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Grassmannian initialization: Neural network initialization using sub-space
packing
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Abstract

We recently observed that convolutional filters ini-
tialized farthest apart from each other using off-
the-shelf pre-computed Grassmannian subspace
packing codebooks performed surprisingly well
across many datasets. Through this short paper,
we’d like to disseminate some initial results in this
regard in the hope that we stimulate the curiosity
of the deep-learning community towards consid-
ering classical Grassmannian subspace packing
results as a source of new ideas for more efficient
initialization strategies.

1. Introduction
1.1. The setting

Standard initialization methods of neural networks are mo-
tivated primarily to prevent activations from vanishing or
exploding.

Consider Fig 1 which focuses on the first convolutional layer
of a standard CNN model for MNIST digit classification.
As seen, N = 32 different convolutional filter weights of
size 3× 3, denoted by {wk}N=32

k=1 , are applied to an image
patch, xij , to yield the 32 channel values associated with
the feature tensor extracted. The feature values computed
for the kth channel would be expressed as

{yi,j,k = f (xi,j ∗wk + bk)}Nk=1 ;wk ∈ Rm,

where f(.) is a non-linear activation function, which is typ-
ically RELU or tanh, bk ∈ R is the bias term, and in this
specific case, N = 32 and m = 3× 3 = 9.

Initialization of these filter weights has been extensively
studied in conjunction with the activation functions and
state-of-the-art architectures. There now exists a plethora
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of resources1 that detail the best practices to be followed
with regards to the initialization strategy to be used for the
specific architecture chosen.

1.2. Initialization strategies: A brief review

Most deep-learning frameworks now make available a stan-
dard repertoire of initialization strategies available for deep-
learning researchers, of which the four most common ones
we found available off-the-shelf in almost all frameworks
were:

1. Lecun uniform/lecun normal (LeCun et al., 2012)

2. He-uniform (He et al., 2015)

3. Glorot/Xavier-uniform (Glorot & Bengio, 2010)

4. Orthogonal (Saxe et al., 2013)

We’d posit that it’s now part of machine learning folk-
lore(Katanforoosh & Kunin, 2018) that a practitioner would
feault to the choice of Xavier initialization
if the activation function of the layer is tanh() and
He-initialize if the activation function is RELU().
It is to be noted that for specific architectures such as deep-
residual networks, recent works have questioned on the
efficacy of the above initialization strategies. In (Yang &
Schoenholz, 2017) , the authors critique the dependence of
the optimal init-variances on the depth of the network and
propose a novel mean field residual networks framework.
This ‘random initialization on the edge of chaos’ idea re-
occurs in (Hayou et al., 2018) where they also re-emphasize
the supposed efficacy of using swish activation functions
over RELU-like functions. In the context of Binary neural
networks, the authors in (Clark et al., 2017) has showcased
the efficacy of Hadamard initialization over the other tech-
niques. We note in passing that the default initializations
for specific layers and activation-types vary from one deep
learning framework to the other, and is often a point of much
debate among the practitioners2.

1http://www.deeplearning.ai/ai-notes/
initialization/

2https://twitter.com/jeremyphoward/
status/1113477414628106240, https://
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Grassmannian initialization

Figure 1. Outline of the Grassmannian initialization idea

The continued efforts of researchers in this specific sub-
field of deep-learning highlights that much work needs to
be done before unanimity can be achieved as to which is
the optimal initialization strategy for what combination of
architecture/activation function.
The initial set of observations that we’d like to disseminate
through this paper sits squarely into this setting of finding
that elusive optimal initialization strategy. We build on the
Grassmannian subspace-packing body of work (Conway
et al., 1996) in experimental mathematics that has also been
successfully used in physical layer wireless communications
(See (Love & Heath, 2005),(Prabhu et al., 2009)) for limited
feedback codebook-based downlink beamforming schemes
and sparse signal reconstruction (Malioutov et al., 2005).

1.3. Presenting the hunch: Tackling dead filters and
achieve distinctive learning

The reason why we developed a hunch for trying out this
technique is as follows. Getting the convolution filters to
learn distinctive attributes so that we don’t end up with
a scenario where the learned filters post-training all look
the same has an interesting and chequred history. Back in
2014, in the highly cited work on Visualizing and Under-
standing Convolutional Networks (Zeiler & Fergus, 2014),

stackoverflow.com/questions/49433936/
how-to-initialize-weights-in-pytorch/
49433937

the authors propose a set of best-practices for improving
upon Alexnet such as choosing a different kernel size, stride-
length and use of feature-scale clipping. They focus on
a set of visualizations that demonstrate how the learned
features look like before and after applying their set of tech-
niques. With regards to the feature scale clipping idea, they
highlight how this prevents ’one feature (sic) Kernel’ from
dominating. They also showcase how the smaller stride and
filter-sizes resulted in more ”distinctive features and fewer
dead features”. This theme of wanting to ensure that each
filter learns something different is rather intuitive as this
alludes towards more efficient usage of the computational
real estate that the conv-nets dispense at the classification
problem. Our ansatz is that an intuitive way of achieving
this inter-filter diversity is to ensure that they are initialized
furthest apart upon initialization. Given that these filters
reside in Rm, this nows becomes the line-packing ( and
in general subspace packing) problem. Here we’d like to
inherit the classical Neil Sloane example of the line-packing
problem seeking to answer the question:

“How should N laser beams passing through a single point
be arranged so as to make the angle between
any two of the beams as large as possible?”
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2. Background on Grassmannian manifolds
and subspace packing

Set theoretic definition: The real Grassmann manifold
G(m, k) is define as the set of all k-dimensional (linear)
subspaces in Rm and the Grassmannian N-subspace packing
problem is the problem of finding a set of N k-dimensional
subspaces in G(m, k) that maximize the minimum pairwise
distance between the constituent subspaces in the set.

In this paper, we consider the special case of k = 1 (also
termed as the line-packing scenario). Let Ωm denote the set
of unit vectors in Rm. As shown in (Love & Heath, 2005),
for a given (N,m), arranging N unit vectors, wi ∈ Ωm

such that the magnitude correlation between any two vectors
is as small as possible yields the line-packings with regards
to the sine-distance metric defined to be:

d(w1,w2) = sin(θ1,2) =
√

1− |wT
1 w2|2.

The final packing is represented by a codebook matrix, W =
[w1|w2|...|w1,wN ];wi ∈ Ωm , characterized by the the
minimum distance of packing δ(W), which is defined as,

δ(W) = min
iklN

{√
1−

∣∣wT
k wl

∣∣2} = sin (θmin) .

The Rankin bound (Barg & Nogin, 2002) provides the upper
bound for this minimum distance and is given by,

δ(W) ≤

√
(m− 1)N

m(N − 1)

A normalized invariant measure µ introduced on G(m, 1)
by the normalized Haar measure on Ωm allows computation
of volumes in G(m, 1), which is in turn used to define the
density of a given line-packing matrix W. It was shown in
(Love & Heath, 2005) that,

∆(W) = N

(
δ(W)

2

)2(m−1)

.

There exists pre-computed repositories for the best known
packings for both complex 3 and real scenarios. 4

2.1. What if we do not have a packing available in
Sloane’s repository for the tuple: (m, 1, N) that we
desire to incorporate into our architecture?

If the mismatch is with regards to N , we suggest finding
the largest N ′ such that the tuple (m, 1, N ′) exists in the
repository.

3https://engineering.purdue.edu/˜djlove/
grass.html

4http://neilsloane.com.grass

2.2. Shortcomings

Akin to orthogonal matrix initializations (Saxe et al., 2013),
which requires square matrices, we are somewhat limited
by the choice of the tuple: (m, 1, N). The repository from
where we sourced the codebooks is limited up to (m =
16, 1, N = 45) (Sloane, 2004). One path ahead is to a
priori construct packings in Grassmannian manifolds via the
alternating projection method described in (Dhillon et al.,
2008). In this paper, we explore only those architectures
whose filter-sizes (m) and the number of filters (N )

3. Experiments
3.1. Grassmannians in First Filter Initializations

With the intuition that the first few convolutional kernel
filters should capture as much diverse features as possible
to prevent ‘dead kernels’ (Zeiler & Fergus, 2014), we exper-
imented with both shallow CNNs with 2 to 4 convolutional
layers, as well as standard ResNet-56 models (He et al.,
2016) on different datasets.

3.2. Shallow CNNs

As our baseline, we have 2-layer CNNs and 4-layer CNNs
as per 1 with standard default Xavier initialization. In our
experiments, we only change the first layer of convolutional
filter kernels, as we wish to capture diverse representations
and features from the input image, and allow the rest of the
network to learn the different combination and activation of
the diverse first-layer features.

In comparison with the baselines, where we introduce Grass-
mannian initializations without biases as trainable and un-
trainable (fixed) parameters. For single-channel inputs such
as MNIST, KMNIST and Fashion MNIST and assuming
that the first convolutional kernels are of size 3× 3 = 9, we
use line packings of (m, 1, N) where m = 9 and N is the
number of output channels. This is equivalent to finding the
best way of ‘stabbing’ N lines through a 9-D sphere such
that the minimum distance between each line is maximized.

3.3. Deep CNNs

We also ran similar experiments on ResNets, where we use
a standard ResNet-56 with standard Xavier initialization
and Adam optimizer as baseline. Given images with 3 input
channels and assuming that the first convolutional kernel
is of size 3 × 3 = 9, we initialize the weights of the first
convolutional kernel to be Grassmannian line packings of
(m, 1, N ′) where m = 9 is the kernel size squared, with
N as the number of output channels and N ′ = 3N since
we have input channels of size 3. We then initialize the
first layer using this line packing without biases, and train it
under both fixed and trainable conditions.

https://engineering.purdue.edu/~djlove/grass.html
https://engineering.purdue.edu/~djlove/grass.html
http://neilsloane.com.grass
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Figure 2. Distributions of 30 runs of first-epoch test accuracy at the first epoch with SGD with different datasets, comparing initialization
of first layer using standard Xavier initialization, frozen Grassmannians, and trainable Grassmannians.

4. Results
We ran multiple trials on different datasets using with our
approaches, and verified that in our runs we achieve better
test accuracies on different datasets on shallow architectures,
where both fixed and trainable Grassmannian first-layer
initializaitons almost consistently achieve higher first-epoch
accuracies.

The optimizer used also has a significant impact on the
first-epoch test accuracy of initializations. While Adam and
Adadelta with standard initialization outperforms frozen
Grassmannian initialization in first-epoch accuracies, train-
able Grassmannians still outperforms standard initializations
in both cases. The improvement gained from Grassmanni-
ans are most pronounced with SGD as an optimizer.

Table 1. Final Accuracy of ResNet-56 on CIFAR-10
INITIALIZATION TEST ACC

STANDARD, XAVIER 91.85
GRASSMANNIAN, FIXED 91.72

GRASSMANNIAN, TRAINABLE 92.18

For deeper networks such as ResNets, we see faster con-

vergence even with Adam optimizer as per 4, and achieves
slight improvement in accuracies on the final test-set classi-
fication score after training for 200 epochs. We also attach
our code here for reproducibility purposes, while providing
a framework for extracting Grassmannians. 5
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