 0.06 0.0 0.05
bac 0.0 0.06 0.05
bca 0.0 0.06 0.05
cab 0.06 0.0 0.04
cba 0.0 0.06 0.04
average(Shapley) 0.03 0.03 0.0467

Table 3: Shapley computation for hypothetical example

Section 3.2 analyzes the contribution of individual body changes using the Shapley value. It is based
on computing the Shapley value similarly to the computation in Table 3 for the simple hypothetical
example. Such a direct computation simply averages the marginal contribution of each component
across all permutations (as given in the formula for the Shapley value in Section 1). Although
this direct computation is straighforward, it is intractable in for two reasons. First, our definition
of the cooperative game in Section 3.2 uses the probability of a certain agent (with a hybrid body
and the evolved controller) beating another agent (with the original body and a baseline controller).
However, given a set S of body changes, we do not know the win probability of the agent with body
b(S) against the baseline agent. Second, the direct formula for the Shapley value in Section 1 is a
sum of r! components (each being a difference between v(A), v(B) for some two subsets of body
partsA andB) where r is the number of body changes. As we have 25 body components, as opposed
to the three components in the hypothetical example, this requires going over 25! permutations,
which is clearly computationally intractable.

To overcome the above problems we settle for approximating the Shapley value in the above game,
rather than computing it exactly. We estimate v(S) by generating m episodes where agent b(S)
competes against the baseline agent using our simulator, and use the proportion of these where b(S)
wins as an estimate of its win-rate (in our experiments we use m = 1000 episodes). We then
compute the Shapley value using a simple approximation method (Bachrach et al., 2010), which
samples component permutations, rather than iterating over all such permutations.

15

	Introduction
	Method
	Our Approach: Policy Optimization while Evolving Morphology (POEM)
	Controller (Policy Learner): RL Agents
	Evolutionary Procedure

	Experiments
	Comparing body-fixed Populations with Body-Evolving Population
	Identifying Influential Body Changes

	Conclusion
	Appendix: Ant Structure and Genotype
	Appendix: Formal Definition of Multi-Agent RL and Full Environment Specification
	Actions and Observations in our Environment

	Appendix: Full PBT Implementation details
	Body-improving Genotype Initialization

	Appendix: Shapley Value Approximation for Body Parts

