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ABSTRACT

Anomaly detection discovers regular patterns in unlabeled data and identifies the
non-conforming data points, which in some cases are the result of malicious
attacks by adversaries. Learners such as One-Class Support Vector Machines
(OCSVMs) have been successfully used in anomaly detection, yet their perfor-
mance may degrade significantly in the presence of sophisticated adversaries, who
target the algorithm itself by compromising the integrity of the training data. With
the rise in the use of machine learning in mission critical day-to-day activities
where errors may have significant consequences, it is imperative that machine
learning systems are made secure. To address this, we propose a defense mecha-
nism that is based on a contraction of the data, and we test its effectiveness using
OCSVMs. The proposed approach introduces a layer of uncertainty on top of
the OCSVM learner, making it infeasible for the adversary to guess the specific
configuration of the learner. We theoretically analyze the effects of adversarial
perturbations on the separating margin of OCSVMs and provide empirical evi-
dence on several benchmark datasets, which show that by carefully contracting
the data in low dimensional spaces, we can successfully identify adversarial sam-
ples that would not have been identifiable in the original dimensional space. The
numerical results show that the proposed method improves OCSVMs performance
substantially (2-7%).

1 INTRODUCTION

Anomaly detection refers to the problem of discovering patterns in data and identifying data points
that do not conform to the learned patterns. These non-conforming data points are often referred to
as anomalies or outliers. Anomaly detection has numerous applications in a variety of domains such
as network intrusion detection, credit card fraud detection, and spam filtering. It is an important
problem since the presence of anomalies may indicate malicious attacks that could disrupt mission
critical operations. Many machine learning methods, such as One-Class Support Vector Machines
(OCSVM) (Schölkopf et al., 2000), have been proven to be effective in anomaly detection applica-
tions. Although they are designed to withstand the effects of random noise in data, when adversaries
deliberately alter the input data and compromise their integrity, the performance of these learning
algorithms may degrade significantly.

Anomaly detection systems are often deployed in environments where the data naturally evolves.
In such situations, the models need to be retrained periodically, in contrast to many conventional
machine learning applications, where the current and future data is assumed to have identical prop-
erties. This periodic training may allow adversaries to gradually inject malicious data to diminish
the decision making capabilities of the learning algorithms (Huang et al., 2011). The aim of the
adversaries may be to avoid the detection of attacks or to decrease the performance of the learning
system (Huang et al., 2011). To achieve these aims, adversaries can undermine learning algorithms
in several ways. For instance, they may manipulate the training data if it is gathered from the real
operation of a system (e.g., spam filtering, firewall, anti-virus, etc.) and force the learning algorithm
to learn a distorted representation that is favorable to them.
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A sophisticated adversary has the capacity to conduct an attack in numerous ways. Hence, it is
not feasible to provide a general analysis that covers the whole range of attacks, across different
machine learning algorithms. In this work, we explore the following key question: Is it possible to
make OCSVMs more resistant against adversarial attacks which target the integrity of the training
data through distortions?. If an adversary can maliciously perturb the input data used by a learning
algorithm, they can force the learner to learn a model that is favorable to them. It has become
imperative to secure machine learning systems against such adversaries due to the recent increase of
automation in many day to day applications. In the context of image recognition, the perturbations
caused by an adversary are usually imperceptible to humans, but they can force a learned model
to mis-classify the perturbed images with high confidence. As Evtimov et al. (2017) have shown,
with the emergence of self driving vehicles, an adversary could alter a “S-T-O-P” road sign in such
a way that a vehicle (learning system) would reliably classify it as a “Speed Limit 45” sign. Such
perturbations could be imperceptible to humans and could result in the loss of human lives.

Our goal is to utilize a nonlinear data projection based algorithm to increase the attack resistance of
OCSVMs against an adversarial opponent under realistic assumptions. The theory of nonlinear ran-
dom projections facilitates large-scale, data-oriented, multi-agent decisions by reducing the number
of optimization parameters and variables. Recent work in the literature shows that nonlinear ran-
dom projections improve the training and evaluation times of kernel machines, without significantly
compromising the accuracy of the trained models (Rahimi & Recht, 2008; Erfani et al., 2015). In
this paper, we show that under adversarial conditions, selective nonlinear random projections can be
leveraged to increase the attack resistance of OCSVMs as well.

A dataset X ∈ Rn×d that is projected using a carefully chosen projection matrix A ∈ Rd×r com-
prised of random elements that are normally distributed, would have its pairwise Euclidean distances
preserved with high probability in the projected spaceXA (Johnson & Lindenstrauss, 1984). There-
fore, the properties of the original data distribution would be present in the projected dataset with
only minor perturbations. Note that here r is the dimension to which the data is nonlinearly projected
and r < d. Since the elements of A are drawn randomly, the learner obtains an additional layer of
security as it becomes virtually impossible for the adversary to guess the projection mechanism used
by the learner due to the search space becoming unbounded.

More formally, let ‖w∗pd‖2 be the length of the weight vector of the OCSVM in the transformed
space, after solving the corresponding optimization problem that includes the distortion made by
the adversary and the nonlinear random projection. Let ‖w∗p‖2 be the length of the weight vector
in the transformed space, where there is no adversary present. Since the learner cannot distinguish
between the original data and the distorted data, the learner would not have the ability to explicitly
calculate ‖w∗p‖2. Therefore, for reasonable values of r and small distortions D, we prove in this
paper that ‖w∗p‖2 is bounded above:

∥∥∥w∗p∥∥∥
2
≤ (1 + ε)

∥∥∥w∗pd∥∥∥
2
. (1)

The main contributions of this work are summarized as follows. We derive analytically an upper
bound on the length of the weight vector of a OCSVM trained on an undistorted dataset that has been
nonlinearly transformed to a lower dimensional space. In addition, the resistance added by nonlinear
data transformations against an adversarial opponent is studied through numerical experiments on
several benchmark datasets. We believe that our proposed approach can (i) increase the attack
resistance of OCSVMs under adversarial conditions, and (ii) give the learner a significant advantage
from a security perspective by adding a layer of unpredictability through the randomness of the data
transformation in a selective direction.

2 BACKGROUND AND RELATED WORK

As our proposed approach on adversarial learning for anomaly detection is based on randomized
kernels, in this section we briefly review these two lines of research.
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2.1 RANDOMIZED KERNELS FOR SVMS

To improve the efficiency of kernel machines, Rahimi & Recht (2008) embedded a random pro-
jection into the kernel formulation. They introduced a novel, data independent method (Random
Kitchen Sinks (RKS)) that approximates a kernel function by mapping the dataset to a relatively low
dimensional randomized feature space. Instead of relying on the implicit transformation provided by
the kernel trick, Rahimi and Recht explicitly mapped the data to a low-dimensional Euclidean inner
product space using a randomized feature map z : Rd → Rr. The kernel value of two data points is
then approximated by the dot product between their corresponding points in the transformed space
z. As z is a low dimensional transformation, compared to basis expansion, it is more computation-
ally efficient to transform inputs with z and train a linear SVM, as the result is comparable to that
of its corresponding nonlinear SVM. Evaluating a new data-point also becomes efficient when ran-
domized feature maps are used. Subsequently, Le et al. (2013) introduced a transformation method
that has lower time and space complexities compared to RKS.

More recently, the method of Rahimi & Recht (2008) has been applied to other types of kernel
machines. Erfani et al. (2015) introduced Randomized One-class SVMs (R1SVM), an unsupervised
anomaly detection technique that uses randomized, nonlinear features in conjunction with a linear
kernel. They reported that R1SVM reduces the training and evaluation times of OCSVMs by up
to two orders of magnitude without compromising the accuracy of the predictor. Our work differs
from these as we look at random projections as a defense mechanism for OCSVMs under adversarial
conditions. However, to the best of our knowledge, no existing work adopts Rahimi and Recht’s
method to address adversarial learning for anomaly detection with OCSVMs.

2.2 LEARNING UNDER ADVERSARIAL CONDITIONS

The problem of adversarial learning has inspired a wide range of research from the machine learn-
ing community, see Barreno et al. (2010) for a survey. For example, Zhou et al. (2012) introduced
an Adversarial Support Vector Machine (AD-SVM) model. AD-SVM incorporated additional con-
straint conditions to the binary SVM optimization problem in order to thwart an adversary’s attacks.
Their model leads to unsatisfactory results when the severity of real attacks differ from the expected
attack severity by the model. While we gain valuable insights regarding attack strategies from this
work, the defense mechanism in our work is significantly different. Furthermore, our work primarily
focuses on unsupervised learning, whereas Zhou et al. (2012) use a binary SVM for their work.

Deep Neural Networks (DNNs) have been shown to be robust to noise in the input data (Fawzi et al.,
2016), but they are unable to withstand carefully crafted adversarial data points (Goodfellow et al.,
2014). While these works are in the same domain, they are not directly related to our work, which
uses OCSVMs and kernels. Recent work by Evtimov et al. (2017) showed that an attacker could
alter a “S-T-O-P” road sign in such a way that a vehicle (learning system) would reliably classify it
as a “Speed Limit 45” sign. Such perturbations could be imperceptible to humans and could result
in the loss of human lives.

This paper presents a unique framework that brings together adversarial learning, anomaly detection
using OCSVMs, and randomized kernels. To the best of our knowledge, no existing work has
explored this unique path.

3 PROBLEM DEFINITION AND ATTACK MODEL

This section presents the problem definition and the interaction between the adversary and the
learner.

3.1 PROBLEM DEFINITION

We consider an adversarial learning problem for anomaly detection in the presence of a malicious
adversary. The adversary modifies the training data in order to disrupt the learning process of the
learner, who aims to detect anomalous data points. Hence, the adversary’s main goal is to hinder the
decision making capability of the learning system by compromising the integrity of the input data.
LetX ∈ Rn×d be the training dataset that contains data from the normal class andD ∈ Rn×d be the
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perturbations made by the adversary, making X +D the training dataset that has been distorted. It
should be noted that the learner cannot demarcate D from (X +D), otherwise the learner would be
able to remove the adversarial distortions during training, making the problem trivial. The adversary
has the freedom to determine D based on the knowledge it possesses regarding the learning system,
although the magnitude of D is usually bounded due to its limited knowledge, the increased risk of
being discovered, and computational constraints.

The learner, in response to the adversary’s perturbations, projects the data to a lower dimensional
space (i.e., (X +D)A). Each sample (X +D)i is then non-linearly transformed using the function
z((X + D)i) =

√
2 cos

(
(X + D)iA + b

)
, where b is a r-dimensional vector whose elements are

drawn uniformly from [0, 2π]. This nonlinear transformation to a lower dimensional space is done
in order to minimize the effectiveness of the attacks. The specifics of how to select a good transfor-
mation will be explained in Section 3.3. Previously it has been shown that by transforming the data
using z, we can approximate nonlinear kernels such as the Radial Basis Function (RBF), thereby
reducing the computational and memory overheads that impede kernel based learning algorithms
(Rahimi & Recht, 2008).

The anomaly detection problem is addressed in this paper using the OCSVM algorithm introduced
by Schölkopf et al. (2000), which separates the training data from the origin with a maximal margin
in the transformed space. Remember that (X +D) ∈ Rn×d is the original training dataset and let
C ∈ Rn×r be the result of the nonlinear transformation z. As explained in Section 2.1, since C can
now be linearly separated, the dual form of the OCSVM algorithm can be written in matrix notation
as,

minimize
α

1

2
αTCCTα,

subject to 0 ≤ α ≤ 1

νn
,

1Tα = 1,

(2)

where α is the vector of Lagrange multipliers, ν ∈ (0, 1] is a parameter that defines an upper bound
on the fraction of support vectors and a lower bound on the fraction of outliers, and 1 is a vector of
ones. The margin of the optimal separating hyperplane is given by ρ/‖w‖2, where w = αTC (α is
the solution to (2)). The offset of the hyperplane (i.e., ρ) can be recovered using any of the support
vectors with 0 < αi < 1/νn.

3.2 ATTACK MODEL

In an integrity attack, the adversary desires false negatives, and hence, would use D to move the
separating hyperplane of the OCSVM away from the normal data cloud and towards the space
where anomalies lie. Whereas in an availability attack, the adversary would attempt to create false
positives by shifting the separating margin towards the normal data cloud (Huang et al., 2011). This
work focuses on integrity attacks, where the objective of the adversary is to minimize the margin
of separation by maliciously injecting data into the training dataset through D. We will focus on
targeted attacks, where the adversary tries to smuggle a particular class of anomalies across the
separating margin. The adversary has the assumed capability to move any data point in any direction
by adding a non-zero displacement vector κi to xi. It is also assumed that the adversary does not
have any knowledge about the projection mechanisms used by the learner. Therefore, all of the
adversary’s actions take place in the original full dimensional space.

The attack model used is inspired by the restrained attack model described by Zhou et al. (2012).
The adversary would select a random subset of anomalies, push them towards the normal data cloud
and inject these perturbed points into the training set. Since the OCSVM algorithm considers all
the data points in the training set to be from the normal class, these distorted anomalies would be
seen by the learning algorithm as normal data points (similar to label flipping). The severity of the
attack, controlled by the parameter sattack ∈ [0, 1], is proportional to the distance from the normal
data cloud. To clarify, an anomaly data point that is pushed closer to the normal data cloud (small
sattack) would be considered as a moderate attack, whereas, an anomaly data point that is farther
away from the normal data (large sattack) cloud would be considered a severe attack. As Figure 1
shows, when a digit ‘7’ is distorted with less severity (e.g., 0.2), it resembles a ‘9’ visually. But as
the attack severity increases, the digit tends to look like a ‘7’ even though it is labeled as a ‘9’.
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(a) Anomaly digit (b) sattack = 0.2 (c) sattack = 0.5 (d) sattack = 0.8

Figure 1: A digit from anomaly class (‘7’) distorted to appear like a digit from the normal class (‘9’)

The adversary picks a target xti for each xi to be distorted and moves it towards the target by some
amount. Choosing xti for each xi optimally requires a significant level of computational effort and
a thorough knowledge about the distribution of the data. The attacker, similar to Zhou et al. (2012),
uses the centroid of the normal data cloud in the training set as the target point for all anomaly data
points that he/she intends to distort. A data point sampled from the normal class or an artificial data
point generated from the estimated normal class distribution could be used as alternatives.

For each attribute j in the original feature space, the adversary is able to add κij to xij , where

κij = (1− sattack)(xtij − xij), (3)

|κij | ≤ |xtij − xij |,∀j ∈ d. (4)

The adversary is able to orchestrate different attacks by changing the percentage of distorted
anomaly data points in the training dataset (i.e., pattack) and the severity of the distortion (i.e.,
sattack). It should be noted that if the adversary greedily pushes data away from the normal data
cloud, it would result in the distortions becoming quite evident and increase the risk of discovery
of the attack. Figure 2 illustrates the data distributions when different levels of attack severities are
applied to the anomaly data. As sattack increases, the anomaly data points are moved farther away
from the normal data cloud, altering the position of the separating hyperplane.
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Figure 2: Training data distribution and separating hyperplane of a toy problem under different
attack severities. ‘o’ denotes the undistorted data points and ‘x’ denotes the data points distorted by
the adversary. The OCSVM is trained using the entire (unlabeled) dataset as normal.

3.3 DEFENSE STRATEGY

Anticipating possible distortions by an adversary, the learner can take precautions to minimize their
effects by contracting the data to a lower dimensional space. By using a projection matrix A with
its elements drawn randomly from some distribution, the learner introduces a layer of uncertainty
to the adversary-learner problem. This gives the learner an additional advantage from a security
perspective. But this unpredictability can also be seen as the main caveat of using random projections
to reduce the dimensionality of data. While some random projections result in better separated
volumetric clouds than the original ones, some projections result in the data from different classes
being overlapped.

In order to increase the attack resistance of a learning system, the impact of adversarial inputs should
be minimized. Based on this intuition, we propose that a projection that conceals the potential
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distortions of an adversary would make any learning system that learns from the projected data
more resistant to attacks. As the learner cannot demarcateD from the training data, it is not possible
to identify an ideal projection that conceals the adversarial distortions. Thus, the learner would have
to select a projection that contracts the entire training set (expecting the adversarial points to be
masked by normal data) and separates the training data from the origin with the largest margin in
the transformed space.

Therefore, motivated by a generalized version of the Dunn’s index (Bezdek & Pal, 1998), we pro-
pose a compactness measure to identify suitable projection directions in a one-class problem. The
learner would calculate the compactness of the projected data using Equation 5 for multiple ran-
dom projections of the training data and select the one that gives the highest value, which can be
considered as the projection that gives the best attack resistance.

The compactness of projection Pi, where µi is the centroid of the projected training set, 0 is the
origin in the transformed space and the function d is the Euclidean distance can be calculated as,

compactness of Pi =
d(0, µi)(∑

x∈Pi
d(x, µi)

)
/n
. (5)

Intuitively, an anomaly detection algorithm would attempt to identify the smallest hypersphere that
contains the training data set, in either the original dimensional space (i.e., d) or in a transformed
space. The objective of the adversary (learner) in such a situation would be to maximize (minimize)
the radius of the minimum enclosing hypersphere. The approach used by the learner to minimize
the attack’s effects is formalized next in terms of the random projection parameters A and b, the
dimension of the projected dataset r and the adversary’s data distortion strategy D.

Algorithm 1 Defense mechanism

1: procedure IDENTIFY PROJECTION(X +D,Xtest,r)
2: max compactness← −1
3: best transformation← null
4: N ← 1, 000 . Number of projection directions to sample
5: A, b← null . Transformation parameters
6: for i← 1, N do
7: [(X +D)∗, A, b]← z(X +D) . Nonlinearly transform the data
8: compactness← calculate compactness((X +D)∗) . Calculate compactness of

transformed data. (Equation 5)
9: if compactness > max compactness then . Identify best projection

10: max compactness← compactness
11: best transformation← (X +D)∗

12: A← A
13: b← b
14: end if
15: end for
16: model← ocsvm train(best transformation) . Train linear OCSVM in projected space
17: X∗test ← z(Xtest, A, b) . Transform the test set with same parameters
18: accuracy metrics← svm predict(X∗test,model) . Evaluate the transformed test set
19: return A, b . Return transformation parameters that result in the best defensive projection
20: end procedure

4 OCSVM UNDER AN ATTACK ON INTEGRITY

This section analyzes the effects of the adversary’s perturbations on the margin of separation of the
OCSVM. The distance between the hyperplane and the origin of a OCSVM is given by ρ/‖w‖2,
where ρ is the offset and w is the vector of weights. This implies that a small ‖w‖2 corresponds to
a large margin of separation from the origin. Since the learner cannot demarcate the perturbations
from the normal training data, it cannot empirically calculate this value for the undistorted dataset.
Therefore, based on the assumptions given below, we analytically derive an upper bound on ‖w‖2
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of a OCSVM that has been trained on a nonlinearly transformed dataset without any adversarial
distortions.

Assumption 1. The distortions made by the adversary are small and positive.
This assumption holds well due to the following reasons,

1. The adversary distorts data in the original feature space. In this space, we can align any
given dataset in such a way that any outliers present in the data would lie closer to the
origin and the normal data cloud would lie in the positive orthant. Such a transformation
would compel the adversary to make adversarial distortions in the direction of the normal
data cloud (positive).

2. Large distortions increase the risk of the adversary being discovered, therefore a rational
adversary would refrain from conducting attacks with significant perturbations.

Theorem 1. Let ω∗p be the primal solution the OCSVM optimization problem in the projected space
when there are no adversarial distortions. Similarly, define ω∗pd as the primal solution in the presence
of a malicious adversary. Let r be the number of dimensions to which the data is projected. Then,
for small, positive distortions, the length of the weight vector w∗p is bounded above,

∥∥∥w∗p∥∥∥
2
≤
∥∥∥w∗pd∥∥∥

2
+ ε+

√
r. (6)

The strength of the adversary’s attacks will be reflected on the value of ε and will increase with the
strength of the attacks. The defender is able to make the upper bound of

∥∥∥w∗p∥∥∥
2

tighter by reducing
the dimensionality of the dataset (i.e., r). Refer Table 2 for empirical validation and Appendix A for
a proof.

5 EXPERIMENTS AND DISCUSSION

The experimental evaluation presented in the following section demonstrates the effectiveness of
our proposed defense mechanism on three benchmark datasets: MNIST, CIFAR-10, and SVHN. We
compare the performance of OCSVMs in conjunction with nonlinear random projections, when an
active adversary is conducting a directed attack by maliciously distorting the data.

Datasets: We generate single-class (unlabeled) datasets from MNIST (LeCun & Cortes, 2010),
CIFAR-10 (Krizhevsky, 2009) and SVHN (Yuval Netzer, 2011) by considering one of the original
classes as the normal class, and another class in the dataset as the anomaly class. The objective
of the adversary is to get the learner to classify anomalies as normal data points during evaluation.
Note again that the combined training sets are single-class and unlabeled, while the original classes
provide the ground truth.

For each dataset, we create two test sets (with a normal to anomaly ratio of 5 : 1): (i) a clean test
set (called testC) that consists of data from the anomaly class and normal class, without undergoing
any transformations; (ii) a distorted test set (testD) with its anomalies pushed closer to normal data
cloud similar to how distortions are made during the training phase. All values in the datasets are
normalized by dividing by 255. Refer to Table 1 for details regarding the class and number of
samples used in each training and test set.

Table 1: Datasets used for training and testing purposes.

Dataset Training set size Test set size normal class anomaly class

MNIST 2,000 1,200 digit ‘9’ digit ‘7’
CIFAR-10 3,650 1,200 airplane frog
SVHN 4,200 1,200 digit ‘0’ digit ‘1’

Experimental setup: We use the OCSVM implementation of the LIBSVM library (Chang & Lin,
2011) in our experiments. Different attack scenarios are simulated (creating trainD) by varying
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the attack percentage pattack and attack severity sattack. We specifically choose the values 5% for
pattack and 0.3, 0.5 and 0.7 for sattack. For comparison purposes, we test all the attack scenarios
with a OCSVM using the RBF kernel in the original feature space.

For nonlinear projections, we choose the dimensions to which the data is projected by selecting the
local intrinsic dimensionality (LID) of the dataset (Amsaleg et al., 2015), and 50% of the original
number of dimensions. The corresponding LID values are 220, 733 and 463 for MNIST, CIFAR-10
and SVHN respectively. For each dimension, the learner would perform 1,000 nonlinear transforma-
tions and select the projection that results in the highest compactness, using Equation 5. The test sets
would undergo the same transformation as the selected one. The learner then uses the transformed
training set to train a OCSVM with a linear kernel, and the resulting model is evaluated using the
test sets. For these experiments the ν parameter of the OCSVM is kept fixed across all experiments
conducted using each dataset. Since ν sets a lower bound on the fraction of outliers, it is crucial to
keep its value fixed across different attack scenarios in order to evaluate the interplay between the
adversarial distortions and the performance of the OCSVMs. When training the full dataset with the
RBF kernel, the default value of the parameter gamma in LIBSVM was kept unchanged.

Accuracy metric: For comparison purposes, we also train a OCSVM using an undistorted training
set (called trainC). We report the performance against testC as well as testD using the f-score. We
observed similar patterns for each dataset across different experiments, but due to space limitations,
graphs and tables of only some are shown.

5.1 RESULTS AND DISCUSSION

Figure 3 presents the results of an experiment, where pattack = 5% and sattack = 0.5 (refer to
Appendix B for the corresponding numerical values). The top row shows how the f-score is affected
by the non-linear transformation and the adversary’s distortion. For each number of dimensions,
four results are presented; f-score when: (i) trained using trainC , and tested with testC ; (ii) trained
with trainC and tested with testD; (iii) trained with trainD and tested with testC ; and finally (iv)
trained with trainD and tested with testD.

First, the classification performance of OCSVMs trained on nonlinearly transformed data are 2-7%
higher than the performance of the OCSVM trained on the original feature space, although they
require far less computation time (e.g., for CIFAR-10, a training time of 4.95s when trained with
r = 733 vs. 20.24s when trained with the full, 3, 072 dimesional data). These observations are in
line with the previous work in this area (Erfani et al., 2015). Therefore, the range of the y axes in
the graphs have been altered so that the differences can be observed.

We observe that the f-scores across the dimensions decrease between trainC |testD and trainD|testD.
This indicates that a OCSVM trained on clean data can identify adversarial samples better than
a OCSVM trained on distorted data. Consequently this shows that OCSVMs are not immune to
integrity attacks by design, and by carefully crafting adversarial data points, adversaries can manip-
ulate OCSVMs to learn models that are favorable to them.

A comparison between f-scores of trainD|testC and trainD|testD shows that, as the dimension is
reduced from the original dimension, the f-scores increase, but as we reduce the dimension further,
the f-scores begin to decrease. The increase in f-score confirms that by projecting data to a lower
dimensional space using a carefully selected direction, we can identify adversarial samples that
would not have been identifiable in the original feature space. This is confirmed by the graphs in the
second row, which show the false positive rate of the OCSVMs under integrity attacks (i.e., number
of anomalies that are undetected). We find that there is a significant improvement in detecting
adversarial samples under the proposed approach (e.g., 23% on CIFAR-10 and 31% on MNIST).

When the dimensions are reduced below a certain dataset dependent threshold the OCSVM perfor-
mance starts to decline (e.g., SVHN 1,500 vs 463). We postulate that the explanation of this effect is
the reduction in distance between classes (in this case perturbed anomalies and normal data points)
with the dimension. As we reduce the dimension of the transformation, we are able to reduce the
effects of the adversarial datapoints. But at the same time, there is a significant loss of useful in-
formation due to the dimensionality reduction. Due to the interplay between these two factors, the
performance of OCSVMs reduces as we decrease the dimension beyond a certain threshold.
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Figure 3: The top row shows the performance of OCSVMs under adversarial conditions when the
training takes place in different dimensional spaces. It compares the evaluation performance of
OCSVMs trained on trainC and trainD against the two test sets: testc and testD. The bottom row
shows the false positive rate of the OCSVMs under an integrity attack (i.e., trained on trainD and
evaluated using testD).

Table 2: Comparison of actual
∥∥w∗p∥∥2, calculated on the MNIST data set (pattack = 5% and

sattack = 0.5) and the theoretical upperbound calculated using Theorem 1.

dimensions Actual
∥∥w∗p∥∥2 ∥∥w∗pd∥∥2 √

r Upperbound with ε = 0

210 1,969.30 2,073.00 14.49 2,087.49
393 2,734.40 2,878.30 19.82 2,898.12

Finally, Table 2 shows the effectiveness of the bound derived in Theorem 1. The results show the
consistency of the upper bound, which becomes tighter under dimension reduction.

In summary, the above experiments demonstrate that, (i) OCSVMs are vulnerable to adversarial
attacks on integrity, (ii) by projecting a distorted dataset to a lower dimension in an appropriate
direction we can increase the robustness of the learned model w.r.t. integrity attacks, (iii) the per-
formance, in terms of f-score, starts to decline when the dimensionality is reduced beyond a certain
threshold, and (iv) the performance in the projected spaces, when there are no attacks on integrity,
is comparable to that in the original dimensional space, but with less computational burden.

6 CONCLUSIONS AND FUTURE WORK

This paper presents a theoretical and experimental investigation based on a unique combination of
unsupervised anomaly detection, using OCSVMs and random projections for dimensionality re-
duction in the presence of a sophisticated adversary. Our numerical analysis focuses on two main
aspects: the performance of OCSVMs in lower dimensional spaces under adversarial conditions and
the impact of nonlinear random projections on the robustness of OCSVMs w.r.t. adversarial pertur-
bations. The results suggest that OCSVMs can be significantly affected if an adversary has access to
the data on which they are trained. For each dataset, with very high probability, there is at least one
dimensionality and projection direction that results in a OCSVM that is able to identify adversarial
samples that would not have been identifiable by a OCSVM in the original dimensional space. Due
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to the layer of uncertainty added by the randomness of the projection, our approach makes the learn-
ing system more secure by making it virtually impossible for an adversary to guess the underlying
details of the learner. Therefore, our approach can be utilized to make a learning system secure by,
(i) reducing the impact of possible adversarial perturbations by contracting, and moving the normal
data cloud away from the origin in the projected space, and (ii) making the search space of the
adversary unbounded by adding a layer of randomness.

Since data contraction is at the core of our proposed approach, for our future work we would like to
investigate whether our approach will still hold if used with other learning algorithms. One major
question that arises from this work is how to optimally select the number of dimensions to trans-
form the data to. We are currently exploring the possibility of using the intrinsic dimensionality
of datasets to address this problem. Since there is a clear information asymmetry between the ad-
versary and learner (due to the randomness), this problem provides a good foundation to explore
game-theoretical formulations of anomaly detection and adversarial learning problems under di-
mensionality reduction techniques. We also plan to study “boiling frog” type of attacks, where the
adversary gradually injects malicious data over time.

10
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Kawarabayashi, and Michael Nett. Estimating Local Intrinsic Dimensionality. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’15, pp. 29–38, 2015.

Marco Barreno, Blaine Nelson, Anthony D Joseph, and JD Tygar. The security of machine learning.
Machine Learning, 81(2):121–148, 2010.

J. C. Bezdek and N. R. Pal. Some new indexes of cluster validity. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 28(3):301–315, Jun 1998.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

Sarah M. Erfani, Mahsa Baktashmotlagh, Sutharshan Rajasegarar, Shanika Karunasekera, and
Christopher Leckie. R1SVM: A Randomised Nonlinear Approach to Large-Scale Anomaly De-
tection. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 432–
438, 2015.

Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno, Bo Li, Atul Prakash, Amir
Rahmati, and Dawn Song. Robust Physical-World Attacks on Machine Learning Models. CoRR,
abs/1707.08945, 2017.

Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Robustness of classifiers:
from adversarial to random noise. CoRR, abs/1608.08967, 2016.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial
Examples. CoRR, abs/1412.6572, 2014.

Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubinstein, and J. D. Tygar. Ad-
versarial Machine Learning. In Proceedings of the 4th ACM Workshop on Security and Artificial
Intelligence, pp. 43–58, 2011.

William B Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space.
Contemporary mathematics, 26(189-206):1, 1984.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Quoc Viet Le, Tamas Sarlos, and Alexander Johannes Smola. Fastfood: Approximate Kernel Ex-
pansions in Loglinear Time. In Proceedings of International Conference on Machine Learning
(ICDM), 2013.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

Ali Rahimi and Benjamin Recht. Random Features for Large-Scale Kernel Machines. In Proceed-
ings of Advances in Neural Information Processing Systems (NIPS), pp. 1177–1184. 2008.

Prof. Bernhard Schölkopf, Robert C Williamson, Alex J. Smola, John Shawe-Taylor, and John C.
Platt. Support Vector Method for Novelty Detection. In Proceedings of Advances in Neural
Information Processing Systems (NIPS), pp. 582–588. 2000.

Tao Wang Adam Coates Alessandro Bissacco Bo Wu Andrew Y. Ng Yuval Netzer. Reading Digits
in Natural Images with Unsupervised Feature Learning. NIPS Workshop on Deep Learning and
Unsupervised Feature Learning, 2011.

Yan Zhou, Murat Kantarcioglu, Bhavani Thuraisingham, and Bowei Xi. Adversarial Support Vec-
tor Machine Learning. In Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1059–1067, 2012.

11



Under review as a conference paper at ICLR 2018

A PROOFS

Definition 1. Let X ∈ Rn×d be the matrix that contains the training data. Similarly, define D ∈
Rn×d as the matrix that contains the distortions made by the Adversary. Let A ∈ Rd×r be the
projection matrix where each element is an i.i.d. N (0, 1) random variable. Define b as a 1 × r
row vector where each element is drawn uniformly from [0, 2π]. Using these variables, we define
C ∈ Rn×r, where the element at row i column j takes the following form.

Ci,j = cos
([(

Xi,1 +Di,1

)
A1,j +

(
Xi,2 +Di,2

)
A2,j + · · ·+

(
Xi,d +Di,d

)
Ad,j

]
+ b1,j

)
, (7)

Ci,j = cos
(([

Xi,1A1,j +Xi,2A2,j + · · ·+Xi,dAd,j
]
+ b1,j

)
+
[
Di,1A1,j +Di,2A2,j + · · ·+Di,dAd,j

])
.

(8)

Similarly, we define the matrices CX , CD, SX , SD as follows,

CXi,j = cos
([
Xi,1A1,j +Xi,2A2,j + · · ·+Xi,dAd,j

]
+ b1,j

)
,

CDi,j = cos
([
Di,1A1,j +Di,2A2,j + · · ·+Di,dAd,j

])
,

SXi,j = sin
([
Xi,1A1,j +Xi,2A2,j + · · ·+Xi,dAd,j

]
+ b1,j

)
,

SDi,j = sin
([
Di,1A1,j +Di,2A2,j + · · ·+Di,dAd,j

])
.

Proof: (of Theorem 1) Let α̃ be the vector achieving the optimal solution in the projected space
when adversarial distortions are present. Then, the solution for the primal problem in the projected
space with adversarial distortions, defined as w∗pd can be obtained as

∥∥∥w∗pd∥∥∥
2
=
∥∥∥α̃TC∥∥∥

2
. (9)

Using the Cosine angle-sum identity on the matrix defined by equation 8 (the symbol � denotes the
Hadamard product for matrices),

∥∥∥w∗pd∥∥∥
2
=
∥∥∥α̃T (CX � CD)− α̃T (SX � SD)∥∥∥

2
. (10)

Using the reverse triangle inequality we obtain

∥∥∥w∗pd∥∥∥
2
≥
∥∥∥α̃T (CX � CD)∥∥∥

2
−
∥∥∥α̃T (SX � SD)∥∥∥

2
. (11)

From the constraint conditions of the OCSVM problem (refer equation 2), we get 1T α̃ = 1. Also,
as sin(θ) ∈ [−1, 1],∀θ. Therefore the inequality can be further simplified as,

∥∥∥w∗pd∥∥∥
2
≥
∥∥∥α̃T (CX � CD)∥∥∥

2
−
√
r. (12)

Due to Assumption 1, using small-angle approximation, for small ε values, we obtain

∥∥∥w∗pd∥∥∥
2
≥
∥∥∥α̃TCX∥∥∥

2
− ε−

√
r. (13)
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Since the optimization problem is a minimization problem, as shown in (2), the optimal solution
for the OCSVM without any distortion (i.e., α∗) would give a value less than or equal to the value
given by α̃. Thus,

∥∥∥α∗,TCX∥∥∥
2
≤
∥∥∥w∗pd∥∥∥

2
+ ε+

√
r. (14)

Define w∗p as the primal solution optimization in the projected space, if there were no adversarial
perturbations present, therefore

∥∥∥w∗p∥∥∥
2
≤
∥∥∥w∗pd∥∥∥

2
+ ε+

√
r. (15)

B RESULTS

Table 3: Comparison of f-score on the distorted and undistorted MNIST test sets when pattack is set
to 5% and sattack is 0.5

f-score

dimensions fp-rate trainC |testC trainC |testD trainD|testC trainD|testD

220 0.900 0.9123 0.8781 0.9105 0.8767
392 0.690 0.9155 0.8964 0.9147 0.8951
784 1.000 0.8938 0.8577 0.8913 0.8539

Table 4: Comparison of f-score on the distorted and undistorted CIFAR-10 test sets when pattack is
set to 5% and sattack is 0.5

f-score

dimensions fp-rate trainC |testC trainC |testD trainD|testC trainD|testD

733 0.750 0.8530 0.8291 0.8493 0.8259
1500 0.895 0.8351 0.8192 0.8333 0.8145
3072 0.980 0.8330 0.8090 0.8246 0.7998

Table 5: Comparison of f-score on the distorted and undistorted SVHN test sets when pattack is set
to 5% and sattack is 0.5

f-score

dimensions fp-rate trainC |testC trainC |testD trainD|testC trainD|testD

463 0.8091 0.7951 0.8033 0.7893 0.9050
1500 0.8167 0.8064 0.8115 0.8012 0.9250
3072 0.7621 0.7338 0.7564 0.7289 0.9550
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