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ABSTRACT

The advent of big data brings with it data with more and more dimensions and thus
a growing need to be able to efficiently select which features to use for a variety
of problems. While global feature selection has been a well-studied problem for
quite some time, only recently has the paradigm of instance-wise feature selection
been developed. In this paper, we propose a new instance-wise feature selection
method, which we term INVASE. INVASE consists of 3 neural networks, a selec-
tor network, a predictor network and a baseline network which are used to train
the selector network using the actor-critic methodology. Using this methodology,
INVASE is capable of flexibly discovering feature subsets of a different size for
each instance, which is a key limitation of existing state-of-the-art methods. We
demonstrate through a mixture of synthetic and real data experiments that IN-
VASE significantly outperforms state-of-the-art benchmarks.

1 INTRODUCTION

High-dimensional data is becoming more readily available, and it brings with it a growing need to be
able to efficiently select which features to use for a variety of problems. When doing predictions, it
is well known that using too many variables with too few samples can lead to overfitting, which can
significantly hinder the performance of predictive models. In the realm of interpretability, the large
dimensionality of the data is often too much information to present to a human who may be using the
machine learning model as a support system. Understanding which features are most relevant to an
outcome or to a model output is an important first step in improving predictions and interpretability
and many works exist that tackle feature selection on a global level. However, in the heterogeneous
data we typically encounter, the prediction made by a model (and indeed the true label) may rely on a
different subset of the features for different subgroups within the data [14]. In this paper we propose
a novel instance-wise feature selection method, INVASE (INstance-wise VAriable SElection), which
attempts to learn which subset of the features is relevant for each sample, allowing us to display the
minimal information required to explain each prediction and also to reduce overfitting of predictive
models.

Discovering a global subset of relevant features for a particular task is a well-studied problem and
there are several existing methods for solving it such as Sequential Correlation Feature Selection
[11], Mutual Information Feature Selection [21], Knockoff models [3], and more [10; 16]. However,
global feature selection suffers from a key limitation - the features discovered by global feature
selection are the same for all samples. In many cases, in particular when populations are highly
heterogeneous, the relevant features may differ across samples [33; 32]. For instance, different
patient subgroups have different relevant features for predicting heart failure [14]. Instance-wise
feature selection methods such as [4; 27] instead try to discover the features that are relevant for
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each sample. When the goal is to provide an interpretable explanation of the predictions made, a
key challenge is in ensuring that we do not over-explain by providing too much information (i.e.
choosing too many features). Naturally, by performing feature selection on an individualized level
we are able to select features that are more relevant to each sample, rather than having to choose
the top k features globally, which may not explain the predictions for some samples very well, but
simply perform well on average across all samples.

In this paper, we propose a novel instance-wise feature selection method which we term INVASE.
We draw influence from actor-critic models [22] to solve the problem of backpropagating through
subset sampling. Our model consists of 3 neural networks: a selector network, a predictor network
and a baseline network. During training, each of these are trained iteratively, with the selector
network being trained to minimize a Kullback-Leibler (KL) divergence between the full conditional
distribution and the selected-features-only conditional distribution of the outcome. Our model is
capable of discovering a different number of relevant variables for each sample which is a key
limitation in existing instance-wise approaches (such as [4]). We show significant improvements
over the state-of-the-art in both synthetic data and real-word data in terms of true positive rates,
false discovery rates, and show better predictive performance with respect to several prediction
metrics. Our model can also be easily extended to handle both continuous and discrete outputs and
time-series inputs (see the Appendix for details).

1.1 RELATED WORKS

There are many existing works on global variable selection (see [10] for a good summary paper).
[21] and [11] use max-dependency min-redundancy criteria [17] with mutual information and Pear-
son correlation, respectively. [3] uses multiple hypothesis testing for global variable selection. As
noted above, these global selection methods are not capable of learning sample-specific relevance.

Instance-wise variable selection is also closely related to model interpretation methods. Some pre-
vious works are based on backpropagation from the output of the predictive model to the input
variables [29]. DeepLIFT [27] decomposes the output of the neural network on a reference input to
compute the contribution of each input variable. However, both methods need white-box access to
the pre-trained predictive models to compute the gradient and decomposition. [2] approximates the
predictive models using a Parzen window approximator when there is only black-box access to the
predictive models. Some other works are based on input perturbation such as [1], [15], [30] and [5].
[18] uses Shapley values to compute the variable importance, and [24] uses locally linear models to
explain the linear dependency for each sample. [19] tries to interpret tree ensemble models using
Shapley values but cannot generalize to other predictive models such as neural networks.

Our work is most closely related to L2X (Learning to Explain) [4]. However, there are 3 key dif-
ferences between our work and theirs. In L2X, they try to maximize a lower bound of the mutual
information between the target Y and the selected input variables XS . In contrast, we try to mini-
mize the KL divergence between the conditional distributions Y |X and Y |XS . In order to be able to
backpropagate through subset sampling, L2X use the Gumbel-softmax trick [13] to approximately
discretize the continuous outputs of the neural network. In our work, we use methods from actor-
critic models [22] to bypass backpropagation through the sampling and instead use the predictor
network to provide a reward to the selector network. Finally, due to the Gumbel-softmax used in
L2X, the number of variables to be detected must be fixed in advance and is necessarily the same for
every sample. The actor-critic methodology used in our model has no such limitations and so we are
able to flexibly select a different number of relevant variables for each sample and instead induce
sparsity using an l0 penalty term. In fact, using the actor-critic methodology allows us to directly
use the l0 penalty term (which is not differentiable and therefore not practical to use in general). A
summary table highlighting the key features of all of the related works can be found in the Appendix.

2 PROBLEM FORMULATION

Let X = X1 × ... × Xd be a d-dimensional feature space and Y = {1, ..., c} be a discrete label
space1. Let X = (X1, ..., Xd) ∈ X and Y ∈ Y be random variables with joint density (or mass)
p and marginal densities (or masses) pX and pY respectively. We will refer to s ∈ {0, 1}d as the

1In this paper we focus on classification; we discuss an extension of our model to regression in the Appendix.
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selection vector, where si = 1 will indicate that variable i is selected, and si = 0 will indicate
that variable i is not selected. Let ∗ be any point not in any of the spaces X1, ...,Xd and define
X ∗i = Xi ∪{∗} and X ∗ = X ∗1 × ...×X ∗d . Given x ∈ X we will write x(s) to denote the suppressed
feature vector defined by

x
(s)
i =

{
xi if si = 1

∗ if si = 0

so that ∗ represents that a feature is not selected.

In the global feature selection literature, the goal is to find the smallest s (i.e. the one with fewest 1s)
such that E(Y |X(s)) = E(Y |X), or equivalently such that the conditional distribution of Y given
X(s) is the same as Y given all of X. Note that this definition is given fully in terms of random
variables, rather than realizations of those random variables.

In contrast, our problem necessarily needs to be defined in terms of realizations since we are aiming
to select features for a given realization. We will write x to denote realizations of the random
variable X. Then we formalize our problem as one of finding a selector function, S : X → {0, 1}d
such that for almost every x ∈ X (w.r.t. pX ) we have

(Y |X(S(x)) = x(S(x)))
d.
= (Y |X = x) (1)

where d.
= denotes equality in distribution and S(x) is minimal (i.e. fewest 1s) such that (1) holds.

We suppose that we have a dataset D = {(xj , yj)}nj=1 consisting of n i.i.d. realizations of the
pair (X, Y ).2 Note that Y can be viewed as having either come from a dataset, in which case the
problem is of selecting predictive features, or as having come from a predictive model, in which
case the problem is of explaining the model’s predictions.

2.1 OPTIMIZATION PROBLEM

In order to learn a suitable selector function, we transform the constraint (1) into a soft constraint
using the Kullback-Leibler (KL) divergence which, for random variables W and V with densities
pW and pV is defined as

KL(W ||V ) = E
[
log

(
pW (W )

pV (W )

)]
.

We define the following loss for our selector function S

L(S) = Ex∼pX

[
KL(Y |X = x||Y |X(S(x)) = x(S(x))) + λ||S(x)||

]
(2)

where || · || simply denotes the number of non-zero entries of a vector (or equivalently in this case,
the number of 1s) and λ is a hyper-parameter that trades off between the constraint in (1) and the
number of selected features. The KL divergence in (2) can be rewritten as

KL(Y |X = x||Y |X(S(x)) = x(S(x))) = Ey∼Y |X=x

[
log

(
pY (y|x)

pY (y|x(S(x)))

)]
= Ey∼Y |X=x

[
log(pY (y|x))− log(pY (y|x(S(x))))

]
=

∫
Y
pY (y|x)

[
log(pY (y|x))− log(pY (y|x(S(x))))

]
dy

where pY (·|·) denotes the appropriate conditional densities of Y . We will write

l(x, s) =

∫
Y
pY (y|x)

[
log(pY (y|x))− log(pY (y|x(s)))

]
dy (3)

so that our final loss can be written as

L(S) = Ex∼pX [l(x, S(x)) + λ||S(x)||] (4)

where || · || denotes the l0 (pseudo-)norm.
2We will occasionally abuse notation and write yi to denote the ith element of the one-hot encoding of y,

though the context should make it clear when this is the case.
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3 PROPOSED MODEL

There are two main challenges in minimizing the loss in (4). First, the output space of the selector
function ({0, 1}d) is large - its size increases exponentially with the dimension of the feature space;
thus a complete search is impractical in high dimensional settings (and it should be noted that it is
in high dimensional settings where feature selection is most necessary). Second, we do not have
access to the densities pY (·|x(S(x))) and pY (y|x) required to compute (4).

3.1 LOSS ESTIMATION

To approximate the densities in (3), we introduce a pair of functions fφ : X ∗ × {0, 1}d → [0, 1]c

parametrized by φ and fγ : X → [0, 1]c parametrized by γ that will estimate pY (·|x(S(x))) and
pY (·|x) respectively.

3.1.1 PREDICTOR NETWORK

We refer to fφ as the predictor network. This will take as input a suppressed3 feature vector x(s)

and its corresponding selection vector s and will output a probability distribution (using a softmax
layer) over the c-dimensional output space.

fφ is trained to minimize the cross entropy loss given by

l1(φ) = −E(x,y)∼p,s∼πθ(x,·)

[ c∑
i=1

yi log(fφi (x(s), s))
]

where yi is the ith component of the one-hot encoding of y and πθ is the distribution induced by
our selector network which will be defined in the following section. fφ is implemented as a fully
connected neural network4.

3.1.2 BASELINE NETWORK

We refer to fγ as the baseline network, which is standard in the actor-critic literature for variance
reduction. fγ is implemented as a fully connected neural network and is trained to minimize

l3(γ) = −E(x,y)∼p

[ c∑
i=1

yi log(fγi (x))
]
.

For fixed φ, γ we define our loss estimator, l̂, by

l̂(x, s) = −

[
c∑
i=1

yi log(fφi (x(s), s))−
c∑
i=1

yi log(fγi (x))

]
. (5)

3.2 SELECTOR FUNCTION OPTIMIZATION

We approximate the selector function S : X → {0, 1}d by using a single neural network, Ŝθ : X →
[0, 1]d parameterized by weights θ, that outputs a probability for selecting each feature (i.e. the ith
component of Ŝθ(x) will denote the probability with which we select the ith feature). The selector
network induces a probability distribution over the selection space ({0, 1}d), with the probability of
a given joint selection vector s ∈ {0, 1}d being given by5

πθ(x, s) = Πd
i=1Ŝ

θ
i (x)si(1− Ŝθi (x))1−si .

3When implemented we set ∗ = 0 and include the selection vector to differentiate this from the case xi = 0.
4fφ, fγ and Ŝθ could also be implemented as CNNs or RNNs, when appropriate.
5Note that, when d is large, this becomes vanishingly small, however, πθ appears in our loss only via its log

and so in practice this is not a problem.
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Figure 1: Block diagram of INVASE. Instances are fed into the selector network which outputs
a vector of selection probabilities. The selection vector is then sampled according to these proba-
bilities. The predictor network then receives the selected features and makes a prediction and the
baseline network is given the entire feature vector and makes a prediction. Each of these networks
are trained using backpropagation using the real label. The loss of the baseline network is then
subtracted from the prediction network’s loss and this is used to update the selector network.

Using this, we define the following loss for our selector network

l2(θ) = E(x,y)∼p

[
Es∼πθ(x,·)

[
l̂(x, s) + λ||s||0

]]
=

∫
X×Y

p(x, y)

 ∑
s∈{0,1}d

πθ(x, s)
(
l̂(x, s) + λ||s||0

) dxdy.

Taking the gradient of this loss with respect to θ gives us

∇θl2(θ) =

∫
X×Y

p(x, y)

 ∑
s∈{0,1}d

∇θπθ(x, s)
(
l̂(x, s) + λ||s||0

) dxdy

=

∫
X×Y

p(x, y)

 ∑
s∈{0,1}d

∇θπθ(x, s)
πθ(x, s)

πθ(x, s)
(
l̂(x, s) + λ||s||0

) dxdy

=

∫
X×Y

p(x, y)

 ∑
s∈{0,1}d

∇θ log πθ(x, s)πθ(x, s)
(
l̂(x, s) + λ||s||0

) dxdy

= E(x,y)∼p

[
Es∼πθ(x,·)

[(
l̂(x, s) + λ||s||0

)
∇θ log πθ(x, s)

]]
.

We update each of Ŝθ, fφ and fγ iteratively using stochastic gradient descent. Pseudo-code of
INVASE is given in Algorithm 1 and a block representation of INVASE can be found in Fig. 1.

4 EXPERIMENTS

In this section, we quantitatively evaluate INVASE against various state-of-the-art benchmarks on
both synthetic and real-world datasets. We evaluate our performance both at identifying ground
truth relevance and at enhancing predictions. We compare our model with 4 global variable selection
models: Knockoffs [3], Tree Ensembles (Tree) [7], Sequential Correlation Feature Selection (SCFS)
[11], and LASSO regularized linear model; and 3 instance-wise feature selection methods: L2X
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Algorithm 1 Pseudo-code of INVASE

1: Inputs: learning rates α, β > 0, mini-batch size nmb > 0, dataset D
2: Initialize parameters θ, φ, γ
3: while Converge do
4: Sample a mini-batch from the dataset (xj , yj)

nmb
j=1 ∼ D

5: for j = 1, ..., nmb do
6: Calculate selection probabilities

(pj1, ..., p
j
d)← Ŝθ(xj)

7: Sample selection vector
8: for i = 1, ..., d do

sji ∼ Ber(p
j
i )

9: Calculate loss

l̂j(xj , sj)← −

[
c∑
i=1

yji log(fφi (x
(sj)
j , sj))−

c∑
i=1

yji log(fγi (xj))

]

10: Update the selector network parameters θ

θ ← θ − α 1

nmb

nmb∑
j=1

(
l̂j(xj , sj) + λ||sj ||

)
∇θ log πθ(xj , sj)

11: Update the predictor network parameters φ

φ← φ− β 1

nmb

nmb∑
j=1

c∑
i=1

yji ×∇φ log(fφi (x
(sj)
j , sj))

12: Update the baseline network parameters γ

γ ← γ − β 1

nmb

nmb∑
j=1

c∑
i=1

yji ×∇γ log(fγi (xj))

[4], LIME [24], and Shapley [18]. The details of benchmark implementation can be found in the
appendix. Implementation of INVASE can be found at https://github.com/jsyoon0823/
INVASE.

4.1 SYNTHETIC DATA EXPERIMENTS

4.1.1 EXPERIMENTAL SETTINGS

For our first set of experiments, we use the same synthetic data generation models as in L2X [4]. The
input features are generated from an 11-dimensional67 Gaussian distribution with no correlations
across the features (X ∼ N (0, I)). The label Y is sampled as a Bernoulli random variable with
P(Y = 1|X) = 1

1+logit(X) , where logit(X) is varied to create 3 different synthetic datasets:

• Syn1: exp(X1X2)

• Syn2: exp(
∑6
i=3X

2
i − 4)

• Syn3: −10× sin 2X7 + 2|X8|+X9 + exp(−X10)

6In L2X they use a 10-dimensional Gaussian, we introduce X11 to act as a “switch” to create instance-wise
relevance. Experiments where instead the “switch” variable is one ofX1, ..., X10 can be found in the appendix.

7We also perform experiments using 100 features in the Appendix to demonstrate the scalability of our
method.
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In each of these datasets, the label depends on the same subset of features for every sample. To high-
light the capability of INVASE to detect instance-wise dependence, we generate 3 further synthetic
datasets as follows:

• Syn4: If X11 < 0, logit follows Syn1, otherwise, logit follows Syn2.
• Syn5: If X11 < 0, logit follows Syn1, otherwise, logit follows Syn3.
• Syn6: If X11 < 0, logit follows Syn2, otherwise, logit follows Syn3.

Note that in Syn4 and Syn5, the number of relevant features is different for different samples.

For each of Syn1 to Syn6 we draw 20,000 samples from the data generation model and separate each
into training (Dtrain = (xi, yi)10000i=1 ) and testing (Dtest = (xj , yj)10000j=1 ) sets. For each method
we try to find the top k relevant features for each sample (we set k = 4 for Syn1, Syn2, Syn3,
Syn4, Syn5 and k = 5 for Syn6), note, however, that k is not given as an input to INVASE (but
is necessary for other methods). The performance metrics we use are the true positive rate (TPR)
(higher is better) and false discovery rate (FDR)8 (lower is better) to measure the performance of
the methods when the focus is on discovery (i.e. discovering which features are relevant) and we
use Area Under the Receiver Operating Characteristic Curve (AUROC), Area Under the Precision
Recall Curve (AUPRC) and accuracy when the focus is on predictions.

4.1.2 DISCOVERY

Dataset Syn1 Syn2 Syn3 Syn4 Syn5 Syn6
Metrics (%) TPR FDR TPR FDR TPR FDR TPR FDR TPR FDR TPR FDR

INVASE 100.0 0.0 100.0 0.0 92.0 0.0 99.8 10.3 84.8 1.1 90.1 7.4
L2X 100.0 0.0 100.0 0.0 69.4 30.6 79.5 21.8 74.8 26.3 83.3 16.7

LIME 13.8 86.2 100.0 0.0 98.1 1.9 40.7 49.4 41.1 50.6 50.5 49.5
Shapley 60.4 39.6 93.3 6.7 90.9 9.1 65.2 31.9 62.9 33.7 71.2 28.8

Knockoff 10.0 70.0 8.7 36.2 81.2 17.5 38.8 35.1 41.0 51.1 56.6 42.1
Tree 100.0 0.0 100.0 0.0 100.0 0.0 54.7 39.0 56.8 37.5 60.0 40.0

SCFS 23.5 76.5 39.5 60.5 78.3 22.0 48.9 52.4 42.4 51.2 56.1 43.9
LASSO 19.0 81.0 39.8 60.2 78.3 21.7 49.9 50.9 45.5 48.2 56.4 43.6

Table 1: Relevant feature discovery results for Synthetic datasets with 11 features

As demonstrated by Table 1, our method is capable of detecting relevant features on a global level
(Syn1, Syn2 and Syn3) as well as on an instance-wise level (Syn4, Syn5 and Syn6) outperforming
all other methods in both cases (both global and instance-wise methods). The particularly poor
performance of some global feature selection methods in Syn1, Syn2 and Syn3 (where there is no
instance-wise relevance) is due to the non-linearity of the relationship between features and labels,
further details can be found in the Appendix.

The results for Syn4, Syn5 and Syn6 demonstrate that INVASE is capable of detecting a different
number of relevant features for each sample when necessary - the performance improvement over
L2X is greater in Syn4 and Syn5 than Syn6. In particular, in Syn4, L2X is forced to overselect
features when X11 < 0 and underselect when X11 ≥ 0 thus resulting in higher FDR and lower
TPR, respectively. To highlight this, in Table 2 we report the group specific FDR and TPR on Syn4
and Syn5 when setting k = 3, 4, 5, where Group 1 refers to samples with X11 < 0 and Group 2 to
samples with X11 ≥ 0.

For k = 3 in Syn4, we see that INVASE and L2X have comparable FDR in Group 1, since the total
number of relevant features for each sample is 3 (X1, X2, X11). However, when we increase k, we
see that the FDR increases for L2X as it is forced to select more than 3 features, which necessarily
means that the FDR must be at least 40% even if L2X was finding the relevant features perfectly.
On the other hand, for Group 2 we see that the TPR is low for k = 3 since necessarily, L2X cannot
possibly select all of the 5 relevant features. INVASE, however, is able to select the correct number
in both and hence enjoys low FDR and high TPR.

8Definitions of TPR and FDR can be found in the Appendix.
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Syn5 reinforces the conclusions we drew for L2X in Syn4. Interestingly, though, for INVASE, we
found that X11 was almost never selected for Group 1 in Syn5. We believe this is because the
lack of overlap between the relevant features for each group means that the predictor network can
essentially learn two separate networks - one for each group. This is because it is possible to create
two subnetworks with non-overlapping weights that each take as input the features of a given group.
X11 is therefore unnecessary for prediction. Note, however, that X11 is highly relevant for the
selector network in deciding which features to pass on and so it is not true that X11 isn’t relevant,
but simply that the selector network does not need to “pass on” its relevance to the predictor network.
To investigate this further, results for settings where the features overlap between groups (and so it
is not possible to disentangle the networks) can be found in the Appendix.

Datasets Syn4 Syn5
Group 1 2 1 2

Metrics (%) TPR FDR TPR FDR TPR FDR TPR FDR

INVASE 99.5 24.6 100.0 0.4 69.2 1.6 99.8 0.6

L2X (k = 3) 71.1 28.9 57.2 4.6 65.5 34.5 55.4 7.7
L2X (k = 4) 81.0 39.2 74.9 6.3 76.2 42.9 72.4 9.4
L2X (k = 5) 89.9 46.0 84.6 15.4 87.5 47.5 82.1 17.9

Table 2: Detailed comparison of INVASE with L2X in Syn4 and Syn5, highlighting the capability
of INVASE to select a flexible number of features for each sample. Group 1: X11 < 0, Group 2:
X11 ≥ 0

4.1.3 PREDICTION

In this experiment we analyze the effect of using feature selection as a pre-processing step for predic-
tion. We first perform feature selection (either instance-wise or global) and then train a 3-layer fully
connected network with Batch Normalization [12] in every layer (to avoid overfitting) to perform
predictions on top of the (feature-selected) data. In this setting we compare the two global fea-
ture selection methods (LASSO and Tree) and one instance-wise feature selection method (L2X).
Furthermore, we also compare with the predictive model without any feature selections (w/o FS)
and the predictive model with ground truth globally relevant features9 (with Global). In particular,
this allows us to demonstrate that the improvements in prediction performance are not just because
the global feature selection performed implicitly by INVASE is better than the other global feature
selection methods but are also due to the fact that we select features on an instance-wise level. Ex-
periments here are conducted on synthetic data with 100 features but the same labelling procedures
as above.

As can be seen in Table 3, there is a significant performance improvement when discarding all of
the irrelevant features (with Global). However, neither of the global feature selection methods (Tree
and Lasso) are capable of achieving this improvement. On the other hand, INVASE is capable of
achieving (and beating - in Syn4 and Syn6) this improvement, demonstrating its capability both at
selecting features globally better than existing methods but also at improving on global selection
with instance-wise selection (where relevant), to provide further improvements. On the other hand,
L2X performs worse than the global methods in Syn1-3, demonstrating an inability to perform even
global feature selection in this higher dimensional setting (this is supported by the high dimensional
discovery results in the Appendix), and in Syn4-6 is performing worse than with Global (which now
is not even optimal).

Furthermore, even though we include Batch Normalization to avoid overfitting, with a small number
of samples and high number of dimensions, the 3-layer fully connected network still suffers from
overfitting as demonstrated by the significant difference in performance between w/o FS and with
Global. This demonstrates the necessity of feature selection as a pre-processing step. Lastly, in
comparison to with Global, with INVASE achieves performance gains in Syn4 and Syn6. It quan-

9For example, in Syn1 the predictor network in the with Global setting is trained on only X1 and X2 and in
Syn4 it would be trained on X1, X2, X3, X4, X5, X6, X11.
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Dataset AUROC
w/o FS with Global with INVASE with Tree with L2X with LASSO

Syn1 .578±.004 .686±.005 .690±.006 .574±.101 .498±.005 .498±.006
Syn2 .789±.003 .873±.003 .877±.003 .872±.003 .823±.029 .555±.061
Syn3 .854±.004 .900±.003 .902±.003 .899±.001 .862±.009 .886±.003
Syn4 .558±.021 .774±.006 .787±.004 .684±.017 .678±.024 .514±.031
Syn5 .662±.013 .784±.005 .784±.005 .741±.004 .709±.008 .691±.024
Syn6 .692±.015 .858±.004 .877±.003 .771±.031 .827±.017 .727±.025

Dataset AUPRC
w/o FS with Global with INVASE with Tree with L2X with LASSO

Syn1 .567±.007 .690±.006 .694±.006 .577±.102 .498±.007 .499±.008
Syn2 .799±.005 .878±.005 .886±.004 .878±.004 .817±.031 .591±.037
Syn3 .861±.003 .905±.002 .907±.003 .904±.002 .860±.012 .890±.002
Syn4 .572±.019 .794±.006 .804±.004 .681±.031 .672±.025 .536±.025
Syn5 .665±.019 .796±.005 .797±.006 .765±.003 .719±.011 .680±.040
Syn6 .709±.018 .870±.005 .886±.004 .779±.027 .835±.017 .757±.036

Table 3: Prediction performance comparison with and without feature selection methods (L2X,
LASSO, Tree, INVASE, and Global). Global is using ground-truth globally relevant features for
each dataset

titatively shows that instance-wise feature selection can further improves the predictive model from
ground truth global feature selection.

4.2 REAL-WORLD DATA EXPERIMENTS

4.2.1 DATA DESCRIPTION

In this section we use two real-world datasets to perform a series of further experiments. The first, the
Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) dataset [23], has 40,409 patients
each with 31 measured features. The label is all-cause mortality. The second, the Prostate, Lung,
Colorectal and Ovarian (PLCO) Cancer Screening Trial in the US and the European Randomized
Study of Screening for Prostate Cancer (ERSPC) dataset [8; 26] contains 38,001 each with 106
measured features. The label in this dataset is mortality due to prostate cancer. We refer to this as
the PLCO dataset.

The first experiment we carried out was to create semi-synthetic datasets by using the labelling
procedures Syn1-6 from above but with the features now coming from real data (instead of being
i.i.d. Gaussian). The results of this experiment can be found in the Appendix.

4.2.2 THE DISCOVERED FEATURE IMPORTANCE IN MAGGIC DATASET

In this next experiment, we visualize the ability of INVASE to select features on an individualized
level. Fig. 2(left) shows the selection probability (given by INVASE) of each feature for 20 randomly
selected patients in the MAGGIC dataset. Fig. 2(right) shows the selection probability of each
feature averaged over different binary splits of the data (i.e. when split into Male and Female). In
Table 4, we also report the mean and variance of the number of selected features in each subgroup.

As can be seen, INVASE discovers significantly different features for both individuals and for dif-
ferent subgroups of the dataset.

4.2.3 RESULTS: PREDICTION USING REAL DATA VARIABLES WITH REAL LABEL

Evaluating the performance of feature selection methods on real data is difficult, since ground truth
relevance is often not known. We therefore cannot use TPR and FDR to evaluate the performance
on real data. In our final experiment, therefore, we instead focus on prediction performance exactly
as in 4.1.3 (except now both the features and label come from real data).
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Figure 2: Left: The feature importance for each of 20 randomly selected patients in the MAGGIC
dataset. Right: The average feature importance for different binary splits in the MAGGIC dataset.

Overall Male Diabetes Hypertension Smoker Heart Failure

43.5±10.7 53.2±10.8 46.6±9.3 41.0±12.1 51.8±11.1

42.5±18.4 Female Non-diabetes Non-hypertension Non-smoker No Heart Failure

40.8±15.6 39.3±8.0 40.0±9.3 43.2±7.0 39.6±6.9

Table 4: Selection probability of overall and patient subgroups by INVASE in MAGGIC dataset.
(Mean ± Std)

Datasets Metrics AUROC AUPRC AUROC AUPRC

MAGGIC

Labels 3 year 5 year
INVASE .722±.005 .655±.010 .740±.005 .867±.006

Without INVASE .720±.006 .639±.009 .730±.006 .855±.004

PLCO

Labels 5 year 10 year
INVASE .637±.007 .329±.013 .673±.007 .506±.006

Without INVASE .629±.008 .324±.011 .657±.006 .485±.008

Table 5: Prediction performance for MAGGIC and PLCO dataset.

As can be seen in Table 5, INVASE consistently improves prediction performance in each of the two
settings (different time horizons) in each dataset.

5 FUTURE WORK

While this paper has focused on discovering relevant features in the static setting, this could also
be extended to apply in the temporal setting. One such avenue of exploration for this would be
to replace each of the networks with an RNN. Particular care will need to be taken in defining the
problem, though; do we treat each stream as a feature or each time point of each stream? We leave
this investigation to future work.
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Klaus-Robert MÃžller. How to explain individual classification decisions. Journal of Machine
Learning Research, 11(Jun):1803–1831, 2010.

[3] Emmanuel Candès, Yingying Fan, Lucas Janson, and Jinchi Lv. Panning for gold:
Model-free knockoffs for high-dimensional controlled variable selection. arXiv preprint
arXiv:1610.02351, 2016.

[4] Jianbo Chen, Le Song, Martin J Wainwright, and Michael I Jordan. Learning to explain: An
information-theoretic perspective on model interpretation. arXiv preprint arXiv:1802.07814,
2018.

[5] Anupam Datta, Shayak Sen, and Yair Zick. Algorithmic transparency via quantitative input
influence: Theory and experiments with learning systems. In Security and Privacy (SP), 2016
IEEE Symposium on, pp. 598–617. IEEE, 2016.

[6] Jeremy Elson, John JD Douceur, Jon Howell, and Jared Saul. Asirra: a captcha that exploits
interest-aligned manual image categorization. 2007.

[7] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine
learning, 63(1):3–42, 2006.

[8] John K Gohagan, Philip C Prorok, Richard B Hayes, and Barnett-S Kramer. The prostate, lung,
colorectal and ovarian (plco) cancer screening trial of the national cancer institute: history,
organization, and status. Controlled clinical trials, 21(6):251S–272S, 2000.

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.
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APPENDIX

SUMMARY OF RELATED WORKS

Key ideas Experiments Global/ Model # of relevant
shown Instance-wise agnostic features

SCFS Max-dependency min-redundancy Feature selection Global Yes Not needed[11] criteria with Pearson correlations

MIFS Max-dependency min-redundancy Feature selection Global Yes Not needed[21] criteria with Mutual Information

LASSO Linear regression Feature selection Global Yes Not needed[31] with l1-norm penalty Prediction

Knock-off Comparison between knock-off Feature selection Global Yes Not needed[3] variables and real variables Hypothesis test

L2X Mutual Information maximization Interpretation Instance-wise Yes Should be
[4] with Gumbel-softmax given

LIME Locally linear Interpretation Instance-wise Yes Should be
[24] approximation given

Shapley Shapley value estimation Feature selection Instance-wise Yes Should be
[18] to quantify feature importance given

DeepLIFT Decompose the output of Interpretation Instance-wise No Should be
[27] NN on a reference input given

Saliency Backpropagation from the Interpretation Instance-wise No Should be
[29] output of the NN to the input given

Tree SHAP Shapley value estimation Interpretation Instance-wise No Should be
[19] only for tree-ensemble models given

Pixel-wise Measuring the effects on Interpretation Instance-wise No Should be
[1] the output using input perturbation given

INVASE Minimize KL divergence using Feature selection
Instance-wise Yes Not needed(Ours) deep NN influenced by Interpretation

actor-critic models Prediction

Table 6: Summary of the related works. (NN: Neural networks, KL: Kullback-Leibler)

EXTENDING INVASE TO REGRESSION

To extend our model to the setting where Y is continuous (regression problem), we replace the
estimated loss with the reconstruction error as follows.

l̂(x, s) = −||y − fφ(x, s)||2
where fφ : X → R is now the (continuous) predictor function trained to minimize the `2-norm
between its outputs and the real labels. As noted in [9], when the distribution of Y given X is
Gaussian, minimizing the l2-norm is equivalent to minimizing the KL divergence.

DETAILS OF INVASE

In the experiments, the depth of the selector, predictor, and baseline networks is set to 3. The number
of hidden nodes in each layer is d and 2d, respectively. We use either ReLu or SeLu as the activation
functions of each layer except for the output layer where we use the sigmoid activation function for
the selector network and softmax activation function for the predictor and baseline networks. The
number of samples in each mini-batch is 1000 for the selector, predictor, and baseline networks.
We use cross-validation to select λ among {0.1, 0.3, 0.5, 1, 2, 5, 10}. We use tensorflow to imple-
ment INVASE. The source-code can be found at https://github.com/iclr2018invase/
INVASE/.
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DETAILS OF BENCHMARKS

We use the following links for the implementations of 7 benchmarks.

• L2X: https://github.com/Jianbo-Lab/L2X
• LIME: https://github.com/marcotcr/lime
• Shapley: https://github.com/slundberg/shap
• Knock-off: http://web.stanford.edu/group/candes/knockoffs/
software/knockoff/

• Tree: http://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.ExtraTreesClassifier.html

• LASSO: http://scikit-learn.org/stable/modules/linear_model.
html#lasso

For L2X, we use the same network settings used in INVASE for fair comparisons. For SCFS, we
explicitly implement from the reference ([11]).

HIGH DIMENSIONAL DISCOVERY

To demonstrate the scalability of our method, we run an experiment in which we increase the total
number of features to 100. The features are generated as a 100-dimensional Gaussian with no
correlations (N (0, I)) and the relationships between features and label remains as in Table 1 in the
main manucript (i.e. we are adding 89 additional noisy signals that have no effect on the label).

Dataset Syn1 Syn2 Syn3 Syn4 Syn5 Syn6
Metrics (%) TPR FDR TPR FDR TPR FDR TPR FDR TPR FDR TPR FDR

INVASE 100.0 0.0 100.0 0.0 100.0 0.0 66.3 40.5 73.2 23.7 90.5 15.4
L2X 6.1 93.9 81.4 18.6 57.7 42.3 48.5 46.4 35.4 60.8 66.3 33.7

LIME 0.0 100.0 100.0 0.0 92.7 7.3 43.8 47.4 42.3 50.1 50.1 49.9
Shapley 4.4 95.6 95.1 4.9 88.8 11.2 50.2 43.4 49.9 44.2 62.5 37.5

Knock off 0.0 64.9 3.7 71.2 74.9 24.9 28.2 59.8 33.1 59.4 46.9 53.0
Tree 49.9 50.1 100.0 0.0 100.0 0.0 40.7 49.5 56.7 37.5 58.4 41.6

SCFS 2.5 97.5 5.3 94.7 74.9 25.1 27.0 74.6 30.6 62.1 38.3 61.7
LASSO 2.5 97.5 4.0 96.0 75.3 24.7 28.3 73.2 36.0 56.9 45.9 54.1

Table 7: Relevant feature discovery for synthetic datasets with 100 features

As can be seen in Table 7, INVASE also works consistently better than all other benchmarks in all 6
synthetic datasets in this setting. In fact, we see a significant reduction in performance (compared to
the 11 feature setting) for L2X in Syn1, with the TPR dropping more than 90% leading to an almost
complete failure of the method to detect any relevant features. In particular, we see that L2X does
not scale as well as INVASE with the dimensionality of the data, which is particularly limiting for a
feature selection method.

We also compare the CPU times of the algorithm for training and testing with other instance-wise
feature selection benchmarks to show the scalability in terms of computational complexity. As
can be seen in Table 8, INVASE is much faster (10 times) than LIME and Shapley methods and
comparable with L2X; we see that INVASE takes approximately 50% longer to run than L2X,
which can be accounted for by the addition of a 3rd network (the baseline network) in INVASE that
is not present in L2X. Note, however, that this baseline network can be trained in parallel with the
predictor network and we believe that doing so would lead to both INVASE and L2X having the
same run-time.
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Methods INVASE L2X Shapley LIME

Train 1327.69s 939.82s 12801.21s -
Test 0.38s 0.78s 0.06s 18931.98s

Table 8: Comparison of CPU clock time across different instance-wise feature selection methods on
average across Syn1 to Syn6 with 100 features and 10,000 samples on training/testing, respectively

HYPER-PARAMETER ANALYSIS

In the following experiment, we provide results for various values of the hyper-parameter, λ, in the
Syn4, Syn5, and Syn6 100-dimensional setting. Table 9 gives the results in terms of TPR and FDR.
Note that in the other experiments, we select the hyper-parameter λ which maximizes the predictor
accuracy in terms of AUROC.

Datasets Syn4 Syn5 Syn6

λ / Metris (%) TPR FDR TPR FDR TPR FDR

0.1 98.0 94.3 90.0 93.4 99.2 92.3
0.3 93.7 87.9 84.2 88.9 96.9 86.7
0.5 99.0 43.1 88.3 50.6 99.6 31.7
1 66.3 40.5 73.2 23.7 90.5 15.4
2 0.0 0.0 25.4 4.1 67.1 3.6
5 0.0 0.0 7.5 2.7 7.6 2.5

10 0.0 0.0 0.0 0.0 0.0 0.0

Table 9: Relevant feature discovery results for various values of the hyper-parameter λ in the Syn4,
Syn5, and Syn6 100-dimensional setting.
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ADDITIONAL RESULTS ON COMPLEX SYNTHETIC DATASETS

In the main paper, the relevant subset for a sample in each of our variable synthetic datasets (Syn4-
6) depended on X11 only, which was unused in the rest of the model (i.e. X11 determined only
the relevant subset, and was otherwise unused as a predictive variable). In this set of experiments,
we investigate the effect of having the subset relevance depend on a variable that is also used in
the model itself (Syn4A, Syn5A, Syn6A). We then investigate the effect of having more than one
variable being used to determine subset relevance (Syn4B, Syn5B, Syn6B, Syn7). The results for
these are reported in Tables 10 and 11, respectively.

The input features are generated from a 100-dimensional Gaussian distribution with no correlations
across the features (X ∼ N (0, I)). Y is generated according to P(Y = 1|X) = 1

1+logit(X) with the
logit value for each synthetic dataset now defined as follows:

• Syn4A: If X1 < 0, logit = exp(X1X2), otherwise, logit =exp(
∑6
i=3X

2
i − 4).

• Syn5A: If X1 < 0, logit = exp(X1X2), otherwise, logit =−10× sin 2X7 + 2|X8|+X9 +
exp(−X10).

• Syn6A: IfX7 < 0, logit =exp(
∑6
i=3X

2
i − 4), otherwise, logit =−10×sin 2X7+2|X8|+

X9 + exp(−X10).

Dataset Syn4A Syn5A Syn6A
Metrics (%) TPR FDR TPR FDR TPR FDR

INVASE+ 77.5 14.5 85.9 8.8 89.9 7.3
L2X 65.0 39.3 48.0 57.4 74.4 35.5

LIME 56.3 49.2 58.2 48.8 58.9 47.8
Shapley 71.8 39.8 71.0 41.3 68.9 38.2

Knock off 59.8 62.6 55.0 49.9 65.0 40.0
Tree 61.3 46.9 75.6 39.4 66.9 40.0

SCFS 52.8 66.9 55.3 50.6 50.4 51.8
LASSO 61.0 61.2 55.0 50.0 53.9 48.8

Table 10: Relevant feature discovery results for complex synthetic datasets (Syn4A, 5A, 6A) with
100 features

• Syn4B: If X1X3 < 0, logit = exp(X1X2), otherwise, logit =exp(
∑6
i=3X

2
i − 4).

• Syn5B: If X1X7 < 0, logit = exp(X1X2), otherwise, logit =−10 × sin 2X7 + 2|X8| +
X9 + exp(−X10).

• Syn6B: If X3X7 < 0, logit =exp(
∑6
i=3X

2
i − 4), otherwise, logit =−10 × sin 2X7 +

2|X8|+X9 + exp(−X10).
• Syn7:

– If X1 < 0, X2 < 0, logit = exp(X1X2)

– If X1 < 0, X2 ≥ 0, logit =exp(
∑6
i=3X

2
i − 4).

– If X1 ≥ 0, X2 < 0, logit =−10× sin 2X7 + 2|X8|+X9 + exp(−X10).
– If X1 ≥ 0, X2 ≥ 0, logit =0.5× exp(X1X2) + 0.5× exp(

∑4
i=3X

2
i − 2).

RESULTS ON SEMI-SYNTHETIC DATASETS

In this experiment, we use real features (which have correlation across features) but generate the
labels as in the synthetic experiments from the main paper, using Syn1-Syn6. This allows us to
know the ground truth relevance of the features, and calculate TPR and FDR, while using unknown
and correlated feature distributions (instead of the unrealistic setting of i.i.d. Gaussian used in the
fully synthetic experiment). The results for the MAGGIC and PLCO datasets are given below.
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Dataset Syn4B Syn5B Syn6B Syn7
Metrics (%) TPR FDR TPR FDR TPR FDR TPR FDR

INVASE+ 65.5 30.1 85.0 15.0 86.5 27.8 86.8 32.4
L2X 43.2 53.4 50.3 50.3 44.6 55.4 35.3 70.9

LIME 56.8 37.2 71.9 27.2 69.8 30.2 56.4 51.0
Shapley 51.4 43.5 77.2 24.1 69.3 30.7 61.8 45.6

Knock off 5.3 87.4 73.3 25.2 59.9 40.1 54.1 60.0
Tree 56.7 37.4 73.9 25.0 70.1 29.9 71.6 40.3

SCFS 3.7 96.2 72.3 26.3 61.1 38.9 22.9 77.5
LASSO 4.2 95.6 73.3 25.0 60.1 39.9 24.9 75.8

Table 11: Relevant feature discovery results for complex synthetic datasets (Syn4B, 5B, 6B, 7) with
100 features

Dataset Syn1 Syn2 Syn3 Syn4 Syn5 Syn6
Metrics (%) TPR FDR TPR FDR TPR FDR TPR FDR TPR FDR TPR FDR

INVASE 100.0 0.0 100.0 0.0 100.0 0.0 85.9 0.0 72.9 0.1 81.0 13.2
L2X 68.8 31.2 99.9 0.1 83.0 17.0 60.0 31.3 68.3 22.3 73.5 26.5

LIME 46.9 53.1 99.9 0.1 87.2 12.8 63.6 24.4 50.2 37.6 68.7 31.3
Shapley 73.9 26.1 94.5 5.5 81.0 19.0 65.3 23.9 61.2 29.0 69.9 30.1

Knock off 27.5 65.0 77.5 22.5 100.0 0.0 57.0 34.4 56.1 29.8 58.0 42.0
Tree 100.0 0.0 100.0 0.0 100.0 0.0 56.3 29.7 51.6 40.2 46.7 53.3

SCFS 30.0 70.0 53.0 47.0 100.0 0.0 52.0 39.9 54.0 32.4 64.5 35.5
LASSO 25.0 75.0 75.0 25.0 100.0 0.0 60.7 33.1 56.1 29.8 58.2 41.8

Table 12: Relevant feature discovery for real datasets with synthetic labels using MAGGIC dataset

Dataset Syn1 Syn2 Syn3 Syn4 Syn5 Syn6
Metrics (%) TPR FDR TPR FDR TPR FDR TPR FDR TPR FDR TPR FDR

INVASE 35.9 0.0 100.0 0.0 84.0 7.0 59.2 38.6 64.6 31.7 70.0 29.9
L2X 0.0 100.0 62.2 37.8 43.6 56.4 41.9 55.4 21.5 76.7 66.9 33.1

LIME 1.0 99.0 70.3 29.7 74.9 25.1 43.5 55.9 26.8 68.9 56.8 43.2
Shapley 5.4 94.6 68.5 31.5 67.9 32.1 32.7 69.4 39.6 58.6 48.5 51.5

Knock off 15.0 50.0 85.0 15.0 100.0 0.0 46.1 52.1 34.5 58.3 60.0 40.0
Tree 0.0 100.0 71.0 29.0 75.0 25.0 34.5 66.3 43.8 54.7 36.9 63.1

SCFS 10.0 90.0 61.0 39.0 93.8 6.2 43.2 55.7 31.0 63.6 55.5 44.5
LASSO 0.0 100.0 72.5 27.5 100.0 0.0 39.2 60.8 33.2 68.2 45.0 55.0

Table 13: Relevant feature discovery for real datasets with synthetic labels using PLCO dataset

As demonstrated in Tables 12 and 13, INVASE outperforms all other methods across all 6 of the
synthetic-label settings using real features. This also demonstrates the capability of INVASE in
settings where there are unknown correlation structures in the features.
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5.1 PREDICTIVE PERFORMANCE COMPARISON ON REAL-WORLD DATASETS

In this experiment, we evaluate the predictive performance gains of using each feature selection
method as a pre-processing step on the two real datasets, MAGGIC and PLCO (as was done for
synthetic data in Section 4.1.3). For each method, we first perform feature selection and then train
a predictive model on top of the feature-selected data, where the model has the same architecture as
the INVASE predictor network (to create a fair comparison of methods). As can be seen in Table
14, INVASE significantly outperform the other approaches.

Datasets MAGGIC PLCO

Labels 3-year 5-year 5-year 10-year

Metrics AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

INVASE 0.722 0.655 0.740 0.867 0.637 0.329 0.673 0.506

L2X 0.609 0.529 0.607 0.794 0.558 0.170 0.583 0.365
LIME 0.637 0.5596 0.634 0.808 0.597 0.183 0.601 0.374

Shapley 0.641 0.557 0.617 0.797 0.614 0.194 0.615 0.381

Knockoff 0.686 0.614 0.711 0.853 0.619 0.230 0.658 0.475
Tree 0.678 0.604 0.708 0.850 0.632 0.269 0.655 0.469

SCFS 0.683 0.623 0.723 0.857 0.632 0.231 0.632 0.444
LASSO 0.692 0.615 0.709 0.847 0.623 0.218 0.656 0.467

Table 14: Predictive Performance Comparison on two real-world datasets (MAGGIC and PLCO) in
terms of AUROC and AUPRC
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CORRELATIONS BETWEEN FEATURES AND LABELS IN THE SYNTHETIC AND
SEMI-SYNTHETIC EXPERIMENTS

Variables Syn1 Syn2 Syn3 Syn4 Syn5 Syn6

X1 0.003 0.008 0.006 0.009 0.007 0.006
X2 0.001 0.005 0.006 0.005 0.015 0.005
X3 0.006 0.011 0.001 0.017 0.016 0.010
X4 0.006 0.003 0.003 0.002 0.000 0.002
X5 0.003 0.015 0.022 0.004 0.017 0.028
X6 0.003 0.004 0.005 0.002 0.004 0.005
X7 0.013 0.009 0.481 0.002 0.242 0.235
X8 0.010 0.008 0.012 0.003 0.010 0.022
X9 0.001 0.003 0.239 0.002 0.115 0.121
X10 0.002 0.003 0.308 0.003 0.149 0.144
X11 0.014 0.012 0.004 0.028 0.018 0.002

Table 15: Correlation between features and labels in Synthetic datasets with 100 features. Ground
truth (in the global sense) relevant features are given in bold. Features with correlation > 0.05 are
highlighted in red.

As can be seen in Table 15, among 33 relevant features, only 9 features have more than 0.05 (linear)
correlation with the label. In particular, using a linear model, it is very hard to discover the relevant
features. However, Knock-off (based on LASSO and linear correlations), LASSO, and SCFS are
linear models, resulting in a poor performance in our experiments. The above table results are
directly reflected in the results given in the main manuscript.

Variables Syn1 Syn2 Syn3 Syn4 Syn5 Syn6

X1 0.028 0.030 0.070 0.011 0.044 0.026
X2 0.002 0.011 0.009 0.001 0.001 0.012
X3 0.018 0.079 0.008 0.038 0.006 0.046
X4 0.005 0.113 0.006 0.056 0.001 0.055
X5 0.006 0.034 0.032 0.013 0.016 0.036
X6 0.019 0.114 0.027 0.099 0.018 0.004
X7 0.005 0.010 0.367 0.000 0.262 0.272
X8 0.020 0.030 0.112 0.023 0.075 0.082
X9 0.025 0.022 0.299 0.006 0.216 0.200
X10 0.07 0.043 0.328 0.027 0.222 0.206
X11 0.009 0.006 0.034 0.046 0.018 0.058

Table 16: Correlation between features and labels in MAGGIC datasets. Ground truth relevant
features are described in bold. Features with correlation > 0.05 are described in red

We do the same analysis for the MAGGIC dataset; results are given in Table 16. We see that here the
linear correlation with the label is stronger and this is reflected in Tables 12 and 13, where all of the
linear models performed better than in the fully-synthetic settings. However, we note that although
they had a better performance, in most cases it was still not comparable with INVASE.
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DEFINITION OF TPR AND FDR
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Figure 3: The definitions of True Positive Rate (TPR) and False Discovery Rate (FDR)
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COMPUTER VISION

Another natural application of INVASE is in computer vision. To briefly demonstrate the applica-
bility and capability of INVASE to computer vision, we conduct two experiments using the Kaggle
Dogs vs. Cats dataset (https://www.kaggle.com/c/dogs-vs-cats) [6] and the Oxford
Pet dataset (http://www.robots.ox.ac.uk/˜vgg/data/pets/) [20]. The goal is to se-
lect a set 16 x 16 patches of each image that maximize the predictive capability of a model. In order
to apply INVASE to this problem, we simply treat each 16 x 16 patch as a feature.

We use the U-Net [25] architecture for the selector network and the VGG network [28] architecture
for the predictor and baseline networks. Below we give qualitative results of INVASE applied to
these datasets, where we see that INVASE successfully identifies patches of each image in which
the animal’s face is visible.

(a) Original image (b) Selected patches (c) Original image (d) Selected patches

(e) Original image (f) Selected patches (g) Original image (h) Selected patches

(i) Original image (j) Selected patches (k) Original image (l) Selected patches

(m) Original image (n) Selected patches (o) Original image (p) Selected patches

Figure 4: Selected 16 x 16 patches by INVASE on Kaggle Dogs vs. Cats dataset - Cats
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(a) Original image (b) Selected patches (c) Original image (d) Selected patches

(e) Original image (f) Selected patches (g) Original image (h) Selected patches

(i) Original image (j) Selected patches (k) Original image (l) Selected patches

(m) Original image (n) Selected patches (o) Original image (p) Selected patches

Figure 5: Selected 16 x 16 patches by INVASE on Kaggle Dogs vs. Cats dataset - Dogs
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(a) Original image (b) Selected patches (c) Original image (d) Selected patches

(e) Original image (f) Selected patches (g) Original image (h) Selected patches

(i) Original image (j) Selected patches (k) Original image (l) Selected patches

(m) Original image (n) Selected patches (o) Original image (p) Selected patches

Figure 6: Selected 16 x 16 patches by INVASE on Oxford Pet dataset - Cats
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(a) Original image (b) Selected patches (c) Original image (d) Selected patches

(e) Original image (f) Selected patches (g) Original image (h) Selected patches

(i) Original image (j) Selected patches (k) Original image (l) Selected patches

(m) Original image (n) Selected patches (o) Original image (p) Selected patches

Figure 7: Selected 16 x 16 patches by INVASE on Oxford Pet dataset - Dogs
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