
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Grassmannian initialization: Neural network initialization using sub-space
packing

Anonymous Authors1

Abstract

We recently observed that convolutional filters ini-
tialized farthest apart from each other using off-
the-shelf pre-computed Grassmannian subspace
packing codebooks performed surprisingly well
across many datasets. Through this short paper,
we’d like to disseminate some initial results in this
regard in the hope that we stimulate the curiosity
of the deep-learning community towards consid-
ering classical Grassmannian subspace packing
results as a source of new ideas for more efficient
initialization strategies.

1. Introduction
1.1. The setting

Standard initialization methods of neural networks are mo-
tivated primarily to prevent activations from vanishing or
exploding.

Consider Fig 1 which focuses on the first convolutional layer
of a standard CNN model for MNIST digit classification.
As seen, N = 32 different convolutional filter weights of
size 3× 3, denoted by {wk}N=32

k=1 , are applied to an image
patch, xij , to yield the 32 channel values associated with
the feature tensor extracted. The feature values computed
for the kth channel would be expressed as

{yi,j,k = f (xi,j ∗wk + bk)}Nk=1 ;wk ∈ Rm,

where f(.) is a non-linear activation function, which is typ-
ically RELU or tanh, bk ∈ R is the bias term, and in this
specific case, N = 32 and m = 3× 3 = 9.

Initialization of these filter weights has been extensively
studied in conjunction with the activation functions and
state-of-the-art architectures. There now exists a plethora

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

of resources1 that detail the best practices to be followed
with regards to the initialization strategy to be used for the
specific architecture chosen.

1.2. Initialization strategies: A brief review

Most deep-learning frameworks now make available a stan-
dard repertoire of initialization strategies available for deep-
learning researchers, of which the four most common ones
we found available off-the-shelf in almost all frameworks
were:

1. Lecun uniform/lecun normal (LeCun et al., 2012)

2. He-uniform (He et al., 2015)

3. Glorot/Xavier-uniform (Glorot & Bengio, 2010)

4. Orthogonal (Saxe et al., 2013)

We’d posit that it’s now part of machine learning folk-
lore(Katanforoosh & Kunin, 2018) that a practitioner would
feault to the choice of Xavier initialization
if the activation function of the layer is tanh() and
He-initialize if the activation function is RELU().
It is to be noted that for specific architectures such as deep-
residual networks, recent works have questioned on the
efficacy of the above initialization strategies. In (Yang &
Schoenholz, 2017) , the authors critique the dependence of
the optimal init-variances on the depth of the network and
propose a novel mean field residual networks framework.
This ‘random initialization on the edge of chaos’ idea re-
occurs in (Hayou et al., 2018) where they also re-emphasize
the supposed efficacy of using swish activation functions
over RELU-like functions. In the context of Binary neural
networks, the authors in (Clark et al., 2017) has showcased
the efficacy of Hadamard initialization over the other tech-
niques. We note in passing that the default initializations
for specific layers and activation-types vary from one deep
learning framework to the other, and is often a point of much
debate among the practitioners2.

1http://www.deeplearning.ai/ai-notes/
initialization/

2https://twitter.com/jeremyphoward/
status/1113477414628106240, https://

http://www.deeplearning.ai/ai-notes/initialization/
http://www.deeplearning.ai/ai-notes/initialization/
https://twitter.com/jeremyphoward/status/1113477414628106240
https://twitter.com/jeremyphoward/status/1113477414628106240
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Grassmannian initialization

Figure 1. Outline of the Grassmannian initialization idea

The continued efforts of researchers in this specific sub-
field of deep-learning highlights that much work needs to
be done before unanimity can be achieved as to which is
the optimal initialization strategy for what combination of
architecture/activation function.
The initial set of observations that we’d like to disseminate
through this paper sits squarely into this setting of finding
that elusive optimal initialization strategy. We build on the
Grassmannian subspace-packing body of work (Conway
et al., 1996) in experimental mathematics that has also been
successfully used in physical layer wireless communications
(See (Love & Heath, 2005),(Prabhu et al., 2009)) for limited
feedback codebook-based downlink beamforming schemes
and sparse signal reconstruction (Malioutov et al., 2005).

1.3. Presenting the hunch: Tackling dead filters and
achieve distinctive learning

The reason why we developed a hunch for trying out this
technique is as follows. Getting the convolution filters to
learn distinctive attributes so that we don’t end up with
a scenario where the learned filters post-training all look
the same has an interesting and chequred history. Back in
2014, in the highly cited work on Visualizing and Under-
standing Convolutional Networks (Zeiler & Fergus, 2014),

stackoverflow.com/questions/49433936/
how-to-initialize-weights-in-pytorch/
49433937

the authors propose a set of best-practices for improving
upon Alexnet such as choosing a different kernel size, stride-
length and use of feature-scale clipping. They focus on
a set of visualizations that demonstrate how the learned
features look like before and after applying their set of tech-
niques. With regards to the feature scale clipping idea, they
highlight how this prevents ’one feature (sic) Kernel’ from
dominating. They also showcase how the smaller stride and
filter-sizes resulted in more ”distinctive features and fewer
dead features”. This theme of wanting to ensure that each
filter learns something different is rather intuitive as this
alludes towards more efficient usage of the computational
real estate that the conv-nets dispense at the classification
problem. Our ansatz is that an intuitive way of achieving
this inter-filter diversity is to ensure that they are initialized
furthest apart upon initialization. Given that these filters
reside in Rm, this nows becomes the line-packing (and
in general subspace packing) problem. Here we’d like to
inherit the classical Neil Sloane example of the line-packing
problem seeking to answer the question:

“How should N laser beams passing through a single point
be arranged so as to make the angle between
any two of the beams as large as possible?”

https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937
https://stackoverflow.com/questions/49433936/how-to-initialize-weights-in-pytorch/49433937

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Grassmannian initialization

2. Background on Grassmannian manifolds
and subspace packing

Set theoretic definition: The real Grassmann manifold
G(m, k) is define as the set of all k-dimensional (linear)
subspaces in Rm and the Grassmannian N-subspace packing
problem is the problem of finding a set of N k-dimensional
subspaces in G(m, k) that maximize the minimum pairwise
distance between the constituent subspaces in the set.

In this paper, we consider the special case of k = 1 (also
termed as the line-packing scenario). Let Ωm denote the set
of unit vectors in Rm. As shown in (Love & Heath, 2005),
for a given (N,m), arranging N unit vectors, wi ∈ Ωm

such that the magnitude correlation between any two vectors
is as small as possible yields the line-packings with regards
to the sine-distance metric defined to be:

d(w1,w2) = sin(θ1,2) =
√

1− |wT
1 w2|2.

The final packing is represented by a codebook matrix, W =
[w1|w2|...|w1,wN];wi ∈ Ωm , characterized by the the
minimum distance of packing δ(W), which is defined as,

δ(W) = min
iklN

{√
1−

∣∣wT
k wl

∣∣2} = sin (θmin) .

The Rankin bound (Barg & Nogin, 2002) provides the upper
bound for this minimum distance and is given by,

δ(W) ≤

√
(m− 1)N

m(N − 1)

A normalized invariant measure µ introduced on G(m, 1)
by the normalized Haar measure on Ωm allows computation
of volumes in G(m, 1), which is in turn used to define the
density of a given line-packing matrix W. It was shown in
(Love & Heath, 2005) that,

∆(W) = N

(
δ(W)

2

)2(m−1)

.

There exists pre-computed repositories for the best known
packings for both complex 3 and real scenarios. 4

2.1. What if we do not have a packing available in
Sloane’s repository for the tuple: (m, 1, N) that we
desire to incorporate into our architecture?

If the mismatch is with regards to N , we suggest finding
the largest N ′ such that the tuple (m, 1, N ′) exists in the
repository.

3https://engineering.purdue.edu/˜djlove/
grass.html

4http://neilsloane.com.grass

2.2. Shortcomings

Akin to orthogonal matrix initializations (Saxe et al., 2013),
which requires square matrices, we are somewhat limited
by the choice of the tuple: (m, 1, N). The repository from
where we sourced the codebooks is limited up to (m =
16, 1, N = 45) (Sloane, 2004). One path ahead is to a
priori construct packings in Grassmannian manifolds via the
alternating projection method described in (Dhillon et al.,
2008). In this paper, we explore only those architectures
whose filter-sizes (m) and the number of filters (N)

3. Experiments
3.1. Grassmannians in First Filter Initializations

With the intuition that the first few convolutional kernel
filters should capture as much diverse features as possible
to prevent ‘dead kernels’ (Zeiler & Fergus, 2014), we exper-
imented with both shallow CNNs with 2 to 4 convolutional
layers, as well as standard ResNet-56 models (He et al.,
2016) on different datasets.

3.2. Shallow CNNs

As our baseline, we have 2-layer CNNs and 4-layer CNNs
as per 1 with standard default Xavier initialization. In our
experiments, we only change the first layer of convolutional
filter kernels, as we wish to capture diverse representations
and features from the input image, and allow the rest of the
network to learn the different combination and activation of
the diverse first-layer features.

In comparison with the baselines, where we introduce Grass-
mannian initializations without biases as trainable and un-
trainable (fixed) parameters. For single-channel inputs such
as MNIST, KMNIST and Fashion MNIST and assuming
that the first convolutional kernels are of size 3× 3 = 9, we
use line packings of (m, 1, N) where m = 9 and N is the
number of output channels. This is equivalent to finding the
best way of ‘stabbing’ N lines through a 9-D sphere such
that the minimum distance between each line is maximized.

3.3. Deep CNNs

We also ran similar experiments on ResNets, where we use
a standard ResNet-56 with standard Xavier initialization
and Adam optimizer as baseline. Given images with 3 input
channels and assuming that the first convolutional kernel
is of size 3 × 3 = 9, we initialize the weights of the first
convolutional kernel to be Grassmannian line packings of
(m, 1, N ′) where m = 9 is the kernel size squared, with
N as the number of output channels and N ′ = 3N since
we have input channels of size 3. We then initialize the
first layer using this line packing without biases, and train it
under both fixed and trainable conditions.

https://engineering.purdue.edu/~djlove/grass.html
https://engineering.purdue.edu/~djlove/grass.html
http://neilsloane.com.grass

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Grassmannian initialization

0.900 0.905 0.910 0.915 0.920 0.925 0.930

Accuracy after 1 epoch

0

25

50

75

100

125

150

175

200

K
D

E
(a

cc
)

Standard Init

Grassmanian (trainable)

Grassmanian (frozen)

(a) MNIST, 2 Conv Layers

0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70

Accuracy after 1 epoch

0

10

20

30

40

K
D

E
(a

cc
)

Standard Init

Grassmanian (trainable)

Grassmanian (frozen)

(b) KMNIST, 4 Conv Layers

0.15 0.20 0.25 0.30 0.35 0.40 0.45

Accuracy after 1 epoch

0

2

4

6

8

10

12

14

16

K
D

E
(a

cc
)

Standard Init

Grassmanian (trainable)

Grassmanian (frozen)

(c) CIFAR-10, 4 Conv Layers

0.01 0.02 0.03 0.04 0.05 0.06 0.07

Accuracy after 1 epoch

0

10

20

30

40

50

K
D

E
(a

cc
)

Standard Init

Grassmanian (trainable)

Grassmanian (frozen)

(d) CIFAR-100, 4 Conv Layers

Figure 2. Distributions of 30 runs of first-epoch test accuracy at the first epoch with SGD with different datasets, comparing initialization
of first layer using standard Xavier initialization, frozen Grassmannians, and trainable Grassmannians.

4. Results
We ran multiple trials on different datasets using with our
approaches, and verified that in our runs we achieve better
test accuracies on different datasets on shallow architectures,
where both fixed and trainable Grassmannian first-layer
initializaitons almost consistently achieve higher first-epoch
accuracies.

The optimizer used also has a significant impact on the
first-epoch test accuracy of initializations. While Adam and
Adadelta with standard initialization outperforms frozen
Grassmannian initialization in first-epoch accuracies, train-
able Grassmannians still outperforms standard initializations
in both cases. The improvement gained from Grassmanni-
ans are most pronounced with SGD as an optimizer.

Table 1. Final Accuracy of ResNet-56 on CIFAR-10
INITIALIZATION TEST ACC

STANDARD, XAVIER 91.85
GRASSMANNIAN, FIXED 91.72

GRASSMANNIAN, TRAINABLE 92.18

For deeper networks such as ResNets, we see faster con-

vergence even with Adam optimizer as per 4, and achieves
slight improvement in accuracies on the final test-set classi-
fication score after training for 200 epochs. We also attach
our code here for reproducibility purposes, while providing
a framework for extracting Grassmannians. 5

References
Barg, A. and Nogin, D. Y. Bounds on packings of spheres

in the grassmann manifold. IEEE Transactions on Infor-
mation Theory, 48(9):2450–2454, 2002.

Clark, A., Prabhu, V. U., and J, W. Weight initialization
strategies for binary neural networks. TinyML workshop,
ICML, 2017.

Conway, J. H., Hardin, R. H., and Sloane, N. J. Packing
lines, planes, etc.: Packings in grassmannian spaces. Ex-
perimental mathematics, 5(2):139–159, 1996.

Dhillon, I. S., Heath, J. R., Strohmer, T., and Tropp, J. A.
Constructing packings in grassmannian manifolds via

5https://anonymous.4open.science/r/
98100837-225e-4765-8e45-0d11179c497b/

https://anonymous.4open.science/r/98100837-225e-4765-8e45-0d11179c497b/
https://anonymous.4open.science/r/98100837-225e-4765-8e45-0d11179c497b/

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Grassmannian initialization

0.45 0.50 0.55 0.60 0.65

Accuracy after 1 epoch

0

5

10

15

20

25

30

K
D

E
(a

cc
)

Standard Init

Grassmanian (trainable)

Grassmanian (frozen)

(a) Adadelta

0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64

Accuracy after 1 epoch

0

5

10

15

20

25

K
D

E
(a

cc
)

Standard Init

Grassmanian (trainable)

Grassmanian (frozen)

(b) Adam

0.30 0.35 0.40 0.45 0.50

Accuracy after 1 epoch

0

5

10

15

20

25

K
D

E
(a

cc
)

Standard Init

Grassmanian (trainable)

Grassmanian (frozen)

(c) SGD

Figure 3. Distributions of 30 runs of first-epoch test accuracy at the first epoch with different optimizers on the same shallow CNN
architecture, comparing initialization of first layer using standard Xavier initialization, frozen Grassmannians, and trainable Grassmannians.

Figure 4. Comparison of standard initialization and Grassmannian initialization of first layer as both trainable and untrainable parameters
on ResNet trained on CIFAR-10. Grassmannian approaches have a faster convergence with marginally better test accuracy with Adam
optimizer used in all 3 cases.

alternating projection. Experimental mathematics, 17(1):
9–35, 2008.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256, 2010.

Hayou, S., Doucet, A., and Rousseau, J. On the selection
of initialization and activation function for deep neural
networks. arXiv preprint arXiv:1805.08266, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-

national conference on computer vision, pp. 1026–1034,
2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Katanforoosh and Kunin. Initializing neural networks.
deeplearning.ai, 2018.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R.
Efficient backprop. In Neural networks: Tricks of the
trade, pp. 9–48. Springer, 2012.

Love, D. J. and Heath, R. W. Limited feedback unitary

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Grassmannian initialization

precoding for spatial multiplexing systems. IEEE Trans-
actions on Information theory, 51(8):2967–2976, 2005.

Malioutov, D., Cetin, M., and Willsky, A. S. A sparse signal
reconstruction perspective for source localization with
sensor arrays. IEEE transactions on signal processing,
53(8):3010–3022, 2005.

Prabhu, V. U., Karachontzitis, S., and Toumpakaris, D.
Performance comparison of limited feedback codebook-
based downlink beamforming schemes for distributed
antenna systems. In 2009 1st International Conference
on Wireless Communication, Vehicular Technology, In-
formation Theory and Aerospace & Electronic Systems
Technology, pp. 171–176. IEEE, 2009.

Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact
solutions to the nonlinear dynamics of learning in deep
linear neural networks. arXiv preprint arXiv:1312.6120,
2013.

Sloane, N. J. A. Table of best grassmannian packings. In
collaboration with A. R. Calderbank, J. H. Conway, R. H.
Hardin, E. M. Rains, P. W. Shor and others. Published
electronically, 2004.

Yang, G. and Schoenholz, S. Mean field residual networks:
On the edge of chaos. In Advances in neural information
processing systems, pp. 7103–7114, 2017.

Zeiler, M. D. and Fergus, R. Visualizing and understand-
ing convolutional networks. In European conference on
computer vision, pp. 818–833. Springer, 2014.

