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ABSTRACT

Open-domain dialogue generation has gained increasing attention in Natural Lan-
guage Processing. Comparing these methods requires a holistic means of dialogue
evaluation. Human ratings are deemed as the gold standard. As human evaluation
is inefficient and costly, an automated substitute is desirable. In this paper, we
propose holistic evaluation metrics which capture both the quality and diversity
of dialogues. Our metrics consists of (1) GPT-2 based context coherence between
sentences in a dialogue, (2) GPT-2 based fluency in phrasing, and, (3) n-gram
based diversity in responses to augmented queries. The empirical validity of our
metrics is demonstrated by strong correlation with human judgments. We provide
the associated code, datasets and human ratings.

1 INTRODUCTION

1.1 AUTOMATED DIALOGUE EVALUATION

Learning to communicate is a key capacity of intelligent agents. Research on enabling a machine
to have meaningful and natural conversation with humans plays a fundamental role in developing
artificial general intelligence, as can be seen in the formulation of Turing test (Turing, 1950). Re-
cently open-domain or non-task-oriented dialogue systems have attracted a surge of research interest
(Bessho et al., 2012; Sordoni et al., 2015; Shang et al., 2015; Vinyals & Le, 2015; Serban et al., 2016;
Ghazvininejad et al., 2018; Serban et al., 2017). Moreover, dialogue generation has a wide range of
industrial applications such as Microsoft’s Xiaoice and Baidu’s Dumi.

Evaluating models of dialogue generation in an efficient manner poses a significant challenge in
developing dialogue systems. The prevalent method of dialogue evaluation is human-based rating
under a given rubric. This method of evaluation is deemed impracticable, when various variations
in the model and sets of hyperparameters are needed. These drawbacks may hinder the research
progress and render the human evaluation approach not scalable.

Previous automatic evaluation metrics generally focus on the quality of the dialogue generation (Tao
et al., 2018; Ghazarian et al., 2019). In this work, we propose holistic metrics which considers both
the quality and diversity of generated dialogues. Specifically, we consider (1) context coherence
of a dialogue (i.e., the meaningfulness of a response within the prior context of the dialogue), (2)
language fluency of generated responses (i.e., the quality of phrasing relative to a human native
speaker), and, (3) response diversity of a set of generated responses (i.e., the variety in meaning
and word choice of responses). A strong language model such as GPT-2 (Radford et al., 2019)
naturally captures (1) and (2). Therefore, we propose to recruit and fine-tune GPT-2 as a measure
of quality. Moreover, we utilize n-gram based entropy to capture (3). Specifically, we propose to
measure response diversity under augmented queries with controlled diversity. Two such augmen-
tation strategies are considered. Finally, extensive human evaluations are conducted to substantiate
the validity of our proposed metrics.

1.2 PRIOR ART

Evaluation metrics based on heuristics have been shown to align well with human judgments and
widely applied in various language generation tasks. For machine translation, BLUE (Papineni et al.,
2002) computes n-gram precision, whereas METEOR (Banerjee & Lavie, 2005) takes into account
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both precision and recall. For summarization, ROUGE (Lin, 2004) also considers both precision
and recall by calculating F-measure. These n-gram based metrics are well-suited for the genera-
tion tasks that are more source-determined or low conditional entropy such as translation, image
captioning, and summarization. Some dialogue studies adopted these metrics to evaluate the qual-
ity of generated conversation responses (Ritter et al., 2011; Su et al., 2018; Sordoni et al., 2015).
They nevertheless are not suitable for open-ended generations or high conditional entropy task like
dialogue generation where a diverse range of generations are acceptable conditional on a query. In-
deed, Liu et al. (2016) conduct extensive empirical studies on these metrics (e.g., BLEU, METEOR,
and ROUGE) to test their effectiveness on evaluating dialogue generation and find limited relation
between these automatic metrics and human judgments.

Context of Conversation
Speaker A: Hey, what do you want to do tonight?
Speaker B: Why dont we go see a movie?
Model Response
Nah, lets do something active.
Reference Response
Yeah, the film about Turing looks great!

Table 1: An example of low BLEU score and low semantic similarity between model response and
reference response while the generated response appears reasonable within the dialogue.

The word-overlap metrics (e.g., BLUE) fail to capture the semantic similarity between model and
reference responses. The following works leverage the distributed representation learned in neu-
ral network models to capture semantic similarity among context, model response, and reference
response. Lowe et al. (2017) collect a dataset of human scores and train a hierarchical recurrent
neural network (RNN) to predict human-like scores to input responses given the context, resulting
in an automatic metric that has a medium level correlation with human judgments. Obtaining this
metric however requires a large dataset of human-annotated scores, thus rendering this approach
less flexible and extensible. Tao et al. (2018) proposes a referenced metric and unreferenced metric
blended evaluation routine (RUBER) for open-domain dialogue systems. This blended metric is a
combination of two metrics. A referenced metric measures the similarity between model-generated
and reference responses using word-embeddings. An unreferenced metric captures the relevance
between the query and response. It is obtained by training a neural network classifier to determine
whether a response is appropriate. The positive examples are the references, while the negative ex-
amples are the reference responses randomly chosen from the dataset, hence avoiding the need of
human-annotated data. After training, the softmax score is utlized to measure whether the gener-
ated response is coherent with the query. Attempting to improve RUBER, Ghazarian et al. (2019)
explores to use contextualized embeddings from BERT. The BERT-based unreferenced metric im-
proves over the word-embedding-based RUBER unreferenced metric. Interestingly, they show that
the combined metric has a reduced correlation with human judgments than the unreferenced metric
alone. Although this finding is counterintuitive, it is consistent with the characteristics of open-
domain dialogue that a range of diverse responses are reasonable given a query. Hence a response
can be acceptable even if it does not align well with the reference either in terms of word-overlap or
semantic embedding. See Table 1 for an example.

Prior art on automatic metrics focuses on the quality, mostly the relevance to the query, of the gener-
ated responses. A good evaluation metric should not only measure the quality of generation, but also
the diversity of generation, which is especially important for open-ended tasks like dialogue or story
generation (Hashimoto et al., 2019). The current work proposes metrics to holistically evaluate the
quality and diversity of open-domain dialogue generation. One key component of dialogue response
generation is its coherence to the query as explored in Tao et al. (2018) and Ghazvininejad et al.
(2018). Prior work measures the coherence based on the Softmax score of a trained binary classi-
fier. Here we explore an alternative approach based on language modeling (Bengio et al., 2003). A
language model can naturally capture the coherence of the response to the query without resorting
to an ad-hoc classifier. In particular, the query coherence metric is computed as the conditional
probability of the response given the query, which reflects whether the response appropriately fol-
lows the query under a language model. We adopt a transfer learning approach to obtain a powerful
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language model. Besides coherence, a good response should be fluent. Fluency is often measured
by a language model (Holtzman et al., 2018; Xu et al., 2018). We define the response fluency score
as negative perplexity of generated responses.

While the aforementioned metrics attempt to measure the quality of text generation, some n-gram
based metric has also been utilized to measure diversity. Mou et al. (2016) and Serban et al. (2017)
compute unigram entropy across all generated utterances to measure the diversity. This metric might
be an improper metric for diversity since the generated utterances given various queries are gener-
ally diverse. In our experiments, we observe constantly high diversity in terms of human ratings
and n-gram based entropy. Instead we approach diversity evaluation of a dialogue model with con-
trolled queries, whereby we control the diversity of the queries while evaluating the diversity of the
responses. Controlling query diversity involves minimizing diversity in both meaning and word use
and avoiding feeding the dialogue models identical inputs. A dialogue model with poor diversity
always generates responses with the same phrases and words, whereas an ideal model produces
varying words and sentence structures. The controlled queries are generated by augmenting the
original query with sentences close in meaning and slightly different in word use. For the purpose
of generality, we propose WordNet substitution and Conditional Text Generator to generate con-
trolled queries. The n-gram entropy across the responses given the controlled queries is deemed as
a diversity measure.

1.3 CONTRIBUTIONS

In this work, we propose a metric to holistically evaluate open-dialogue models by taking into con-
sideration both quality and diversity of generated dialogues. Our contributions are summarized
below.

• Both context coherence and response fluency (quality metrics) are naturally captured by
metrics based on a strong language model. Empirically, we demonstrate that the language
model based metrics clearly outperform previous relevant metrics.

• In view of the complexity of diversity evaluation, we propose two effective approaches to
generate augmented utterances with controlled diversity: word substitution and text gener-
ator with k-best decoder. Our experiments show that the diversity metric strongly correlates
with human judgments on the response diversity. Moreover, our proposed datasets signif-
icantly improve the agreement between human evaluation, leading to a more accurate and
straightforward human annotation.

• We release the datasets, human ratings and implementation of the metric as open-source
contribution to pave the way towards further research.

2 METRICS

2.1 CONTEXT COHERENCE

Language models, which predict the next token given previous tokens, naturally capture the coher-
ence between sentences and particularly the dialogue query and response in our case. GPT-2 (Rad-
ford et al., 2019) is a large-scale pre-trained language model based on the transformer architecture
(Vaswani et al., 2017). It is trained on a vast amount of diverse data and demonstrates impressive text
generation capabilities. In order to better capture the dependence between the queries and responses,
GPT-2 can be fine-tuned on the dialogue dataset of interest.

Suppose a query q contains tokens {qt : t = 1, ..., Tq} and a response r has tokens {rt : t =
1, ..., Tr}. Let P denote the fine-tuned GPT-2, then the context coherence is defined as the log-
likelihood of the response conditional on the the query normalized by the length of the response
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length:

craw(r|q) =
1

Tr
log

P (q, r)

P (q)

=
1

Tr
[

Tq∑
t

logP (qt|q<t) +

Tr∑
t

logP (rt|r<t, q)−
Tq∑
t

logP (qt|q<t)]

=
1

Tr

Tr∑
t

logP (rt|r<t, q).

(1)

Note that craw(r|q) is some negative number and unbounded from below. A single value is then hard
to explain absolutely and can only be intepreted relative to other values. Also, the unboundedness
renders it prone to extreme values. Hence, a normalized score is proposed instead. Since the score
distribution varies as a function of the dataset, the lower bound is defined as 5th percentile, denoted
as c5th, instead of some arbitrary value. Then the normalized score, c(r|q), is

c(r|q) = max(c5th, craw(r|q))− c5th
−c5th

, (2)

which ranges from 0 to 1.

2.2 RESPONSE FLUENCY

To capture the fluency of responses, we also adopt the pretrained language model, GPT-2. In partic-
ular, the raw response fluency score, fraw(r), is defined as,

fraw(r) =
1

Tr

Tr∑
t

logP (rt|r<t). (3)

Due to the negativeness and unboundedness of the raw score, a normalized version, f(r), similar to
the normalized context coherence score is proposed,

f(r) =
max(f5th, fraw(r))− f5th

−f5th
. (4)

2.3 RESPONSE DIVERSITY

We measure response diversity utilizing augmented queries with controlled diversity. Controlling
query diversity involves minimizing diversity in both meaning and word use and avoiding feeding
the dialogue models identical inputs. We thus aim to augment the original query with sentences
close in meaning and slightly different in word use. To achieve so, two augmentation approaches
are proposed: (1) WordNet Substitution (WS) and (2) Conditional Text Generator (CTG).

WordNet Substitution (WS) is word-level manipulation method suitable for both single-turn and
multi-turn datasets. It is achieved by first using Part-Of-Speech (POS) tagger to tag tokens in a
query. Then four augmented inputs are generated by substituting verbs, nouns, adjectives & adverbs,
or all of the above with synonyms in WordNet.

Different from WS, Conditional Text Generator (CTG) is an approach to testing language diversity
using multi-turn datasets. It requires a sequence-to-sequence or a transformer model to produce
augments conditioned on the context, which is defined as the prior utterance history to the selected
query. For instance, suppose {u1, ..., ut−1} denotes the utterance history and ut indicates the query
to be augmented, then the top-5 beams, u(1)

t , ..., u
(5)
t , from the CTG model with the concatenated

utterance history [u1; ...;ut−1] is input into a model to be evaluated.

Given a set of augmented queries for the ith query with controlled diversity, the responses, Ri, are
generated by the model under test. Then n-gram entropy for the ith sample is computed as,

di = −
1

|Ri|
∑
w∈Ri

log2 p(w) (5)
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where p is the n-gram probability inRi. The diversity metric is then defined as the averaged entropy
over the dataset,

d =
1

N

N∑
i=1

di. (6)

3 EXPERIMENTS

3.1 DATASET

To facilitate comparison with prior work (Ghazarian et al., 2019), the DailyDialog dataset (Li et al.,
2017) is adopted for the empricial analysis of our proposed metrics. This dataset contains 13,118
high-quality multi-turn dialogue dataset. The dialogue is split into query-response pairs with a
42,000 / 3,700 / 3,900 train-test-validation split.

3.2 RESPONSE GENERATION

A sequence-to-sequence (seq2seq) with attention (Bahdanau et al., 2014) was trained with the train
and validation partitions to generate dialogue responses. The implementation in OpenNMT (Klein
et al., 2017) was used to train the model. The seq2seq consists of a 2-layer LSTM with 500 hidden
units on both the encoder and decoder. The model was trained with SGD and learning rate of 1.
To obtain responses on a wide spectrum of quality and diversity, we sample the data with top-k
sampling where k = {1, 50, 500}.

3.3 LANGUAGE MODEL FINE-TUNING

The base GPT-2 model with 12 layers was used to compute our metrics. We also experimented with
the medium GPT-2 with 24 layers and found that the results were generally the same. And larger
models (the 36- and 48- layers GPT-2) might pose computational difficulty for some researchers
and thus were not considered. The GPT-2 model was fine-tuned on the training and validation data.
In fine-tuning, the query and response were concatenated together as a single sentence to feed into
GPT-2. The perplexity of the fine-tuned language model on the test dataset was 16.5.

3.4 CONTROLLED QUERY GENERATION

WordNet substitution and conditional text generator were used to augment diversity-controlled
queries. The Stanford POS tagger (Toutanova & Manning, 2000) and the WordNet by Miller (1998)
were utilized to do WordNet substitution. As for conditional text generator, we trained an Open-
NMT Transformer on the training and validation splits for query augmentation, which was applied
to the testing dataset to augment the query with the top-4 beams.

3.5 METRIC EVALUATION

To assess validity of our proposed metrics, we utilize Amazon Turk to collect high quality human
ratings from 10 subjects. For each metric, we select a set of generated query-response pairs (or
responses only) to be presented to humans and each datapoint is to be rated from 1 to 5, with 1 being
the worst and 5 being the best in generation quality corresponding to that metric. On both Context
Coherence and Fluency metrics, we select 200 datapoints with diverse range of generation quality.
There are 200 query-response pairs to be rated for Context Coherence and 200 responses to be rated
for Fluency. For Diversity metric, we select 100 datapoints, totaling 500 responses, to be rated in
groups of 5 all of which are conditioned on the controlled inputs generated by a CTG given the same
context. After Amazon Turk results are collected, we then compute Pearson Correlation between
our evaluation metrics and human ratings to assess the validity of our metric and selected datasets.
We normalize the human rating scores from 0 to 1.
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Query Generated Reply Human Score RUBER Ours
Of course. A two-week paid vaca-
tion a year, a five-day workweek.

So, if I get a margin card,
I could take a margin card for you
to travel to a company as soon as
possible.

0.20 0.97 0.19

Table 2: Case study. Both our coherence metric and the human evaluation agreed that the generated
response is not coherent with the given query, while RUBER indicated this reply is coherent.

4 RESULTS

4.1 CONTEXT COHERENCE

Table 3 demonstrates the Pearson and Spearman correlations between the proposed context coher-
ence metric and human judgments. Also, the results were compared to the previous best-performing
automatic metric, RUBER with BERT embeddings (Ghazvininejad et al., 2018). Clearly both our
language model based coherence metric show higher correlation with human judgments than the
classifier-based metric, RUBER.

In addition, we compared the proposed metric with a similar metric based on a GPT-2 language
model without fine-tuning on the target dataset. The fine-tuned version improved the results, indi-
cating that fine-tuning on the dialogue dataset enables the language model better capture the depen-
dency between the queries and replies. Interestingly, even the metric based on the language model
without fine-tuning correlated with human ratings stronger than RUBER.

We also examined the inter-rater reliability. It is computed by holding out the ratings of one rater at
a time, calculating its correlation with the average of other rater’s judgments, and finally averaging
across and taking the maximum all held-out correlation scores. The inter-rater reliability results also
support the strong performance our proposed context coherence metric since the correlation between
the automatic metric and human evaluation was close to the inter-rater correlations.

Table 2 displays a case study. Both our coherence metric and the human evaluation agreed that
the generated response is not coherent with the given query, while RUBER indicated this reply
is coherent. This might be because RUBER simply compares the embeddings of the query and
response and business travel related words in the query such as vacation, workweek and in the reply
such as travel, company make RUBER judge that they are similar.

Pearson Spearman
RUBER+BERT 0.47 0.51
GPT-2 w/o Fine-tune 0.59 0.65
GPT-2 w/ Fine-tune 0.67 0.76

Inter-Rater Mean 0.61 0.57
Max 0.91 0.87

Table 3: Correlation between RUBER+BERT and context coherence metric c(r|q) with human
ratings (without and with fine-tuning of GPT-2).

4.2 RESPONSE FLUENCY

Our findings show that the proposed fluency metric f(r) is highly correlated with human judgments.
Table 4 summarizes the relation between our proposed fluency metric and the human-ratings in
terms of Pearson and Spearman correlation. The importance of fine-tuning GPT-2 (as outlined in
Section 3.3) is evident. We observe an increase from 0.43 to 0.82 in Pearson correlation. In addition,
Figure 2 details the effect of fine-tuning. Notably, a correction of outliers occurs. Moreover, the
consistency of human ratings is demonstrated by high mean pair-wise correlations between pairs of
ratings.
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(a) GPT-2 w/o Fine-tune (b) GPT-2 w/ Fine-tune

Figure 1: Correlation between context coherence metric c(r|q) and human ratings without and with
fine-tuning of GPT-2.

Pearson Spearman
GPT-2 w/o Fine-tune 0.43 0.32
GPT-2 w/ Fine-tune 0.82 0.81

Inter-Rater Mean 0.70 0.70
Max 0.88 0.85

Table 4: Correlation between fluency metric f(r) and human ratings without and with fine-tuning
of GPT-2. Pairwise mean and max correlations of human ratings.

(a) GPT-2 w/o Fine-tune (b) GPT-2 w/ Fine-tune

Figure 2: Correlation between fluency metric f(r) and human ratings for GPT-2 without and with
fine-tuning.

4.3 RESPONSE DIVERSITY

Table 5 shows the evaluation of our generated datasets using WS and CTG. Unigram, bigram, and
trigram entropy are used to calculate responses’ diversity and are compared to human ratings in Pear-
son and Spearman Correlation. Note that automatic evaluations on our datasets consistently achieve
higher correlation compared to the baseline dataset. We also show our datasets evaluated using three
different diversity metrics in Figure 3. The figures show correlations between normalized human
ratings and corresponding n-gram entropy. A line of best-fit is drawn to indicate their correlations,
and for plotting purpose, each datapoint after normalization is added a random noise sampled from
N (0, 0.052). Clearly, WS and CTG Dataset show more clustered datapoints and slopes closer to 1
than our baseline dataset, a result consistent with the reported correlations.

Table 6 shows inter-rater Pearson Correlation, Spearman correlations, and variance in human ratings.
Interestingly, both WS Dataset and CTG Dataset display similarly high correlations, indicating that
raters generally agree with each other. WS Dataset is also lowest in Human Variance, suggesting
human raters are more certain about their ratings. Baseline Dataset, on the other hand, has poor
inter-rater correlations. This is most likely due to the uncontrolled nature of input sentences such that
outputs of evaluated models are generally diverse, making it difficult for humans to judge diversity
performance of the model. Furthermore, both of our datasets achieve scores close to that of their
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1-Gram Entropy 2-Gram Entropy 3-Gram Entropy
Pearson Spearman Pearson Spearman Pearson Spearman

Baseline Dataset 0.46 0.32 0.45 0.33 0.43 0.33
WS Dataset 0.77 0.69 0.76 0.67 0.71 0.61
CTG Dataset 0.72 0.72 0.72 0.72 0.66 0.66

Table 5: Comparison between the Baseline Dataset and our generated datasets (WS Dataset and CTG
Dataset) using Spearman Correlations, Pearson Correlations and variance with collected human
ratings.

Inter-Rater Pearson Inter-Rater Spearman Human Variancemean max mean max
Baseline Dataset 0.21 0.51 0.23 0.65 0.93
WS Dataset 0.78 0.89 0.78 0.92 0.68
CTG Dataset 0.78 0.86 0.79 0.81 0.69

Table 6: Comparison between the Baseline Dataset and our generated datasets (WS Dataset and
CTG Dataset) using Inter-Rater Spearman and Inter-Rater Pearson correlations.

(a) Baseline w/ 1-gram Entropy (b) Baseline w/ 2-gram Entropy (c) Baseline w/ 3-gram Entropy

(d) WS w/ 1-gram Entropy (e) WS w/ 2-gram Entropy (f) WS w/ 3-gram Entropy

(g) CTG w/ 1-gram Entropy (h) CTG w/ 2-gram Entropy (i) CTG w/ 3-gram Entropy

Figure 3: Correlation between n-gram entropy and human ratings on the baseline dataset, WS
Dataset and CTG Dataset.

corresponding mean inter-rater correlations, indicating that the evaluation metric on our datasets can
reveal diversity of a dialog system consistent with humans.
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5 CONCLUSION

This paper provides a holistic and automatic evaluation method of open-domain dialogue models.
In contrast to prior art, our means of evaluation captures not only the quality of generation, but also
the diversity of responses. We recruit GPT-2 as a strong language model to evaluate the fluency and
context-coherency of a dialogue. For diversity evaluation, the diversity of queries is controlled while
the diversity of responses is evaluated by n-gram entropy. Two methods for controlled diversity are
proposed, WordNet Substitution and Conditional Text Generator. The proposed metrics show strong
correlation with human judgments.

We are providing the implementations of our proposed metrics, associated fine-tuned models and
datasets to accelerate the research on open-domain dialogue systems. It is our hope the proposed
holistic metrics may pave the way towards comparability of open-domain dialogue methods.
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