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ABSTRACT

It would be desirable for a reinforcement learning (RL) based agent to learn be-
haviour by merely watching a demonstration. However, defining rewards that fa-
cilitate this goal within the RL paradigm remains a challenge. Here we address this
problem with Siamese networks, trained to compute distances between observed
behaviours and the agent’s behaviours. Given a desired motion such Siamese net-
works can be used to provide a reward signal to an RL agent via the distance
between the desired motion and the agent’s motion. We experiment with an RNN-
based comparator model that can compute distances in space and time between
motion clips while training an RL policy to minimize this distance. Through ex-
perimentation, we have had also found that the inclusion of multi-task data and
an additional image encoding loss helps enforce the temporal consistency. These
two components appear to balance reward for matching a specific instance of a
behaviour versus that behaviour in general. Furthermore, we focus here on a par-
ticularly challenging form of this problem where only a single demonstration is
provided for a given task – the one-shot learning setting. We demonstrate our ap-
proach on humanoid agents in both 2D with 10 degrees of freedom (DoF) and 3D
with 38 DoF.

1 INTRODUCTION

Imitation learning and Reinforcement Learning (RL) often intersect when the goal is to imitate with
incomplete information, for example, when imitating from motion capture data (mocap) or video. In
this case, the agent needs to search for actions that will result in observations similar to the expert.
However, formulating a metric that will provide a reasonable distance between the agent and the
expert is difficult. Robots and people plan using types of internal and abstract pose representations
that can have reasonable distances; however, typically when animals observe others performing
tasks, only visual information is available. Using distances in pose-space is ill-suited for imitation as
changing some features can result in drastically different visual appearance. In order to understand
how to perform tasks from visual observation a mapping/transformation is used which allows for the
minimization of distance in appearance. Even with a method to transform observations to a similar
pose space, each person has different capabilities. Because of this, people are motivated to learn
transformations in space and time where they can reproduce the behaviour to the best of their own
ability. How can we learn a representation similar to this latent space?

An essential detail of imitating demonstrations is their sequential and causal nature. There is both an
ordering and speed in which a demonstration is performed. Most methods require the agent to learn
to imitate the temporal and spatial structure at the same time creating a potentially narrow solution
space. When the agent becomes desynchronized with the demonstration, the agent will receive a
low reward. Consider the case when a robot has learned to stand when its goal is to walk. Standing
is spatially close to the demonstration and actions that help the robot stand, as opposed to falling,
should be encouraged. How can such latent goals be encouraged?

If we consider a phase-based reward function r = R(s, a, φ) where φ indexes the time in the demon-
stration and s and a is the agent state and action. As the demonstration timing φ, often controlled
by the environment, and agent diverge, the agent receives less reward, even if it is visiting states
that exist elsewhere in the demonstration. The issue of determining if an agent is displaying out-
of-phase behaviour can understood as trying to find the φ that would result in the highest reward
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φ′ = maxφR(s, a, φ) and the distance φ′ − φ is an indicator of how far away in time or out-of-
phase the agent is. This phase-independent form can be seen as a form of reward shaping. However,
this naive description ignores the ordered property of demonstrations. What is needed is a metric
that gives reward for behaviour that is in the proper order, independent of phase. This ordering mo-
tivates the creation of a recurrent distance metric that is designed to understand the context between
two motions. For example, does this motion look like a walk, not, does this motion look precisely
like that walk.

Our proposed Visual Imitation with Reinforcement Learning (VIRL) method uses Recur-
rent Siamese Networks (RSNs) and has similarities to both Inverse Reinforcement Learning
(IRL) (Abbeel & Ng, 2004) and Generative Advisarial Imitation Learning (GAIL) (Ho & Ermon,
2016). The process of learning a cost function that understands the space of policies to find an
optimal policy given a demonstration is fundamentally IRL. While using positive examples from
the expert and negative examples from the policy is similar to the method GAIL uses to train a
discriminator to recognize in distribution examples. In this work, we build upon these techniques
by constructing a method that can learn policies using noisy visual data without action information.
Considering the problem’s data sparsity, we include data from other tasks to learn a more robust
distance function in the space of visual sequence. We also construct a cost function that takes into
account the demonstration ordering as well as pose using a recurrent Siamese network. Our con-
tribution consists of proposing and exploring these forms of recurrent Siamese networks as a way
to address a critical problem in defining reward structure for imitation learning from the video for
deep RL agents and accomplishing this on simulated humanoid robots for the challenging single
shot learning setting.

2 RELATED WORK

Learning From Demonstration Searching for good distance functions is an active research
area (Abbeel & Ng, 2004; Argall et al., 2009). Given some vector of features, the goal is to find
an optimal transformation of these features, such in this transformed space, there exists a strong
contextual meaning. Previous work has explored the area of state-based distance functions, but most
rely on pose based metrics (Ho & Ermon, 2016; Merel et al., 2017) that come from an expert. While
there is other work using distance functions, including for example Sermanet et al. (2017); Finn
et al. (2017); Liu et al. (2017); Dwibedi et al. (2018), few use image based inputs and none con-
sider the importance of learning a distance function in time as well as space. In this work, we train
recurrent Siamese networks (Chopra et al., 2005) to learn distances between videos.

Partially Observable Imitation Without Actions For Learning from Demonstration (LfD) prob-
lems the goal is to replicate the behaviour of expert πE behaviour. Unlike the typical setting for
humans learning to imitate, LfD often assumes the availability of expert action and observation
data. Instead, in this work, we focus on the case where only noisy actionless observations of the
expert are available. Recent work uses Behavioural Cloning (BC) to learn an inverse dynamics
model to estimate the actions used via maximum-likelihood estimation (Torabi et al., 2018). Still,
BC often needs many expert examples and tends to suffer from state distribution mismatch issues
between the expert policy and student (Ross et al., 2011). Work in (Merel et al., 2017) proposes a
system based on GAIL that can learn a policy from a partial observation of the demonstration. In
this work, the discriminator’s state input is a customized version of the expert’s state and does not
take into account the demonstration’s sequential nature. The work in (Wang et al., 2017) provides
a more robust GAIL framework along with a new model to encode motions for few-shot imitation.
This model uses an Recurrent Neural Network (RNN) to encode a demonstration but uses expert
state and action observations. In our work, the agent is limited to only a partial visual observation as
a demonstration. Additional works learn implicit models of distance (Yu et al., 2018; Pathak et al.,
2018; Finn et al., 2017; Sermanet et al., 2017), none of these explicitly learn a sequential model
considering the demonstration timing. An additional version of GAIL, infoGAIL (Li et al., 2017),
included pixel based inputs. Goals can be specified using the latent space from a Variational Auto
Encoder (VAE) (Nair et al., 2018). Our work extends this VAE loss using sequence data to train a
more temporally consistent latent representation. Recent work (Peng et al., 2018b) has a 2D control
example of learning from video data. We show results on more complex 3D tasks and additionally
model distance in time. In contrast, here we train a recurrent siamese model that can be used to en-

2



Under review as a conference paper at ICLR 2020

able curriculum learning and allow for computing distances even when the agent and demonstration
are out of sync.

3 PRELIMINARIES

In this section, we outline the general RL framework and specific formulations for RL that we rely
upon when developing our method in Section 4.

Reinforcement Learning Using the RL framework formulated with a Markov Dynamic Process
(MDP): at every time step t, the world (including the agent) exists in a state st ∈ S, wherein the
agent is able to perform actions at ∈ A, sampled from a policy π(at|st) which results in a new
state st+1 ∈ S and reward rt according to the transition probability function T (rt, st+1|st, at). The
policy is optimize to maximize the future discounted reward

J(π) = Er0,...,rT

[
T∑
t=0

γtrt

]
, (1)

where T is the max time horizon, and γ is the discount factor, indicating the planning horizon length.
Inverse reinforcement learning refers to the problem of extracting a reward function from observed
optimal behavior Ng et al. (2000). In contrast, in our approach we learn a distance that works across
a collection of behaviours. Further, we do not assume the example data to be optimal. See Appendix
7.2 for further discussion of the connections of our work to inverse reinforcement learning.

GAIL VIRL is similar to the GAIL framework (Ho & Ermon, 2016) which uses a Generative
Advasarial Network (GAN) (Goodfellow et al., 2014), where the discriminator is trained with posi-
tive examples from the expert trajectories and negative examples from the policy. The generator is a
combination of the environment, policy and current state visitation probability induced by the policy
pπ(s).

min
θπ

max
θφ

EπE [log(D(s, a|θφ))] + Eπθπ [log(1−D(s, a|θφ))] (2)

In this framework the discriminator provides rewards for the RL policy to optimize, as the probability
of a state generated by the policy being in the distribution rt = D(st, at|θφ). While this framework
has been shown to work in practice, this dual optimization is often unstable. In the next section we
will outline our method for learning a more stable distance based reward over sequences of images.

4 CONCEPTUAL DISTANCE-BASED REINFORCEMENT LEARNING

Our approach is aimed at facilitating imitation learning within an underlying RL formulation over
partially observed observations o. Unlike the situation in GAIL, we do not rely on having accces to
state, s and action, a information – our idea is to minimize a function that determintes the distance
between two sequences observations, o, one from the desired example behavior oe, and another
from the current agent behavior oa. We can then define the reward used within an underlying RL
framework in terms of a distance function D, such that

rt̂(o
e, oa) = −D(oe, oa, t̂) =

t̂∑
t=0

−d(oet , oat ), (3)

where in our setting here D(oe, oa, t̂) models a distance between video clips from time t = 0 to t̂.

A simple formulation of the approach above can be overly restrictive on sequence timing. While
these distances can serve as RL rewards, they often provide insufficient signal for the policy to learn
a good imitative behaviour, especially when the agent only has partial observations of the expert.
We can see an example of this in Figure 1a were starting at t5 the agent (in red) begins to exhibit
behaviour that is similar to the expert (in blue) yet the spatial distance indicates that this state is
further away from the desired behaviour than at t4.

To encourge the agent to match any part of the expert behaviour we propose decomposing the dis-
tance into two distances, by adding a type of temporal distance shown in green. To compute a time
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independant distance we can find the state in the expert sequence that is closest to the agent’s current
state argmin t̂∈T d(oet̂ , o

a
t ) and use it in the following distance measure

dT (oe, oa, t̂, t) = . . .+ d(oe
t̂−1, o

a
t−1) + d(oe

t̂
, oat ) + d(oe

t̂+1
, oat+1) + . . . (4)

Using only a single state time-alined may lead to the agent fixating on mataching a single state in
the expert demonstration. To avoid this the neighbouring states given sequence timing readjustment
are used in the distance computation. This framework allows the agent to be rewarded for exhibiting
behaviour that matches any part of the experts demonstration. The better is learns to match parts of
the expert demonstration the more reward it is given. The previous spatial distance will then help
the agent learn to sync up its timing with the deomonstration. Next we describe how we learn both
of these distances.
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Figure 1: A pair of sequences from the expert (blue) and agent (red). The spatial distance is shown via doted
black lines and the temporal distance for d(oe, oa7) is visulized in green. On the right the flow of control for the
learning system is shown.

Distance Metric Learning Many methods can be used to learn a distance function in state-space.
Here we use a Siamese network f(oe, oa) with a triplet loss over time and task data (Chopra et al.,
2005). The triplet loss is used to minimize the distance between two examples that are positive, very
similar or from the same class, and maximize the distance between pairs of examples that are known
to be unrelated. For more details see supplementary document.

Sequence Imitation The distance metric is formulated in a recurrent style where the distance is
computed from the current state and conditioned on all previous states d(ot|ot−1, . . . , o0). The
loss function is a combination of distance Eq. 9 and VAE-based representation learning objectives
from Eq. 7 and Eq. 8, detailed in the supplementary material. This combination of sequence-
based losses assists in compressing the representation while ensuring intermediate representations
are informative. The loss function used to train the distance model on a positive pair of sequences
is:

LV IRL(oi, op, ·) =λ0LSN (oi, op, ·) + λ1[
1

T

T∑
t=0

LSN (oi,t, op,t, ·)]+

λ2[
1

T

T∑
t=0

LV AE(oi,t) + LV AE(op,t)]+

λ3[LAE(oi) + LAE(op)].

Where λ = {0.7, 0.1, 0.1, 0.1}. With a negative pair, the second sequence used in the VAE and AE
losses would be the negative sequence.

The Siamese loss function remains the same as in Eq. 9 but the overall learning process evolves
to use an RNN-based deep networks. A diagram of the full model is shown in Figure 2. This
model uses a time distributed Long Short-Term Memory (LSTM). A single convolutional network
conva is first used to transform images of the demonstration oa to an encoding vector eat . After
the sequence of images is distributed through conva there is an encoded sequence < ea0 , . . . , e

a
t >,

this sequence is fed into the RNN lstma until a final encoding is produced hat . This same process
is performed for a copy of the RNN lstma producing hbt for the agent ob. The loss is computed
in a similar fashion to (Mueller & Thyagarajan, 2016) using the sequence outputs of images from
the agent and another from the demonstration. The reward at each timestep is computed as rt =
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||hat −hbt ||+ ||eat − ebt || = ||lstma(conva(s
a
t ))− lstma(conva(s

b
t))||+ ||conva(sat )− conva(sbt)||.

At the beginning of each episode, the RNN’s internal state is reset. The policy and value function
have 2 hidden layers with 512 and 256 units, respectively. The use of additional VAE-based image
and Auto Encoder (AE)-based sequence decoding losses improve the latent space conditioning and
representation.
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Figure 2: Siamese network structure. The convolutional portion of the network includes 2 convolution layers
of 8 filters with size 6 × 6 and stride 2 × 2, 16 filters of size 4 × 4 and stride 2 × 2. The features are then
flattened and followed by two dense layers of 256 and 64 units. The majority of the network uses ReLU
activations except for the last layer that uses a sigmoid activation. Dropout is used between convolutional
layers. The RNN-based model uses a LSTM layer with 128 hidden units, followed by a dense layer of 64 units.
The decoder model has the same structure in reverse with deconvolution in place of convolutional layers.

Algorithm 1 Learning Algorithm

Initialize model parameters θπ and θd
Create experience memory D ← {}
while not done do

for i ∈ {0, . . . N} do
τi ← {}
{st, oet , oat } ← env.reset()
for t ∈ {0, . . . , T} do
at ← π(·|st, θπ)
{st+1, o

e
t+1, o

a
t+1} ← env.step(at)

rt ← −d(oet+1, o
a
t+1|θd)

τi,t ← {st, oet , oat , at, rt}
{st, oet , oat } ← {st+1, o

e
t+1, o

a
t+1}

end for
end for
D ← D

⋃
{τ0, . . . , τN}

Update d(·) parameters θd using D
Update policy θπ using {τ0, . . . , τN}

end while

Unsupervised Data labelling To construct
positive and negative pairs for training we make
use of time information in a similar fashion
to (Sermanet et al., 2017), where observations at
similar times in the same sequence are often cor-
related and observations at different times will
likely have little similarity. We compute pairs by
altering one sequence and comparing this modi-
fied version to its original. Positive pairs are cre-
ated by adding noise to the sequence or altering
a few frames of the sequences. Negative pairs
are created by shuffling one sequence or reversing
it. More details are available in the supplemen-
tary material. Imitation data for 24 other tasks
are also used to help condition the distance met-
ric learning process. These include motion clips
for running, backflips, frontflips, dancing, punch-
ing, kicking and jumping along with the desired
motion. For details on how positive and negative
pairs are created from this data, see the supple-
mentary document.

Importantly the RL environment generates two different state representations for the agent. The first
state st+1 is the internal robot pose. The second state ot+1 is the agent’s rendered view, shown
in Figure 2. The rendered view is used with the distance metric to compute the similarity between
the agent and the demonstration. We attempted using the visual features as the state input for the
policy as well; this resulted in poor policy quality. Details of the algorithm used to train the distance
metric and policy are outlined in the supplementary document Algorithm 1.

5 ANALYSIS AND RESULTS

The simulation environment used in the experiments is similar to the DeepMind Control Suite (Tassa
et al., 2018). In this simulated robotics environment, the agent is learning to imitate a given reference
motion. The agent’s goal is to learn a policy to actuate Proportional Derivative (PD) controllers at
30 fps to mimic the desired motion. The simulation environment provides a hard-coded reward
function based on the robot’s pose that is used to evaluate the policy quality. The demonstration M
the agent is learning to imitate is generated from a clip of mocap data. The mocap data is used to
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animate a second robot in the simulation. Frames from the simulation are captured and used as video
input to train the distance metric. The images captured from the simulation are converted to grey-
scale with 64× 64 pixels. We train the policy on pose data, as link distances and velocities relative
to the robot’s Centre of Mass (COM). This simulation environment is new and has been created to
take motion capture data and produce multi-view video data that can be used for training RL agents
or generating data for computer vision tasks. The environment includes challenging and dynamic
tasks for humanoid robots. Some example tasks are imitating running, jumping, and walking, shown
in Figure 3 and humanoid2d detailed in the supplementary material.

3D Humanoid Robot Imitation In these simulated robotics environments the agent is learning to
imitate a given reference motion of a walk, run, jump or zombie motion. A single motion demon-
stration is provided by the simulation environment as a cyclic motion. During learning, we include
additional data from all other tasks for the walking task this would be: walking-dynamic-speed,
running, jogging, frontflips, backflips, dancing, jumping, punching and kicking) that are only used
to train the distance metric. We also include data from a modified version of the tasks that has a
randomly generated speed modifier ω ∈ [0.5, 2.0] walking-dynamic-speed, that warps the demon-
stration timing. This additional data is used to provide a richer understanding of distances in space
and time to the distance metric. The method is capable of learning policies that produce similar
behaviour to the expert across a diverse set of tasks. We show example trajectories from the learned
policies in Figure 3 and in the supplemental Video. It takes 5− 7 days to train each policy in these
results on a 16 core machine with an Nvidia GTX1080 GPU.

Algorithm Analysis and Comparison To evaluate the learning capabilities and improvements of
VIRL we compare against two other methods that learn a distance function in state space, GAIL and
using a VAE to train an encoding and compute distances between those encodings, similar to (Nair
et al., 2018), using the same method as the Siamese network in Figure 4a. We find that the VAE
alone does not appear to capture the critical distances between states, possibly due to the decoding
transformation complexity. Similarly, the GAIL baseline produces very jerky motion or stands still,
both of which are contained in the imitation distribution. Our method that considers the temporal
structure of the data learns faster and produces higher value policies.

Additionally, we create a multi-modal version of VIRL. Here we replace the bottom conv net with
a dense network and learn a distance metric between agent poses and imitation video. The results
of these models, along with the default manual reward function provided by the environment, are
shown in Figure 4b. The multi-modal version appears to perform about equal to the vision-only
modal. In Figure 4b we also compare our method to a non-sequence-based model that is equivalent
to Time Contrastive Network (TCN). On average VIRL achieves higher value policies. We find
that using the RNN-based distance metric makes the learning process more gradual. We show this
learning effect in Figure 4b, where the original manually created reward with flat feedback leads to
slow initial learning.

In Figure 4c we compare the importance of the spatial ||eat −ebt ||2 and temporal ||hat −hbt ||2 represen-
tations learned by VIRL. Using the recurrent representation (temporal lstm) alone allows learning to
progress quickly but can have difficulty informing the policy of how to best match the desired exam-
ple. On the other hand, using only the encoding between single frames (spatial conv) slows learning
due to limited reward for out-of-phase behaviour. We achieved the best results by combining the
representations from these two models. The assistance of spatial rewards is also seen in Figure 4b,
where the manual reward learns the slowest.

Ablation We conduct ablation studies in Figure 5a to compare the effects of data augmentation
methods, network models and the use of additional data from other tasks. For the more complex
humanoid3d control problems the data augmentation methods, including Early Episode Sequence
Priority (EESP), increases average policy quality marginally. The use of mutlitask data Figure 8c
and the additional representational losses Figure 8a greatly improve the methods ability to learn.
More ablation results are available in the supplementary material.

Sequence Encoding Using the learned sequence encoder a collection of motions from different
classes are processed to create a TSNE embedding of the encodings (Maaten & Hinton, 2008).
In Figure 5c we plot motions both generated from the learned policy π and the expert trajectories
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Figure 3: Rasterized frames of the agent’s motion after training on humanoid3d walking (row 1,2),
running (row 3-5), zombie (row 6,7) and jumping(row 8-10). The multi-coloured agent is a rendering
of the imitation video. A video of these results is available here: https://youtu.be/s1KiIrV1YY4

πE . Overlaps in specific areas of the space for similar classes across learned π and expert πE data
indicate a well-formed distance metric that does not sperate expert and agent examples. There is
also a separation between motion classes in the data, and the cyclic nature of the walking cycle is
visible.

In this section, we have described the process followed to create and analyze VIRL. Due to a com-
bination of data augmentation techniques, VIRL can imitate given only a single demonstration. We
have shown some of the first results to learn imitative policies from video data using a recurrent net-
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Figure 4: Baseline comparisons between our sequence-based method, GAIL and TCN (4a) on the
humanoid2d environment. Two additional baseline comparison between VIRL and TCN in 4b. In 4c
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same colour are the specific performance values for each policy training run.
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Figure 5: Ablation analysis of VIRL. We find that training RL policies is sensitive to the size and
distribution of rewards. A few modifications assist in the siamese network’s ability to compute
useful distances. Including VAE and AE losses to assist in representation learning. The addition of
multi-task training data is also important for learning better policies.

work. Interestingly, the method displays new learning efficiencies that are important to the method
success by separating the imitation problem into spatial and temporal aspects. For best results, we
found that the inclusion of additional regularizing losses on the recurrent siamese network, along
with some multi-task supervision, was key to producing results.

6 DISCUSSION AND CONCLUSION

In this work, we have created a new method for learning imitative policies from a single demon-
stration. The method uses a Siamese recurrent network to learn a distance function in both space
and time. This distance function, trained on noisy partially observed video data, is used as a reward
function for training an RL policy. Using data from other motion styles and regularization terms,
VIRL produces policies that demonstrate similar behaviour to the demonstration.

Learning a distance metric is enigmatic, the distance metric can compute inaccurate distances in
areas of the state space it has not yet seen. This inaccuracy could imply that when the agent explores
and finds truly new and promising trajectories, the distance metric computes incorrect distances.
We attempt to mitigate this effect by including training data from different tasks. We believe VIRL
will benefit from a more extensive collection of multi-task data and increased variation of each task.
Additionally, if the distance metric confidence is available, this information could be used to reduce
variance and overconfidence during policy optimization.

It is probable learning a reward function while training adds additional variance to the policy gra-
dient. This variance may indicate that the bias of off-policy methods could be preferred over the
added variance of on-policy methods used here. We also find it important to have a small learning
rate for the distance metric. The low learning rate reduces the reward variance between data collec-
tion phases and allows learning a more accurate value function. Another approach may be to use
partially observable RL that can learn a better value function model given a changing RNN-based
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reward function. Training the distance metric could benefit from additional regularization such as
constraining the kl-divergence between updates to reduce variance. Learning a sequence-based pol-
icy as well, given that the rewards are now not dependent on a single state observation is another
area for future research.

We compare our method to GAIL, but we found GAIL has limited temporal consistency. This
method led to learning jerky and overactive policies. The use of a recurrent discriminator for GAIL
may mitigate some of these issues and is left for future work. It is challenging to produce results
better than the carefully manually crafted reward functions used by the RL simulation environments
that include motion phase information in the observations (Peng et al., 2018a; 2017). However,
we have shown that our method that can compute distances in space and time has faster initial
learning. Potentially, a combination of starting with our method and following with a manually
crafted reward function could lead to faster learning of high-quality policies. Still, as environments
become increasingly more realistic and grow in complexity, we will need more robust methods to
describe the desired behaviour we want from the agent.

Training the distance metric is a complicated balancing game. One might expect that the distance
metric should be trained early and fast so that it quickly understands the difference between a good
and bad demonstration. However, quickly learning confuses the agent, rewards can change, which
cause the agent to diverge off toward an unrecoverable policy space. Slower is better, as the distance
metric may not be accurate, it may be locally or relatively reasonable, which is enough to learn a
good policy. As learning continues, these two optimizations can converge together.
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7 APPENDIX

This section includes additional details related to VIRL.

7.1 IMITATION LEARNING

Imitation learning is the process of training a new policy to reproduce the behaviour of some expert
policy. BC is a fundamental method for imitation learning. Given an expert policy πE possibly
represented as a collection of trajectories τ < (s0, a0), . . . , (sT , aT ) > a new policy π can be
learned to match this trajectory using supervised learning.

max
θ

EπE [
T∑
t=0

log π(at|st, θπ)] (5)

While this simple method can work well, it often suffers from distribution mismatch issues leading
to compounding errors as the learned policy deviates from the expert’s behaviour.

7.2 INVERSE REINFORCEMENT LEARNING

Similar to BC, Inverse Reinforcement Learning (IRL) also learns to replicate some desired be-
haviour. However, IRL makes use of the RL environment without a defined reward function.
Here we describe maximal entropy IRL (Ziebart et al., 2008). Given an expert trajectory τ <
(s0, a0), . . . , (sT , aT ) > a policy π can be trained to produce similar trajectories by discovering a
distance metric between the expert trajectory and trajectories produced by the policy π.

max
c∈C

min
π

(Eπ[c(s, a)]−H(π))− EπE [c(s, a)] (6)

where c is some learned cost function and H(π) is a causal entropy term. πE is the expert policy
that is represented by a collection of trajectories. IRL is searching for a cost function c that is low
for the expert πE and high for other policies. Then, a policy can be optimized by maximizing the
reward function rt = −c(st, at).

7.3 AUTO-ENCODER FRAMEWORK

Variational Auto-encoders Previous work shows that VAEs can learn a lower dimensional struc-
tured representation of a distribution (Kingma & Welling, 2014). A VAE consists of two parts an
encoder qφ and a decoder pψ . The encoder maps states to a latent encoding z and in turn the decoder
transforms z back to states. The model parameters for both φ and ψ are trained jointly to maximize

LV AE(φ, ψ, s) = −βDKL(qφ(z||s)||p(z) + Eqφ(z||s)[log pψ(s||z)] (7)

, where DKL is the Kullback-Leibler divergence, p(s) is some prior and β is a hyper-parameter to
balance the two terms. The encoder qφ takes the form of a diagonal Gaussian distribution qφ =
N (µφ(s), σ

2(s)). In the case of images, the decoder pψ parameterized a Bernoulli distribution over
pixel values. This simple parameterization is akin to training the decoder with a cross entropy loss
over normalized pixel values.

Sequence Auto-encoding The goal of sequence to sequence translation is to learn the condi-
tional probability p(y0, . . . , yT ′ |x0, . . . , xT ), where x = x0, . . . , xT and y = y0, . . . , yT ′ are
sequence Here we want to explicitly learn a latent variable zRNN that compresses the infor-
mation in x0, . . . , xT . An RNN can model this conditional probability by calculating v =∏T
t=0 p(yT |{x0, . . . , xT }) of the sequence x that can, in turn, be used to condition the decoding

of the sequence y (Rumelhart et al., 1985).

p(y) =
T∏
t=0

p(yT |{y0, . . . , yT−1}, v) (8)

, This method has been used for learning compressed representations for transfer learning (Zhu et al.,
2016) and 3D shape retrieval (Zhuang et al., 2015).
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7.4 DATA

The mocap used in the created environment come from the CMU mocap database and the SFU
mocap database.

Data Augmentation and Training We apply several data augmentation methods to produce ad-
ditional data for training the distance metric. Using methods analogous to the cropping and warping
methods popular in computer vision (He et al., 2015) we randomly crop sequences and randomly
warp the demonstration timing. The cropping is performed by both initializing the agent to random
poses from the demonstration motion and terminating episodes when the agent’s head, hands or
torso contact the ground. As the agent improves, the average length of each episode increases and
so to will the average length of the cropped window. The motion warping is done by replaying the
demonstration motion at different speeds. Two additional methods influence the data distribution.
The first method is Reference State Initialization (RSI) (Peng et al., 2018a), where the initial state
of the agent and expert is randomly selected from the expert demonstration. With this property,
the environment can also be thought of as a form of memory replay. The environment allows the
agent to go back to random points in the demonstration as if replaying a remembered demonstration.
The second is EESP where the probability a sequence x is cropped starting at i is p(i) = len(x)−i∑

i ,
increasing the likelihood of starting earlier in the episode.

7.5 TRAINING DETAILS

The learning simulations are trained using Graphics Processing Unit (GPU)s. The simulation is
not only simulating the interaction physics of the world but also rendering the simulation scene to
capture video observations. On average, it takes 3 days to execute a single training simulation. The
process of rendering and copying the images from the GPU is one of the most expensive operations
with VIRL. We collect 2048 data samples between training rounds. The batch size for Trust Region
Policy Optimization (TRPO) is 2048. The kl term is 0.5.

The simulation environment includes several different tasks that are represented by a collection
of motion capture clips to imitate. These tasks come from the tasks created in the DeepMimic
works (Peng et al., 2018a). We include all humanoid tasks in this dataset.

In Algorithm 1 we include an outline of the algorithm used for the method. The simulation envi-
ronment produces three types of observations, st+1 the agent’s proprioceptive pose, svt+1 the image
observation of the agent and mt+1 the image-based oberservation of the expert demonstration. The
images are 64× 64.

7.6 DISTANCE FUNCTION TRAINING

Our Siamese training loss consists of

LSN (si, sp, sn) = y ∗ ||f(si)− f(sp)||+ ((1− y) ∗ (max(ρ− (||f(si)− f(sn)||), 0))), (9)

where y = 1 is a positive example sp, pair where the distance should be minimal and y = 0 is
a negative example sn, pair where the distance should be maximal. The margin ρ is used as an
attractor or anchor to pull the negative example output away from si and push values towards a 0 to
1 range. f(·) computes the output from the underlying network. The distance between two states is
calculated as d(s, s′) = ||f(s) − f(s′)|| and the reward as r(s, s′) = −d(s, s′). Data used to train
the Siamese network is a combination of trajectories τ = 〈s0, . . . , sT 〉 generated from simulating
the agent in the environment and the expert demonstration. For our recurrent model the same loss
is used; however, the states sp, sn, si are sequences. During RL training we compute a distance
given the sequence of states observed so far in the episode. This method allows us to train a distance
function in state space where all we need to provide is labels that denote if two states, or sequences,
are similar or not.

In Figure 6b we show the training curve for the recurrent siamese network. The model learns
smoothly, considering that the training data used is continually changing as the RL agent explores.
In Figure 6a the learning curve for the siamese RNN is shown after performing pretraining. We can
see the overfitting portion the occurs during RL training. This overfitting can lead to poor reward
prediction during the early phase of training.
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(a) siamese loss (b) siamese loss with pretraining

Figure 6: Training losses for the siamese distance metric. Higher is better as it indicates the distance
between sequences from the same class are closer.

It can be challenging to train a sequenced based distance function. One particular challenge is
training the distance function to be accurate across the space of possible states. We found a good
strategy was to focus on the beginning of episode data. When the model is not accurate on states
it saw earlier in the episode; it may never learn how to get into good states later that the distance
function understands better. Therefore, when constructing batches to train the RNN on, we give
a higher probability of starting earlier in episodes. We also give a higher probability to shorter
sequences. As the agent gets better average episodes length increase, so to will the randomly selected
sequence windows.

7.7 DISTANCE FUNCTION USE

We find it helpful to normalize the distance metric outputs using r = exp(r2∗wd) wherewd = −5.0
scales the filtering width. Early in training the distance metric often produces large, noisy values.
Also, the RL method regularly updates reward scaling statistics; the initial high variance data reduces
the significance of better distance metric values produced later on by scaling them to small numbers.
The improvement of using this normalize reward is shown in Figure 7a.

normalized
default

(a) Reward smoothing

x4 updates
x8 updates

(b) Siamese update frequency

Figure 7: Ablation analysis of VIRL. We find that training RL policies is sensitive to the size and
distribution of rewards. The siamese network benefits from several training adjustments that make
it more suitable for RL.

8 POSITIVE AND NEGATIVE EXAMPLES

We use two methods to generate positive and negative examples. The first method is similar to TCN,
where we can assume that sequences that overlap more in time are more similar. For each episode
two sequences are generated, one for the agent and one for the imitation motion. Here we list the
methods used to alter sequences for positive pairs.

1. Adding Gaussian noise to each state in the sequence (mean = 0 and variance = 0.02)
2. Out of sync versions where the first state is removed from the first sequence and the last

state from the second sequence
3. Duplicating the first state in either sequence
4. Duplicating the last state in either sequence

We alter sequences for negative pairs by
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1. Reversing the ordering of the second sequence in the pair.
2. Randomly picking a state out of the second sequence and replicating it to be as long as the

first sequence.
3. Randomly shuffling one sequence.
4. Randomly shuffling both sequences.

The second method we use to create positive and negative examples is by including data for addi-
tional classes of motion. These classes denote different task types. For the humanoid3d environment,
we generate data for walking-dynamic-speed, running, backflipping and frontflipping. Pairs from
the same tasks are labelled as positive, and pairs from different classes are negative.

8.1 ADDITIONAL ABLATION ANALYSIS

without LSTM AE
ours

(a) LSTM AE, ZombieWalk

policy variance = 0.3
policy variance = 0.2

(b) Variance Comparison, Jump

without_multitask_data
with_multitask_data

(c) MultiTask Data, Run

Figure 8: Additional dblation analysis of VIRL on humanoid3d.

8.2 RL ALGORITHM ANALYSIS

It is not clear which RL algorithm may work best for this type of imitation problem. A number of RL
algorithms were evaluated on the humanoid2d environment Figure 9a. Surprisingly, TRPO (Schul-
man et al., 2015) did not work well in this framework, considering it has a controlled policy gradient
step, we thought it would reduce the overall variance. We found that Deep Deterministic Policy
Gradient (DDPG) (Lillicrap et al., 2015) worked rather well. This result could be related to hav-
ing a changing reward function, in that if the changing rewards are considered off-policy data, it
can be easier to learn. This can be seen in Figure 9b where DDPG is best at estimating the future
discounted rewards in the environment. We also tried Continuous Actor Critic Learning Automa-
ton (CACLA) (Van Hasselt, 2012) and Proximal Policy Optimization (PPO) (Schulman et al., 2017);
we found that PPO did not work particularly well on this task; this could also be related to added
variance.

PPO
TRPO
CACLA
DDPG

(a) Average Reward

PPO
TRPO
CACLA
DDPG

(b) Bellman Error

ours
TCN

(c) sequence-based comparison
DDPG

Figure 9: RL algorithm comparison on humanoid2d environment.

8.3 ADDITIONAL IMITATION RESULTS

Our first experiments evaluate the methods ability to learn a complex cyclic motion for a simulated
humanoid robot given a single motion demonstration, similar to (Peng & van de Panne, 2017), but
using video instead. The agent is able to learn a robust walking gate even though it is only given
noisy partial observations of a demonstration Figure 10.
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Figure 10: Still frame shots from a policy trained in the humanoid2d environment.
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