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Abstract

Gradient Boosting (GB) is a popular and very successful ensemble method for
binary trees. While various types of regularization of the base predictors are used
with this algorithm, the theory that connects such regularizations with generaliza-
tion guarantees is poorly understood. We fill this gap by deriving data-dependent
learning guarantees for GB used with regularization, expressed in terms of the
Rademacher complexities of the constrained families of base predictors. We intro-
duce a new algorithm, called RGB, that directly benefits from these generalization
bounds and that, at every boosting round, applies the Structural Risk Minimization
principle to search for a base predictor with the best empirical fit versus complexity
trade-off. Inspired by Randomized Coordinate Descent we provide a scalable
implementation of our algorithm, able to search over large families of base predic-
tors. Finally, we provide experimental results, demonstrating that our algorithm
achieves significantly better out-of-sample performance on multiple datasets than
the standard GB algorithm used with its regularization.

1 Introduction

Ensemble methods form a powerful family of techniques in machine learning that combine multiple
base predictors to create more accurate ones. These methods are often very effective in practice and
can achieve a significant performance improvement over the individual base predictors [Quinlan
et al., 1996, Caruana et al., 2004, Freund et al., 1996, Dietterich, 2000]. ADABOOST [Freund and
Schapire, 1997] and its variants are among the most prominent ensemble methods since they are both
very effective in practice and benefit from well-studied theoretical margin guarantees [Freund and
Schapire, 1997, Koltchinskii and Panchenko, 2002].

Gradient Boosting (GB) [Friedman, 2001] is another popular tree-based ensemble method that has
inspired a number of widely-used software libraries (e.g., XGBOOST [Chen and Guestrin, 2016],
MART [Friedman, 2002], and DART [Rashmi and Gilad-Bachrach, 2015]) and has frequently
ranked among the top in benchmark competitions such as Kaggle. But, while it is often introduced
and presented differently, GB exactly coincides with AdaBoost, when the objective function used is
the exponential function, as shown for example by [Schapire and Freund, 2012]. More generally,
both of these algorithms are instances of Functional Gradient Descent [Mason et al., 2000, Grubb and
Bagnell, 2011] when non-increasing convex and differentiable upper bounds on the zero-one loss are
used. Viewed from the Functional Gradient Descent perspective, at every boosting step, GB seeks a
predictor function h that is closest to the functional gradient of the objective within some constrained
family of base predictorsH. Specifying this base predictor familyH such that the selected function
does not overfit the gradient, as well as defining an efficient search procedure overH is crucial for
the success of the algorithm. In most practical instances, several types of constraints are imposed to
do so. As an example, for binary regression trees, XGBOOST bounds the number of leaves and the
norm of the leaf values vector. This can be viewed as a regularization. However, to our knowledge,
no theoretical analysis has been provided for these commonly-used constraints.
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A natural question is whether one can derive learning guarantees that explain how this regularization
on H, and, perhaps even more general forms of constraints on functions h ∈ H, are connected to
the generalization performance of GB. We seek inspiration from the margin-based learning bounds
given for ADABOOST [Schapire et al., 1997, Mohri et al., 2012]. These guarantees, however, do
not provide a detailed analysis of the constraints on the families of tree base predictors, nor do they
provide guidance on how to conduct an efficient search of these families to select a predictor during
each boosting round.

We fill this gap by providing a comprehensive analysis of regularization in GB and derive learning
guarantees that explain what type of regularization should be used and how. We give data-dependent
learning bounds for GB with regularization, expressed in terms of the Rademacher complexities of
the constrained hypotheses’ sub-families, from which the base predictors are selected, as well as the
ensemble mixture weights. We present a new algorithm, called RGB for Regularized Gradient Boost-
ing, which generalizes the existing gradient boosting methods by introducing a general functional
q-norm constraint for the families of the tree base predictors.

Our algorithm and its objective function are directly guided by the theory we develop. Our bound
suggests that the Structural Risk Minimization principle (SRM) [Vapnik, 1992] should be used to
break down H into subsets of varying complexities and, at each round, select a base learner h
from a subset that provides the best trade-off between proximity to the functional gradient and the
complexity.

Applying SRM to search over subsets ofH is challenging, since often these subsets are extremely
rich, possibly infinite. An example is the families of decision trees with bounded depth used in GB.
We provide a solution to the problem of expensive search and show how Randomized Coordinate
Descent [Nesterov, 2012] can be used to search overH efficiently, using our generalization bounds.

Finally, this paper provides experimental results, demonstrating that our algorithm achieves signifi-
cantly better out-of-sample performance than the baselines such as XGBOOST on multiple datasets.
We give specific bounds, as well as the pseudocode and experimental results, for the families of
binary regression trees, but our analysis can be extended to broader families of functions, such as
SVMs [Cortes and Vapnik, 1995] and Deep Neural Networks [LeCun et al., 2015].

The paper is organized as follows. In Section 2, we introduce what we name a Regularized Gradient
Boosting framework. In Section 3 we derive a Rademacher complexity bound on the families of
regularized regression trees, which allows us to establish learning guarantees for Regularized Gradient
Boosting. This bound directly inspire the optimization objective and the RGB algorithm presented
in Section 4 that benefits from the guarantees following from the SRM principle. A non-uniform
randomized search over the families of base predictors provides an efficient solution. In Section 5,
we present our experimental results, which illustrate the benefits of the RGB algorithm.

2 Regularized Gradient Boosting

In this section, we examine the correspondence between gradient descent in functional spaces and
coordinate descent in vector spaces. This connection will help us rigorously define a Regularized
Gradient Boosting learning scenario and develop a scalable implementation for it.

2.1 Gradient Boosting as Functional Gradient Descent

Let X denote the input space, and let F be an inner product space of functions from X to R. We
define a restricted family of functionsH ⊆ F to be a set of base hypotheses. In a standard supervised
learning scenario, the training and test points are drawn i.i.d. according to some distribution D over
X × {−1, 1}, and S = {(x1, y1), . . . , (xm, ym)} is a training sample of size m drawn from Dm. In
this scenario, a general boosting algorithm selects a sequence of functions h1, . . . , hT from H to
minimize a certain empirical loss L : F 7→ R. [Friedman, 2001, Grubb and Bagnell, 2011, Mason
et al., 2000, Schapire, 1999, Cortes et al., 2014]. The specification ofH and the method of selecting
each ht ∈ H are essential for the success of the boosting algorithms. In fact, different answers to these
two questions have resulted in distinct and separately-studied algorithms, such as GB, ADABOOST,
and LOGITBOOST [Friedman et al., 1998].
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The goal of boosting algorithms is typically to minimize an empirical loss functional:

L(F ) =
1

m

m∑
i=1

Φ

(
yi, F (xi)

)
, (1)

where F (x) =
∑T
t=1 αtht(x) such that ∀t ∈ [1, T ] : ht ∈ H. Popular ensemble learning algorithms,

such as ADABOOST and GB, despite having originated in different research communities at different
times, are particular instances of a more general algorithm, Functional Gradient Descent. The
objective in Equation 1 is viewed by the Functional Gradient Descent as a functional rather than a
vector-valued function, with the goal of minimizing L over F by taking steps in the direction of the
steepest descent F ← F − η∇L(F ) for some positive learning rate η ∈ R. In the learning scenario
described above, only the trace of F on x1, . . . , xm is observable; therefore, the functional gradient

of L is ∇L =

[
∂L(F )
∂F (x1) , . . . ,

∂L(F )
∂F (xm)

]
. This makes the Functional Gradient Descent update equal to

F (xi)← F (xi)− η ∂L(F )
∂F (xi)

. Of course, to make sure this functional update is well defined and to
avoid over-fitting, it is natural to restrict F (x) to some hypothesis setH, which implies the following
form of the functional update:

h = argmin
h∈H

d(∇L, h), (2)

where d is some distance measure. This means that h ∈ H is chosen to be the closest function h ∈ H
to the projection of ∇L onto H. The update in Equation 2 is a fundamental but not well-studied
component of virtually all boosting methods. Simply by varying the choice ofH and d, this single
equation recovers most widely-used boosting algorithms.

If we restrict the optimization steps to a set of base hypothesesH, then each step is chosen to be the
function closest in the direction to the negative gradient, which means it maximizes

−∇L · h = −
m∑
i=1

∂L(F )

∂F (xi)
h(xi). (3)

Particularly, if Φ(yi, f(xi)) = e−yif(xi), then the Functional Gradient Descent recovers ADABOOST,
and if Φ(yi, f(xi)) = log

(
1 + e−yif(xi)

)
, then it recovers LOGITBOOST. When, instead of the

negative inner product −∇L · h, we minimize the distance ‖ − ∇L(F )− h‖22, we recover the GB
algorithm.

2.2 Gradient Boosting as Vector Space Coordinate Descent

There is an equivalence relation between gradient descent in functional spaces and coordinate descent
in vector spaces that often helps to obtain efficient algorithms for ensemble learning. At each of the
T steps of the Functional Gradient Descent,∇L is projected ontoH, hence the final solution F can
be expressed as Fα =

∑T
t=1 αtht for some α ∈ RT , where ∀1 ≤ t ≤ T : ht ∈ HIt ⊆ H, where

HIt indicates the subset ofH selected at the t-th step. The subsetsHIt can be viewed as coordinate
blocks in H. In this view, at boosting step t a particular subspace HIt out of {H1, . . . ,HK} is
selected; then a base predictor ht ∈ HIt from that subspace is added to the ensemble.

This allows switching from minimizing the loss functional L(F ) to minimizing the loss function
L(α) = L(Fα).

L(α) =
1

m

m∑
i=1

Φ

(
yi,

T∑
t=1

αtht(xi)

)
(4)

over the ensemble weights vector α ∈ RT . Selecting a projection ht and a step size αt on the t-th
step of the Functional Gradient Descent on L(Fα) or alternatively selecting a coordinate αt on the
t-th step of the vector space coordinate descent on L(α) both result in the same form of the update
Fα,t = Fα,t−1 + αtht. Additionally, the full sequence of these updates for t from 1 to T is equal
since, by the chain rule

∀1 ≤ t ≤ T : −∂L(αt)

∂αt
= −

m∑
i=1

∂L(Fα)

∂Fα(xi)
ht(xi) = −∇L · ht, (5)
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which means that min1≤t≤T −∂L(αt)
∂αt

selected by the coordinate descent is equal to min1≤t≤T −∇L·
ht selected by Functional Gradient Descent.

This equivalence illustrates two important points. First, coordinate descent methods can be used to
provide efficient numerical solutions for boosting. Second, the proper construction of the subsets
Ht such that ht ∈ HIt ⊆ H is crucial for the success of boosting algorithms. We rely on this
equivalence when presenting a coordinate-descent-style algorithm for minimizing the regularized
boosting objective that scales well to large families of base predictors.

2.3 Regularized Gradient Boosting

In this subsection, we describe the main novelty of our work – the analysis of regularization applied
to GB. We formulate what we name a Regularized Gradient Boosting framework and show the
subtle connection between the regularization and the properties of Hk ⊆ H. As we shall see, the
regularization terms are not explicitly introduced in the definition of the objective, but only in the
definition of an approximation to the functional gradient.

While the unregularized projection step, as in Equation 2, has been extensively studied for GB,
the fundamental theory of the regularization commonly used is missing. However, a number of
empirical studies and software frameworks [Sun et al., 2014, Chen and Guestrin, 2016] indicate that
introducing regularization to this step is extremely beneficial. For example, the popular XGBOOST
library, dedicated to boosted decision trees, regularizes the norm of the leaf values, as well as the
number of leafs. We are filling this gap by providing a theory that links regularization with learning
guarantees for GB algorithms.

For a convex function Ω: F 7→ R, a closed subspace H ⊆ F and β ∈ R+, let the Regularized
Gradient Boosting step be defined by

h = argmin
h∈H

d(∇L, h) + βΩ(h). (6)

Given the convexity of Ω, this step is equivalent to h = argminh∈Ĥ d(∇L, h), where Ĥ = H ∩
{h : Ω(h) ≤ β}. Such a reduction illustrates the subtle, yet extremely important, connection between
regularization and the definition of hypothesis setH. The equivalence between vector space coordinate
descent and Functional Gradient Descent presented in Section 2, meaning that both of these methods
iteratively select the same sequence of functions ht ∈ HIt ⊆ H, suggests that a natural way to use
regularization for boosting is to define F = conv(∪Kk=1Hk), whereHk = {h : θk−1 < Ω(h) ≤ θk}
are disjointed sets of functions for a set of parameters [θ1, . . . , θK ]. Note that, with this formulation,
the regularization is not in the objective function; instead the search for the gradient approximation is
constrained by a regularization.

We show, in the following section, that such a definition of F allows us to obtain margin-based
learning guarantees for the Regularized Gradient Boosting that are dependent on the complexities of
each individualHk.

3 Learning Guarantees

As described in the previous section, by projecting the functional gradient onto F = conv(∪Kk=1Hk)

at each step, we are able to learn an ensemble function f =
∑T
t=1 αtft ∈ F , where the Hks

are families of functions with varying complexity. Thus, it is natural to seek learning guarantees
depending on the properties of eachHk and the mixture weight vector α = [α1, . . . , αT ].

The first margin bound based on the VC-dimension for ensembles
∑T
t=1 αtft was given by Freund

and Schapire [1997]. Later, tighter data-dependent bounds in terms of the Rademacher complexity of
the underlying function classH were given by Koltchinskii and Panchenko [2002], see also [Mohri
et al., 2018]. For the specific case where H = conv(∪Kk=1Hk), Rademacher complexity-based
guarantees were given in [Cortes et al., 2014]. In this section, we will use these theoretical results to
derive margin-based guarantees based on the Rademacher complexities of the families of regularized
decision treesHk and the mixture weights α. The bounds that we show, being data-dependent, will
not only fill the missing generalization theory for the existing gradient tree boosting frameworks but
also motivate a new scalable learning algorithm for the Regularized Gradient Boosting framework,
called RGB, in Section 4.
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Here, we restrict our analysis to the hypothesis familiesHk of regression trees. However, our results
can be extended to other families, such as kernel-based hypotheses and neural networks, so long as
the sample Rademacher complexities of these families can be bounded.

Each leaf l in a regression tree contains a real-valued number wl providing the output value of the
tree for any sample point allocated to that leaf; thus, we let w be a vector of stacked leaf values. The
function computed by a regression tree can thus be represented by h(x) =

∑
l∈leaves(h) wlI{x ∈ leafl},

where I{x ∈ leafl} is the indicator function for sample point x ∈ Rd being allocated to leafl; this
value h(x) can be used for classification in a straightforward manner by thresholding.

The node partition functions in binary regression trees are of the form [x]j ≤ θ for some feature index
j ∈ [1, d] and θ ∈ R, which means that if [xi]j ≤ θ for a sample point xi ∈ Rd, then xi is allocated
to the left subtree and to the right subtree otherwise. LetHn,λ,q be the set of all regularized binary
regression trees with the number of internal nodes bounded by n and a leaf values vector w such
that ‖w‖q ≤ λ, q ≥ 1. Special instances of these families of trees are widely used in practice. For
example,Hn,λ,1 andHn,λ,2 are implemented in XGBOOST and frequently used in practice.
Theorem 1. For any sample S = (x1, . . . , xm), the empirical Rademacher complexity of a hypothe-
sis setH is defined by R̂S(H) = Eσ

[
suph∈H

∑m
i=1 σih(xi)

]
, where, σis, i ∈ [m], are independent

uniformly distributed random variables taking values in {−1, 1}. Let d be the input data dimension.
The following upper bound holds for the empirical Rademacher complexity ofHn,λ,q:

R̂S(Hn,λ,q) ≤ λ
√

(4n+ 2) log2(d+ 2) log(m+ 1)

m
.

The proof of Theorem 1 is given in the Appendix. This bound shows how the empirical Rademacher
complexity of the regularized decision trees depends both on on the number of internal nodes n and
the upper bound λ on the q-norm of leaf values.

Using this bound, we can now derive our margin-based learning guarantees for the family F .
Let R(f) denote the binary classification error of f ∈ F , R(f) = E(x,y)∼D I{yf(x) ≤ 0}, and
Rρ(f) its empirical ρ-margin loss for a sample S, Rρ(f) = E(x,y)∼D I{yf(x) ≤ ρ}. Let R̂ρ(f) =
E(x,y)∼S I{yf(x) ≤ ρ}.
Theorem 2. Fix ρ > 0. Let Hk = Hnk,λk,qk , where (nk), (λk) are sequences of constraints on
the number of internal nodes n and the leaf vector norm ‖w‖q. Define F = conv(∪Kk=1Hk). Then,
for any δ > 0, with probability at least 1− δ over the draw of a sample S of size m, the following
inequality holds for all f =

∑T
t=1 αtht ∈ F:

R(f) ≤ R̂S,ρ(f) +
4

ρ

T∑
t=1

αtλIt

√
(4nIt + 2) log2(d+ 2) log(m+ 1)

m
+ C(m,K),

where It is the index of the subclass selected at time t and C(m,K) = O

(√
log(K)
ρ2m log

[
ρ2m

log(K)

])
.

The proof of Theorem 2 is given in the Appendix. The generalization bound of Theorem 2 motivates
a specific algorithm for Regularized Gradient Boosting, described and discussed in the next section.

4 Algorithm

The multiplicative structure of the bound in Theorem 2 with respect to the mixture weights
[α1, . . . , αT ] and the complexitiesHIt suggests the use of these complexities (or their upper bounds)
in the regularization Ω(h). Additionally, one may upper-bound the empirical loss function of
u 7→ I{u ≤ 0} in Theorem 2, leading to the following objective:

L(α) =
1

m

m∑
i=1

Φ

(
yi,

T∑
t=1

αtht(xi)

)
+ β

T∑
t=1

|αt|λIt

√
(4nIt + 2) log2(d+ 2) log(m+ 1)

m
. (7)

Minimizing the function with vector space coordinate descent is equivalent to solving for a projection
at each Functional Gradient Descent step of the form

ht = argmin
h∈H

d(∇L, h) + β

K∑
k=1

λk

√
(4nk + 2) log2(d+ 2) log(m+ 1)

m
I{h ∈ Hk}. (8)
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In this section we will devise an algorithm for minimizing the regularized objective L(α), called
RGB, that is able to scale to large families of base predictors.

4.1 Randomized Coordinate Descent

The practical challenge of building an ensemble of base predictors in the Regularized Gradient
Boosting scenario is to both define the hypothesis setsHk and implement an efficient search across
these sets to select the best update direction ht, at each optimization step. Applying coordinate
descent to the objective in Equation 7 may be feasible for finite hypothesis sets; however, we are
often required to work with infinite spaces of subfamilies of functions. A typical example would be
one where each subfamily is a decision tree with a fixed topology and fixed leaf values. It is common
to resort to heuristics or to discretize the search space to define an approximate search.

To solve the problem of an extensive search overHk, we propose a novel method for boosting updates
using randomization applied to the functional space. Random selection of base learners for GB in
the context of Randomized Coordinate Descent has been shown to be successful in practice. For
example, [Lu and Mazumder, 2018] demonstrated that uniform sampling helps make the search
over base hypothesis classes more scalable, gave favorable convergence guarantees for this method.
Nesterov [2012] introduced probabilistic convergence guarantees for Randomized Coordinate Descent
expressed in terms of the local smoothness properties of the objective and suggested a distribution to
sample the coordinates.

Inspired by the analysis of Nesterov [2012], our work is the first one to provide a fundamentally-
justified method of searching over the subspacesHk, an algorithm that is both scalable and admits
convergence guarantees. The RGB algorithm picks at each round at random a subset {Ht1 , . . . ,HtS}.
Given a meaningful distribution over H that captures the steepness of the objective L(α) within
each of these subsets, RGB is able to learn an ensemble of functions from familiesHk of varying
complexity. In the following, we show how to apply the Randomized Coordinate Descent method, as
in [Nesterov, 2012], to the objective 7.

4.2 Lipschitz-Continuous Gradients

Consider the problem of minimizing L(α) as in Equation 7. The following lemma describes the
continuity properties of the partial derivatives of L(α), which are needed for the application of
Randomized Coordinate Descent.
Lemma 3. Assume that Φ(y, h) is differentiable with respect to the second argument, and that ∂Φ

∂h is
CΦ(y)-Lipschitz with respect to the second argument, for any fixed value y of the first argument. For
all k ∈ [0,K], define L′k(α) = ∂L

∂αk
. Then, L′k(α) is Ck-Lipschitz with Ck bounded as follows:

Ck ≤
1

m

m∑
i=1

h2
k(xi)CΦ(yi). (9)

Randomized Coordinate Descent samples the k-th coordinate with probability pk = Ck/
∑K
k=1 Ck.

The convergence guarantees for this procedure are given in [Nesterov, 2012] as a function of the
Lipschitz constants Ck.

We can further give upper bounds for the Lipschitz constants above to avoid the computation of the
sums

∑m
i=1 h

2
k(xi). If we introduce the vectors hk and CΦ in Rm such that [hk]i = h2

k(xi) and
[CΦ]i = CΦ(yi), then, by Hölder’s inequality,

Ck ≤
1

m

m∑
i=1

h2
k(xi)CΦ(yi) =

1

m
h ·CΦ ≤

1

m
‖h‖r‖CΦ‖q, (10)

where 1
r + 1

q = 1. Various (r, q)-dual norms can be used, depending on the computational constraints
and the complexity of the hypothesis classes for the application of the Randomized Coordinate
Descent method. For example, using ‖h‖1 and ‖CΦ‖∞ gives the following upper bound: Ck ≤
1
m

[
max1≤i≤m CΦ(yi)

]∑m
i=1 h

2
k(xi).

The developed generalization bounds imply the Lipschitz constants and thus define the Randomized
Coordinate Descent steps for the minimization of L(α), controlling its convergence. To illustrate this
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Algorithm 1 RGB. Input: α = 0, F = 0

1: for t ∈ [1, T ] do
2: [t1, · · · , tS ]← P
3: for s ∈ [1, S] do
4: hs ← argminh∈Hts

1
m

∑m
i=1 Φ

(
yi, F − 1

Cts
L′ts(α)h

)
5: end for
6: s? = argmins∈[1,S]

[
1
m

∑m
i=1 Φ

(
yi, F − 1

Cts
L′ts(α)hs

)
+ βΩ(hts)

]
7: α← α− 1

Cs?
L′s?(α)ets?

8: F ← F − 1
Cs?

L′s?(α)hs?

9: end for

point, the convergence rate stated in [Nesterov, 2012] is as follows:

E
t−1

[
L(αt)

]
− L(α?) ≤

2

t+ 1

( K∑
j=1

Cj

)
R2

0(α0), (11)

where α0 is the starting point, α? is the global minimizer of L(α) and R0(α0) is the size of the
initial level set of the objective. The conditional expectation is taken over the random choice of the
next coordinate. The regularization applied to the base predictor families in our Regularized Gradient
Boosting Framework implies the bounds on Ck, thus controlling the convergence of the algorithm.

4.3 Pseudocode

The pseudocode of our RGB algorithm is given in Algorithm 1. The algorithm seeks to minimize the
objective given in Equation 7, using Randomized Coordinate Descent. Let P be a discrete probability
distribution over [1,K] with pk = Ck/

∑K
j=1 Cj . Equivalently, P is the distribution over the base

hypothesis setsH1, · · · ,HK . At each draw from P , we select a sampleHt1 , · · · ,HtS of size S and,
from this sample, select one function that provides the best trade-off in the decrease in objective L(α)
and the complexity bound of Theorem 1 of the underlying hypotheses family.

The local optimization procedure in Line 6 is an extra step required in the coordinate descent
procedure to select a single function from Hts . The step in Line 8 is required to select, out of S
sampled directions, the one with the best trade-off between sample fit and complexity bounds. Note
that the evaluation of sampled candidates in Line 5 can be done in parallel, making the time of
RGB per thread comparable to that of standard GB. More specifically, given a fixed sample of S
coordinates, the runtime of one RGB round is equal to the runtime of S rounds of GB when the same
subroutine is used for tree splitting.

5 Experiments

In this section, we present the results of experiments with our RGB algorithm. We restrict our
attention to learning an ensemble of the regularized regression trees as defined in the familyHn,λ,q ,
and to simplify the presentation, we let q = 2, although similar experiments can be easily done for
other norms. For the complexity of these base classifiers we use the bound derived in Theorem 1.

To define the subfamilies of base learners we impose a grid of size 7 on the maximum number of
internal nodes n ∈ {2, 4, 8, 16, 32, 64, 256} and a grid of size 7 on λ ∈ {0.001, 0.01, 0.1, 0.5, 1, 2, 4}.
For each element from the Cartesian product of these grids, we assign (nk, λk), thus defining the base
familiesHnk,λk,2 and F = conv

(
∪49
k=1 Hnk,λk,2

)
. Given such a decomposition of the functional

space, we directly minimize the regularized objective in Equation 7 using Randomized Coordinate
Descent with the distribution over the coordinate blocks as described above. We use the logistic loss
as the per-instance loss Φ. For a given training sample, we normalize the regularization Ω(h) to be in
[0, 1] and tune the RGB parameter β using a grid search over β ∈ {0.001, 0.01, 0.1, 0.3, 1}.
Section 4 describes multiple ways to bound the coordinate-wise Lipschitz constants of the derivative
of the objective function, resulting in various coordinate sampling distributions for the Randomized
Coordinate Descent. For our experiments, and specifically to the families Hnk,λk,2 bound the
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Table 1: Experimental Results

Error % sonar cancer diabetes ocr17 ocr49 mnist17 mnist49 higgs
RGB

Mean 26.94 5.19 28.86 0.90 3.10 0.43 1.53 28.60
(Std) (2.10) (0.97) (4.85) (0.45) (0.69) (0.10) (0.38) (0.41)

GB
Mean 28.64 6.14 28.39 1.35 3.50 0.55 1.66 29.11
(Std) (2.13) (0.94) (5.08) (0.52) (0.65) (0.11) (0.32) (0.37)

One-tailed, paired sample t-test
Signif. 5% 5% - 2.5% 2.5% 2% 5% 2.5%

Lipschitz constants by Ck ≤ λk
[

max1≤i≤m CΦ(yi)
]
, which implies that the k-th coordinate is

sampled with probability pk = λk/
∑K
j=1 λj , since the max1≤i≤m CΦ(yi) terms cancel out (see

Lemma 4 in the Appendix for the derivation of this bound).

As a comparison, we run the standard GB, using the XGBOOST library with `2 regularization on the
vector of leaf scores w. We use grid search to tune the hyperparameters of XGBOOST with a grid
that makes the families of trees explored comparable to theH defined for RGB above. Specifically,
we let the `2 norm regularization parameter be in {0.001, 0.01, 0.1, 0.5, 1, 2, 4}, the maximum tree
depth parameter in {1, 2, 3, 4, 5, 6, 7}, and the learning rate parameter in {0.001, 0.01, 0.1, 0.5, 1}.
Both GB and RGB are run for T = 100 boosting rounds. The hyperparameters are chosen via 5-fold
cross-validation, and the standard errors for the best set of hyperparameters reported.

Table 1 shows the classification errors on the test sets for the UCI datasets studied, for both RGB and
GB, see Table 2 in the appendix for details on the dataset. A one-tailed, paired sample t-test on the
pairs of results from the different trials demonstrate that these results are in general significant at a
5% level or better. Only for one of the dataset, diabetes with an input dimension of just 8, we do
not observe an improvement of RGB over GB. One natural hypothesis is that the larger the input
dimension, the more the need for proper regularization of the binary regression trees forming the base
learner, and the larger the advantage of the RGB algorithm.

In general, the results demonstrate that by randomly taking steps into coordinates that correspond to
subspacesHt with a theoretically justified distribution, RGB can explore larger hypothesis families
more efficiently that the baseline methods. Furthermore, compared to baselines that operate on the
same hypotheses spaceH, by optimizing for the trade-off between sample fit and functional subclass
complexity, RGB can reduce over-fitting, thereby achieving greater test accuracy on multiple datasets.

6 Conclusion

We introduced and analyzed a general framework of Regularized Gradient Boosting, for which we also
devised an effective algorithm, RGB. In this framework, regularization is not directly incorporated as
a term in the loss function. Instead, its definition affects each boosting step by restricting the search
for the gradient approximation to a constrained subset of base functions. Our analysis is based upon
strong margin-based Rademacher complexity learning guarantees. These bounds suggest a natural
approach for our optimization solution, which consists of dividing the space of base learners into
subfamilies of increasing complexity. For the special case of binary regression trees, we derived
explicit Rademacher complexity bounds that we subsequently exploit in the definition of our RGB
algorithm. Randomization over the subfamilies of base functions allows us to scale our algorithm to
large families of base predictors. Our experimental results suggest improved performance, thanks to
a more efficient and theoretically motivated exploration of large function spaces without over-fitting.
Also, as already stated, the run-times of the algorithms are comparable, thereby making RGB a
strong alternative to XGBOOST. Finally, our analysis can be extended in a similar way to that of
boosting with other families of base predictors, such as kernel-based hypothesis sets and Deep Neural
Networks.
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A Appendix

A.1 Proof of Theorem 1

Theorem 1. For any sample S = (x1, . . . , xm), the empirical Rademacher complexity of a hypothesis
set H is defined by R̂S(H) = Eσ

[
suph∈H

∑m
i=1 σih(xi)

]
, where, σis, i ∈ [m], are independent

uniformly distributed random variables taking values in {−1, 1}. The following upper bound holds
for the empirical Rademacher complexity ofHn,λ,q:

R̂S(Hn,λ,q) ≤ λ
√

(4n+ 2) log2(d+ 2) log(m+ 1)

m
,

where d is input data dimension.

Proof. For the purpose of this proof, letHn be the family of binary decision trees with leaf values
wj ∈ {−1,+1}. We use the regularization in the family Hn,λ,q and the connection to the family
Hn in the proof below. Additionally, let r ≥ 1 such that 1

r + 1
q = 1, meaning that the r−norm is

the dual to the q−norm. To aid the presentation in the proof, we are going to define a vector σ̂ s.t.
[σ̂]j =

∑
xi∈leafj σi, the j-th coordinate of which contains the sum of the Rademacher variables that

correspond to the sample points that fall within j-th leaf of a tree h.

R̂S(Hn,λ,q) =
1

m
E
σ

[
sup

h∈Hn,λ,q

[ m∑
n=1

σnh(xn)

]]
(12)

=
1

m
E
σ

[
sup

h∈Hn,λ,q

[
σ̂ ·w

]]
(13)

≤ 1

m
E
σ

[
sup

h∈Hn,λ,q
‖σ̂‖r‖w‖q

]
(14)

≤ λ

m
E
σ

[
sup
h∈Hn

‖σ̂‖r
]

(15)

≤ λ

m
E
σ

[
sup
h∈Hn

‖σ̂‖1
]

(16)

=
λ

m
E
σ

[
sup
h∈Hn

n∑
i=1

|[σ̂]i|
]

(17)

=
λ

m
E
σ

[
sup
h∈Hn

∑
l∈leaves(h)

∣∣ m∑
i=1

σi1{xi∈l}
∣∣] (18)

≤ λ

m
E
σ

[
sup

h∈Hn,sl∈{+1,−1}

∑
l∈leaves(h)

sl

m∑
i=1

σi1{xi∈l}

]
(19)

=
λ

m
E
σ

[
sup

h∈Hn,sl∈{+1,−1}

m∑
i=1

σi
∑

l∈leaves(h)

sl1{xi∈l}

]
(20)

≤ λ
√

(4n+ 2) log2(d+ 2) log(m+ 1)

m
(21)

Where n is the number of internal nodes, and d is the input data dimension. The inequality (14) is a
direct application of the Hölder’s inequality for dual norms. The inequality (16) uses ‖ · ‖r ≤ ‖ · ‖1.
The equality (18) directly follows from the definition of σ̂. The last inequality (21) follows from the
fact that the VC-dimension of binary classification trees can be bounded by (2n + 1) log2(d + 2)
Mohri et al. [2012] and a direct application of Massart’s lemma Massart and Picard [2007].
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A.2 Proof of Theorem 2

Theorem 2. Fix ρ > 0. Let Hk = Hnk,λk,qk , where (nk), (λk) are sequences of constraints on
the number of internal nodes n and the leaf vector norm ‖w‖q. Define F = conv(∪Kk=1Hk). Then,
for any δ > 0, with probability at least 1− δ over the draw of a sample S of size m, the following
inequality holds for all f =

∑T
t=1 αtht ∈ F :

R(f) ≤ R̂S,ρ(f) +
4

ρ

T∑
t=1

αtλIt

√
(4nIt + 2) log2(d+ 2) log(m+ 1)

m
+ C(m,K),

where It is the index of the subclass selected at time t and C(m,K) = O

(√
log(K)
ρ2m log

[
ρ2m

log(K)

])
.

Proof. For this proof we are going to make use of the generalization bounds for broad families of
real-valued functions given in Theorem 1 of [Cortes et al., 2014]. Adapted to our notation, it states
that for any f from a family of real-valued functions F that is equal to the convex hull of ∪Kk=1Hk,
for any δ > 0 with probability at least 1 − δ over the choice of sample S ∼ Dm, the following
generalization bound holds:

R(f) ≤ R̂S,ρ(f) +
4

ρ

T∑
t=1

αtRm(Ht) +
2

ρ

√
logK

m
+

√⌈
4

ρ2
log

(
ρm2

logK

)⌉
logK

m
+

log( 2
δ )

2m
.

where αt is are the weights that represent f in the convex hull of ∪Kk=1Hk, that is f =
∑T
t=1 αtht

s.t. α = [α1, . . . , αT ] is in the simplex ∆. This bound is directly applicable to the Regularized
Gradient Boosting that we define, since at each boosting round, the algorithm selects a base predictor
ht ∈ Ht, and multiplies it by a coefficient αt. Thus, after T boosting rounds, we will have obtained
an ensemble f such that f =

∑T
t=1 αtht ∈ conv(∪Kk=1Hk) and α directly in the simplex ∆.

Applying the Rademacher complexity bound on the regularized families of regression treesHn,λ,q
that we derived in Theorem 1 and noting that

2

ρ

√
logK

m
+

√⌈
4

ρ2
log

(
ρm2

logK

)⌉
logK

m
+

log( 2
δ )

2m
= O

(√
log(K)

ρ2m
log
[ ρ2m

log(K)

])
(22)

We obtain the expression for the bound in Theorem 2.

A.3 Proof of Lemma 3

Lemma 3. Assume that Φ(y, h) is differentiable with respect to the second argument, and that ∂Φ
∂h

CΦ(y)-Lipschitz with respect to the second argument, for any fixed value y of the first argument. for
all k ∈ [0,K], define L′k(α) = ∂L

∂αk
. Then, L′k(α) is Lipschitz-continuous with the corresponding

Lipschitz constants Ck bounded as follows:

Ck ≤
1

m

m∑
i=1

h2
k(xi)CΦ(yi). (23)

Proof. The k-th derivative of L(α) is equal to (except αk = 0):

L′k(α) =
1

m

m∑
i=1

∂Φ

∂h

(
yi,

T∑
t=1

αtht(xi)

)
hk(xi) + ck, (24)

where ck = βλk

√
(4nk+2) log2(d+2) log(m+1)

m . Let ek be the k-th standard basis vector, then
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∣∣∣∣L′k(α)− L′k(α + δek)

∣∣∣∣ =

∣∣∣∣ 1

m

m∑
i=1

hk(xi)

[
∂Φ

∂h

(
yi,

T∑
t=1

αtht(xi)

)
− ∂Φ

∂h

(
yi,

T∑
t=1

αtht(xi) + δhk(xi)

)]∣∣∣∣
≤ 1

m

m∑
i=1

|hk(xi)|
∣∣∣∣∂Φ

∂h

(
yi,

T∑
t=1

αtht(xi)

)
− ∂Φ

∂h

(
yi,

T∑
t=1

αtht(xi) + δhk(xi)

)∣∣∣∣
=

1

m

m∑
i=1

|hk(xi)|
∣∣∣∣∂Φ

∂h

(
yi, f

)
− ∂Φ

∂h

(
yi, f + δhk(xi)

)∣∣∣∣
≤ 1

m

m∑
i=1

|hk(xi)|CΦ(yi)
∣∣hk(xi)

∣∣|δ|
=

1

m

m∑
i=1

h2
k(xi)CΦ(yi)|δ|

Thus, L′k(α) is Lipschitz-continuous with the corresponding Lipschitz constant bounded by
1
m

∑m
i=1 h

2
k(xi)CΦ(yi).

A.4 Proof of Lemma 4

Lemma 4. For each k ∈ [0,K] let Hnk,λk,2 be the family of regularized regression trees with
‖w‖2 ≤ λk and the number of internal nodes bounded by nk. The regularized objective L(α) as
in Equation 7 has Lipschitz-continuous derivatives with the coordinate-wise Lipschitz constants Ck
bounded as follows:

Ck ≤ λk
[

max
1≤i≤m

CΦ(yi)

]
. (25)

Proof. For a sample S and a fixed tree h let ηl be the number of sample points falling within the leaf
l.

Ck ≤
1

m

[
max

1≤i≤m
CΦ(yi)

] m∑
i=1

h2
k(xi)

≤ 1

m

[
max

1≤i≤m
CΦ(yi)

] ∑
l∈leaves(hk)

ηlw
2
l

≤ 1

m

[
max

1≤i≤m
CΦ(yi)

]
‖w‖2 max

l∈leaves(hk)
ηl

≤ ‖w‖2
[

max
1≤i≤m

CΦ(yi)

]
≤ λk

[
max

1≤i≤m
CΦ(yi)

]

This results in the coordinate sampling distribution for the Randomized Coordinate Descent.

pk =
λk∑K
j=1 λj

(26)
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Table 2: Dataset statistics

sonar cancer diabetes ocr17 ocr49 mnist17 mnist49 higgs
Examples 208 699 768 2000 2000 15170 13782 98050
Features 60 9 8 196 196 400 400 29

A.5 Descriptive statistics of the UCI datasets

Note that mnist17 and mnist49 refer to the original 20-by-20 pixel datasets, where only two digits
(1,7 and 4,9 respectively) were sampled. The cancer dataset refers to the breastcancer dataset in the
UCI repository. The higgs dataset refers to the preprocessed Higgs boson dataset from the OpenML
challenge, 2016.
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