
Under review as a conference paper at ICLR 2020

RELEVANT-FEATURES BASED AUXILIARY CELLS FOR
ROBUST AND ENERGY EFFICIENT DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks are complex non-linear models used as predictive analytics
tool and have demonstrated state-of-the-art performance on many classification
tasks. However, they have no inherent capability to recognize when their predic-
tions are wrong. There have been several efforts in the recent past to detect natural
errors i.e. misclassified inputs but the proposed mechanisms pose additional en-
ergy requirements. To address this issue, we present a novel post-hoc framework
to detect natural errors in an energy efficient way. We achieve this by append-
ing relevant feature based linear classifiers per class referred as Relevant features
based Auxiliary Cells (RACs). The proposed technique utilizes the consensus of
RACs appended at few selected hidden layers to distinguish correctly classified
inputs from misclassified inputs. The combined confidence of RACs is used to
determine if classification should terminate at an early stage. We demonstrate
the effectiveness of our technique on various image classification datasets such as
CIFAR10, CIFAR100 and Tiny-ImageNet. Our results show that for CIFAR100
dataset trained on VGG16 network, RACs can detect 46% of the misclassified
examples along with 12% reduction in energy compared to the baseline network
while 69% of the examples are correctly classified.

1 INTRODUCTION

Machine learning classifiers have achieved high performance on various classification tasks, e.g.,
object detection, speech recognition and image classification. Decisions made by these classifiers
can be critical when employed in real-world tasks such as medical diagnosis, self-driving cars, secu-
rity etc. Hence, identifying incorrect predictions i.e. detecting abnormal inputs and having a well-
calibrated predictive uncertainty is of great importance to AI safety. Note that abnormal samples
include natural errors, adversarial inputs and out-of-distribution (OOD) examples. Natural errors
are samples in the test data which are misclassified by the final classifier in a given network.

Various techniques have been proposed in literature to address the issue of distinguishing abnormal
samples. A baseline method for detecting natural errors and out-of-distribution examples utilizing
threshold based technique on maximal softmax response was suggested by Hendrycks & Gimpel
(2017). A simple unified framework to detect adversarial and out-of-distribution samples was pro-
posed by Lee et al. (2018). They use activations of hidden layers along with a generative classifier to
compute Mahalanobis distance (Mahalanobis, 1936) based confidence score. However, they do not
deal with detection of natural errors.Bahat et al. (2019); Hendrycks & Gimpel (2017); Mandelbaum
& Weinshall (2017) focus on detecting natural errors. Mandelbaum & Weinshall (2017) use distance
based confidence method to detect natural errors based on measuring the point density in the effec-
tive embedding space of the network. More recently, Bahat et al. (2019) showed that KL-divergence
between the outputs of the classifier under image transformations can be used to distinguish cor-
rectly classified examples from adversarial and natural errors. To enhance natural error detection,
they further incorporate Multi Layer Perceptron (MLP) at the final layer which is trained to detect
misclassifications.

Most prior works on the line of error detection do not consider the latency and energy overheads
that incur because of the detector or detection mechanism. It is known that deeper networks expend
higher energy and latency during feed-forward inference. Adding a detector or detection mechanism
on top of this will give rise to additional energy requirements. The increase in energy may make

1

Under review as a conference paper at ICLR 2020

these networks less feasible to employ on edge devices where reduced latency and energy with the
ability to identify abnormal inputs is significant.

Many recent efforts toward energy efficient deep neural networks (DNNs) have explored early exit
techniques. Here, the main idea is to bypass (or turn off) computations of latter layers if the network
yields high confidence prediction at early layers. Some of these techniques include the adaptive
neural networks (Stamoulis et al., 2018), the edge-host partitioned neural network Ko et al. (2018),
the distributed neural network (Teerapittayanon et al., 2017), the cascading neural network (Leroux
et al., 2017), the conditional deep learning classifier (Panda et al., 2016) and the scalable-effort
classifier (Venkataramani et al., 2015). So far, there has been no unified technique that enables
energy efficient inference in DNNs while improving their robustness towards detecting abnormal
samples.

In this work, we target energy efficient detection of natural errors, which can be extended and applied
to detecting OOD examples and adversarial data. We propose adding binary linear classifiers at two
or more intermediate (or hidden) layers of an already trained DNN and utilize the consensus between
the outputs of the classifiers to perform early classification and error detection. This idea is motivated
from the following two observations:

• If an input instance can be classified at early layers Panda et al. (2016) then processing the
input further by latter layers can lead to incorrect classification due to over-fitting. This can
be avoided by making early exit which also has energy benefits.

• We have observed that on an average, the examples which are misclassified do not have
consistent hidden representations compared to correctly classified examples. The addi-
tional linear classifiers and their consensus enables identifying this inconsistent behaviour
to detect misclassified examples or natural errors.

Figure 1: (a) Baseline Deep Neural Network (DNN). (b) DNN with Relevant features based Auxil-
iary Cells (RACs) added at validation layers (selected hidden layers) whose output is monitored to
detect early classification

The training and construction of the linear classifiers is instrumental towards the accurate and ef-
ficient error detection with our approach. We find that at a given hidden layer, the error detection
capability (detecting natural errors) is higher if we use class-specific binary classifiers trained on
the corresponding relevant feature maps from the layer. In fact, using a fully connected classifier
trained on all feature maps (conventionally used in early exit techniques of Panda et al. (2016)) does
not improve error detection capability. Training these binary classifiers on relevant features can be
considered as encoding prior knowledge on the learned hidden feature maps, thereby, yielding better
detection capability. Besides improved error detection, a key advantage of using class wise binary

2

Under review as a conference paper at ICLR 2020

linear classifiers trained on only relevant features is that they incur less overhead in terms of total
number of parameters, as compared to a fully connected classifier trained on all feature maps.

We use “relevant features” and class specific classifiers instead of using all the feature maps and one
fully connected classifier at a hidden layer for the following reasons: (a) We have observed that at
a given hidden layer, the detection capability (detecting natural errors) is higher if we use relevant
feature maps with class-specific binary classifiers than using a fully connected classifier trained on
all feature maps. Training these binary classifiers on relevant features can be considered as encoding
prior knowledge on the learned hidden features maps and hence is expected to have better detection
capability. (b) The class wise binary linear classifiers trained on relevant features have less number
of parameters compared to a fully connected classifier trained on all the feature maps.

In the proposed framework, class-specific binary linear classifiers are appended at few selected hid-
den layers which have maximal information. These hidden layers are referred to as validation lay-
ers. The set of all binary linear classifiers at a validation layer constitute a Relevant feature based
Auxiliary Cell (RAC). We use the consensus of RACs to detect natural errors which improves the
robustness of the network. The combined confidence of RACs is used to perform early classification
that yields energy efficiency.

2 FEATURE RELEVANCE MATRIX

DNNs (or convolutional networks) trained for classification tasks compute a set of features at each
convolutional layer. At each layer, there might be few feature maps which are highly responsible for
activating an output node corresponding to class c compared to others. For example, a high-level
feature can representwhiskers (say) which are relevant to classes like cat and dog but not to classes
like truck and airplane. Hence, the feature map computed from this filter is considered as relevant
feature to class cat and dog. Our approach of adding linear classifiers to trained DNNs follows two-
steps: 1) First, we heuristically select few intermediate convolutional layers (or validation layers)
with maximal information based on empirical observations of False Negative Rate (FNR) and True
Negative Rate (TNR) (see sec. 4.1). 2) Then, we calculate the class-wise relevant features at the
selected validation layers that are eventually used to train the binary linear classifiers.

Algorithm 1: Methodology to Compute Feature-Relevance Matrix at layer l

Input: Trained DNN, Training data {(xi, yi)}Ni=1: xi ∈ input sample, yi ∈ true label
Parameters: number of classes = c, number of layers = L, feature maps at layer l:
{f1, f2, . . . , fr}, relevance score of node p at layer l = Rl

p

Initialize feature-relevance matrix for given layer l: Fl = zeros(c, r)
for each sample (xi, yi) in training data do

Forward propagate the input xi to obtain the activations of all nodes in the DNN
Compute relevance scores for output layer: RL

p = δ(p− yi) ∀p ∈ {1, . . . , c}
δ(p− yi) = Dirac delta function

for k in range(L− 1, l,−1) do
Back propagate relevance scores: Rk

p =
∑

q(α
apw

+
pq∑

p apw
+
pq
− β apw

−
pq∑

p apw
−
pq
)Rk+1

q

∀ p ∈ nodes of layer k, α− β = 1
ap = activations, wpq = weights

end for
Compute average relevance score per feature map at layer l
Relevance score vector at layer l: Rl =

{
Rl

fj
= 1∑

p∈fj
1

(∑
p∈fj

Rl
p

)}r
j=1

Update feature-relevance matrix: Fl(yi, :) = Rl

end for
Average rows of feature-relevance matrix: Fl(p, :) =

1∑
∀yi∈p

1Fl(p, :) ∀p ∈ {1, . . . , c}

return Feature-Relevance Matrix Fl

3

Under review as a conference paper at ICLR 2020

To obtain relevant features, we define a feature-relevance matrix at each validation layer which
assigns class-wise relevance score to every feature map. The relevance score of a feature map for
any given class (say cat) indicates its contribution in activating the output node (corresponding to
cat). Algorithm 1 shows the pseudo code for computing the feature-relevance matrix. The process
takes a pre-trained DNN and training data with corresponding labels as inputs and computes feature
relevance matrix Fl for a particular layer l. Each row in Fl indicates the relevance scores of all the
features maps at layer l corresponding to a unique class c from the dataset. In particular, Fl(i, j)
indicates the relevance score of feature map fj at layer l corresponding to class i in the dataset.

We use Layer-wise Relevance Propagation (LRP) proposed by Sebastian et al. (2015) to compute
class-wise relevance scores of feature maps. LRP computes the contribution of every node in the net-
work to the prediction made for an input image. The relevance scores at output nodes are determined
based on true label of an instance. For any input sample (xi, yi), the output node corresponding to
true class, yi, is given a relevance score of 1 and the remaining nodes get a score of 0. These rele-
vance scores are then back propagated based on αβ-decomposition rule (Wojciech et al., 2016) with
α = 2 and β = 1. After determining the relevance scores at each node in the network, we compute
relevance score of every feature map fi at layer l by averaging the scores of all nodes correspond-
ing to fi. The relevance vector of a feature map fi is obtained by taking class-wise average over
relevance scores of all training samples and forms the ith column of feature-relevance matrix Fl.
The computed feature-relevance matrix is then used to determine relevant features for each class at
validation layers.

3 RELEVANT FEATURES BASED AUXILIARY CELL (RAC)

In this section, we present our approach to designing DNNs with RACs. Fig. 1 shows the conceptual
view of DNNs with RACs. Fig. 1(a) consists of the baseline DNN with L layers. We have not shown
the pooling layers or the filters for the sake of convenience in representation. Fig. 1(b) illustrates
our approach wherein the output relevant features from two hidden layer l, l + 1 which are referred
as validation layers are fed to RACs. Note that the two validation layers need not be consequent.

An RAC consists of c Binary Linear Classifiers (BLCs), where c represents the number of output
nodes or the number of classes. Each BLC within an RAC corresponds to a unique class in the
dataset and is trained on relevant features corresponding to that class. The output of BLC corre-
sponding to class (say c1) in an RAC indicates the probability of a given instance xi belonging to
class c1, P (yi = c1|xi). We can thus gather that output from an RAC (class label RACclass and
associated probability or confidenceRACprob) will correspond to the BLC with maximum value as:

RACclass = argmaxi=1,2..cBLCi (1)
RACprob = maxi=1,2..cBLCi (2)

The probability (RACprob) generated by the RAC is considered as its confidence score. Besides the
RACs, an activation module is added to the network (traingle in Fig. 1(b)) similar to that in Panda
et al. (2016). The activation module uses the consensus of RACs and their confidence scores to
decide if an input instance classification can be terminated at the present layer or not.

3.1 TRAINING RACS

We proceed to train RACs after determining feature-relevance matrices (see sec. 2) at validation
layers. Algorithm 2 shows the pseudo code for training RACs. The initial step in this process is to
determine the relevant features for each class at the validation layers using feature-relevance matrix.
For every class j, we arrange feature maps in the descending order of their class relevance score
and top ‘k’ feature maps are marked as relevant features for class j. Once the relevant features for
each class are determined, they remain unchanged. The classifier of class j (BLC-j) is trained on
the corresponding relevant features from the training data. Note, the relevant feature maps which
are fed to RACs are obtained after the batch-norm and ReLU operation on selected convolutional
layer (validation layer). The BLCs (BLC-1,...,BLC-c) in an RAC can be trained in parallel as they
are independent of each other.

4

Under review as a conference paper at ICLR 2020

Algorithm 2: Methodology to Train an RAC at layer l

Input: Trained DNN, Training data {(xi, yi)}Ni=1, feature-relevance matrix Fl

Parameters: number of class = c, feature-relevance matrix = Fl

for each class j ∈ 1, . . . , c do
Determine top k relevant features of class j at layer l from Fl(j, :)

Obtain relevant features i.e. xlji ∀i ∈ {1, . . . , N} by forward propagating xi through DNN
Get the binary labels for training data: ỹi = δ(j − yi) ∀i ∈ {1, . . . , N}
Initialize a binary linear classifier (BLC-j) with no hidden layers
Train BLC-j using {(xlji , ỹi)}Ni=1 as training data
return BLC-j

end for

3.2 EARLY CLASSIFICATION AND ERROR DETECTION

The overall testing methodology for DNNs with RACs is shown in Algorithm 3. We adopt the early
exit strategy proposed in Panda et al. (2016) and modify it to perform efficient classification and
abnormal input detection with RACs. Given a test instance Itest, the methodology either produces
a class label Ctest or makes No Decision (ND). The output from RACs is monitored to decide
if early classification can be made for an input. If the decision made by RACs across the selected
validation layers do not agree with each other, then the network outputs ND indicating the possibility
of misclassification at the final output layer of the DNN. If the RACs across all validation layers
predict same class label c, then, we use a pre-defined confidence threshold (δth) to decide on early
classification as follows:

• If confidence score (RACprob) across all RACs is greater than δth, we output c as final
decision and terminate the inference at the given validation layer without activating any
latter layers.
• If confidence score (RACprob) in any of the RACs is lesser than δth, the input is fed to

the latter layers and the final output layer of the DNN is used to make the prediction.

In the second case above, all remaining layers from l + 2 onwards in Fig. 1(b) will be activated
and the output of the final layer (L) is used to validate the decision made by RACs. If an input is
classified at RACs either as ND or Ctest (thus, not activating the layers beyond validation layers),
then it is considered as an early classification. In Fig. 1, testing is terminated at layer l + 1 in case
of early classification.

In summary, appending RACs into DNNs enables us to perform early classification with the ability
to output a no decision ND that helps in detecting natural errors (and abnormal inputs). It is evident
that early classification will translate to energy-efficiency improvements. The user defined threshold,
δth, can be adjusted to achieve the best trade-off between efficiency and error detection accuracy.
We believe that the proposed methodology is systematic and can be applied to all image recognition
applications.

4 EXPERIMENTAL METHODOLOGY

In this section, we describe the experimental setup used to evaluate the performance of Deep Neural
Networks (DNNs) with relevant features based Auxiliary Cells (RACs). We demonstrate the ef-
fectiveness of our framework using deep convolutional networks, such as VGGNet (Szegedy et al.,
2015) and ResNet (He et al., 2016) for image classification tasks on CIFAR (Alex & Geoffrey,
2009) and Tiny-ImageNet (Jia et al., 2009) datasets. For the problem of detecting out-of-distribution
(OOD) samples, we have used LSUN (Fisher et al., 2015), SVHN (Yuval et al., 2011) and TinyIm-
ageNet datasets as OOD samples for networks trained on CIFAR10 and CIFAR100 datasets. For
generating adversarial examples, Carlini and Wagner attack (Carlini & Wagner, 2017) has been
used.

We measure the following metric to quantify the performance: percentage of good decisions, per-
centage of bad decisions and percentage of early decisions. The inputs which are either correctly

5

Under review as a conference paper at ICLR 2020

Algorithm 3: Methodology to Test the DNN with RACs
Input: Test instance Itest, DNN with RAC-1 and RAC-2 at validation layers l and l + 1

respectively
Output: Indicates class label (Ctest) or detects abnormal input as No-Decision (ND)

Obtain the DNN layer features for Itest corresponding to layers l and (l + 1)
Activate and obtain the output from RAC-1 and RAC-2
If class label outputted by RAC-1 = RAC-2 do

If confidence value of each RAC is beyond a certain threshold δth do
Terminate testing at layer (l + 1)
Output Ctest = class label given by RACs

else do
Activate remaining layers and obtain decision of final classifier (FC)
If class label given by FC = RACs then output Ctest = class label given by FC
If class label given by FC 6= RACs then output ND

end if
else do

Terminate testing at layer (l + 1)
Output ND

end if

classified or classified as no-decision contribute towards good decisions. Note that DNN with RACs
outputs ‘no-decision’, when the input can be potentially misclassified by the final classifier. The
inputs which are misclassified even by the DNN with RACs are considered as bad decisions. Note
the inputs fall into three different buckets in case of DNN with RACs: (a) Inputs which are cor-
rectly classified (b) Inputs which are classified as ‘no-decisions’ (c) Inputs which are incorrectly
classified. We report False Negative Rate (FNR) and True Negative Rate (TNR) to evaluate the error
detection capability and the average number of operations (or computations) per input (# OPS) to
measure energy efficiency. The negatives are the inputs that are misclassified by the baseline DNN
and positives are the inputs that are correctly classified by the baseline DNN. True negative rate is
the percentage of misclassified (by baseline DNN) inputs which are classified as ‘no-decisions’ by
DNN with RACs. False negative rate is the percentage of correctly classified examples (by baseline
DNN) which are classified as ‘no-decisions’ by DNN with RACs.

Our goal is to increase the true negative rate and improve energy efficiency (decrease # OPS) while
maintaining the false negative rate as low as possible. We observed that these three metrics - true
negative rate, false negative rate and # OPS are sensitive to hyper-parameters related to RACs and so
we have carried out series of experiments to determine their effect. The details of these experiments
are shown in the following section (Sec. 4.1).

4.1 TUNING HYPER-PARAMETERS

The following are the three hyper-parameters which affect true negative rate, false negative rate and
energy efficiency (# OPS):

• The choice of validation layers (l, l + 1)

• Number of relevant features (k) used at each validation layer

• Confidence threshold δth

We use heuristic based methods to tune the above mentioned hyper-parameters. First, lets understand
how validation layers are chosen and their effect on detection capability. The validation layers can
not be initial layers as they do not have the full knowledge of network hierarchy and the feature maps
at these layers are not class specific. We observed that the hidden layers just before the final classifier
(FC) make similar decisions as that of the final classifier and hence are not useful to detect natural
errors. Thus, the hidden layers which are in between (yet, closer to FC) are suitable as validation
layers. Fig. 2 shows the change in FNR, TNR and normalized #OPS with respect to change in the
choice of the validation layers for CIFAR-10 dataset trained on VGG16 network.

6

Under review as a conference paper at ICLR 2020

(a) (b) (c)

Figure 2: (a) Normalised #OPS as the validation layers are shifted towards the final classifier (b)
True negative rate as the validation layers are shifted towards the final classifier (c) False negative
rate as the validation layers are shifted towards the final classifier

(a) (b) (c)

Figure 3: (a) TNR and FNR as the no. of relevant features k is increased at RACs (b) TNR and
FNR as the confidence threshold δth is increased at RACs (c) Normalized #OPS as the confidence
threshold δth is increased at RACs.

As validation layers move deeper into the network, both true negative rate and false negative rate
tend to decrease (Fig. 2b, 2c). We heuristically select a pair of hidden layers as validation layers
which result in the smallest false negative rate in the range of 5%-10%. For example, the smallest
FNR in the range of 5%-10% is obtained when we choose layer 7 and layer 8 as validation layers
for VGG16 network trained on CIFAR10 dataset (Fig. 2c).

Number of relevant features ‘k’ is another hyper-parameter which affects false negative and true
negative rates. As we increase the number of relevant features k, both FNR and TNR decreases.
Fig. 3a shows the change in FNR and TNR with respect to the change in the number of relevant
features k for CIFAR-10 dataset trained on VGG16 network with validation layers at layer 7 and 8.
The optimal value of k depends on the dataset and the network used. We increment k by powers of
2, compute the corresponding FNR and TNR and select the optimal k from these observations. Note
that # OPS increase as ‘k’ increases. For example, consider the case of VGG16 trained on CIFAR10
with validation layers at layer 7 and 8. When we increment k from 64 to 128 at these validation
layers, the FNR drops by 1.6% changing from 6.2% to 4.6% while TNR drops by 5%. Hence, we
choose k as 64 for CIFAR10 with VGG16 network.

The confidence threshold δth is a user defined hyper-parameter which also influences energy effi-
ciency and detection capability. The activation module discussed in Section. 3 compares the confi-
dence score produced by RACs to the confidence threshold δth and selectively classifies the input
at RAC stage or at the final classifier. Thus, we can regulate δth to modulate the number of inputs
being passed to latter layers. Note that δth has no contribution to the decision made when the RACs
do not output same class. The confidence threshold also affects the TNR and the FNR. However, the
change in FNR with confidence threshold is negligible (see Fig. 3b), around 0.1% for 0.1 change in
δth. Fig. 3c shows the variation in normalized OPS (with respect to baseline DNN) with different
δth for VGG16 network trained on CIFAR10 dataset with RACs appended at layer 7 and 8.

As we increase δth, TNR increases because higher δth would qualify more inputs to be verified
by the final classifier. However, beyond a particular δth, a fraction of inputs which are correctly
classified at early stages can be detected as natural errors because of the increase in confusion. The
maximum TNR can be achieved at δth = 0.9 (in Fig. 3b) and this point is referred as δ∗th. The number
of OPS increases as we increase δth but the rate of increase is significant beyond δ∗th. In Fig. 3b, we
observe that the TNR increases from 39.34% (δth=0.8) to 43.15% (δth=0.9) while the normalized

7

Under review as a conference paper at ICLR 2020

Table 1: Baseline network details and the complexity of hidden linear classifiers used for our tech-
nique.

Dataset Network Baseline # of Params validation additional
Error layers # of params

CIFAR10
VGG16 7.88 33.6 M 7,8 0.08 M
Res18 5.76 11.2 M 12, 13 0.33 M

CIFAR100
VGG16 25.62 34.0 M 9, 10 0.41 M
Res34 24.56 21.3 M 31, 32 0.82 M

TinyImageNet Res18 43.15 11.3 M 15, 16 0.41 M

#OPS increase from 0.66 to 0.67. Further increase in δth degrades the TNR and increases the #OPS
by significant amount. Thus, δth serves as a knob to trade TNR for efficiency and can be easily
adjusted during runtime to get the optimal results.

4.2 EXPERIMENTAL RESULTS

This section summarizes results on detection capability and energy efficiency obtained from DNN
with RACs. We train VGGNet with 16 layers and ResNet with 18 layers for classifying CIFAR10.
For training CIFAR100 dataset, we use VGGNet with 16 layers and ResNet with 34 layers. In
addition, we have trained ResNet 18 architecture with TinyImageNet dataset. Table. 1 indicates the
baseline error, the number of parameters in the baseline network, the validation layers used and the
additional number of parameters added due to inclusion of RACs. Table. 2 validates the performance
of our proposed technique. Fig. 4a indicates the reduction in classification error for various networks
and datasets. We observe that DNN with RACs can detect (43 − 45)% of the natural errors while
maintaining the accuracy at (86 − 89)% for CIFAR10 dataset. For CIFAR100 dataset, we observe
slightly higher detection rate i.e. (46− 49)% with an accuracy range of (67− 69)%. The detection
rate is much higher (62%) for Tiny-Imagenet dataset trained on ResNet18. However, the accuracy
drops from 56.85% to 41.28%. This can be potentially improved by using deeper networks such as
DenseNet. Note that the decrease in accuracy is not because of misclassification but is because of
false detection and the falsely detected examples fall into the no-decision bucket. Therefore, even
though the percentage of correctly classified examples decrease slightly, we avoid around 50% of
natural errors compared to the baseline network. Figure. 4b shows the normalized improvement in
efficiency with respect to the baseline DNN for different datasets and networks.

Table 2: Detecting incorrect classifications and making early decisions for image classification task.
All the values are percentages.

Dataset Network Good decisions (%) Bad FNR TNR Early
Correct No decisions (%) (%) (%) decisions
decisions decisions (Error) (%)

CIFAR10
VGG16 86.43 9.09 4.48 6.00 43.00 88.55
Res18 88.81 7.99 3.20 5.76 44.44 74.58

CIFAR100
VGG16 68.6 17.67 13.73 7.7 46.4 87.03
Res34 66.78 20.74 12.48 11.48 49.19 90.39

Tiny- Res18 41.28 42.26 16.46 27.39 61.85 95.24
ImageNet

We also evaluate robustness of our framework against adversarial and out-of-distribution (OOD)
inputs for CIFAR10 and CIFAR100 datasets. The adversarial samples are generated using targeted
Carlini & Wagner (CW) attack with L2 norm (Carlini & Wagner, 2017). We have considered both
zero knowledge adversary and full knowledge adversary to evaluate robustness of DNN with RACs.
The zero knowledge adversaries are created such that the attack has (95-100)% success rate in fool-
ing the final classifier of the DNN. The mean adversarial distortion (average imposed L2 norm) and
adversarial TNR is shown in Table. 3. For the zero knowledge evaluation, adversarial TNR indicates

8

Under review as a conference paper at ICLR 2020

Table 3: Performance of our technique on detecting adversarial and out-of-distribution data for
image classification task. The reported TNR for adversarial and OOD detection is computed at FNR
mentioned in Table. 2. All the values are percentages.

Dataset Network Zero knowledge Full knowledge OOD TNR (%)
Adv mean Adv mean Tiny LSUN SVHN
TNR ‖.‖2 TNR ‖.‖2 Imagenet

CIFAR10
VGG16 38.42 1.74 57.35 1.78 44.25 48.10 63.96
Res18 44.76 1.38 9.10 1.32 60.55 68.46 70.13

CIFAR100
VGG16 37.39 1.01 28.39 1.01 43.03 38.28 38.02
Res34 43.49 0.79 13.95 0.73 58.55 60.30 58.56

the percentage of successful adversaries detected as no decisions. Note that the adversarial examples
which can fool the final classifier are considered as successful adversaries in case of zero knowledge
attack. Full knowledge adversaries are created by including the RACs’ loss to the objective function
that is optimized by CW attack (refer Appendix A.1). We have reported the adversarial detection
rate of DNN with RACs for full knowledge adversaries at mean adversarial distortion similar to
zero knowledge adversaries. Table. 3 also shows the detection capability of RACs in case of out-of-
distribution examples. DNN with RACs are not very effective in detecting the adversarial examples
when the threat model has complete knowledge of the detection mechanism. The proposed frame-
work not only helps in detecting natural errors but also detects out-of-distribution examples while
being energy efficient than the baseline network.

(a) (b)

Figure 4: (a) Test error comparison between baseline DNN and DNN with RACs (b) Normalized
OPS benefits with respect to baseline

5 CONCLUSION

Deep neural networks are crucial for many classification tasks and require robust and energy efficient
implementations for critical applications. In this work, we device a novel post-hoc technique for en-
ergy efficient detection of natural errors. In essence, our main idea is to append class-specific binary
linear classifiers at few selected hidden layers referred as Relevant features based Auxiliary Cells
(RACs) which enables energy efficient detection of natural errors. With explainable techniques such
as Layerwise Relevance Propagation (LRP), we determine relevant hidden features corresponding to
a particular class which are fed to the RACs. The consensus of RACs (and final classifier if there is
no early termination) is used to detect natural errors and the confidence of RACs is utilized to decide
on early classification. We also evaluate robustness of DNN with RACs towards adversarial inputs
and out-of-distribution samples. Beyond the immediate application to increase robustness towards
natural errors and reduce energy requirement, the success of our framework suggests further study
of energy efficient error detection mechanisms using hidden representations.

9

Under review as a conference paper at ICLR 2020

REFERENCES

Krizhevsky Alex and Hinton Geoffrey. Learning multiple layers of features from tiny images. 2009.

Yuval Bahat, Michal Iranu, and Gregory Shakhnarovich. Natural and adversarial error detection
using invariance to image transformations. In arXiv preprint arXiv:1902.00236v1. 2019.

Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. In ACM workshop on AISec. 2017.

Yu Fisher, Seff Ari, Zhang Yinda, Song Shuran, Funkhouser Thomas, and Xiao Jianxiong. Con-
struction of a large-scale image dataset using deep learning with humans in the loop. In arXiv
preprint arXiv:1506.03365. 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Computer Vision and Pattern Recognition (CVPR). 2016.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In International Conference on Learning Representations. 2017.

Deng Jia, Dong Wei, Socher Richard, Li Li-Jia, Li Kai, and Fei-Fei Li. Imagenet: A large-scale
hierarchical image database. In CVPR. 2009.

Jong Hwan Ko, Taesik Na, Mohammad Faisal Amir, and Saibal Mukhopadhyay. Edge-host parti-
tioning of deep neural networks with feature space encoding for resource-constrained internet-of-
things platforms. In 15th IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS). 2018.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. In Advances in Neural Information Process-
ing Systems 31, pp. 7167–7177. 2018.

Sam Leroux, Steven Bohez, Elias De Coninck, Tim Verbelen, Bert Vankeirsbilck, Pieter Simoens,
and Bart Dhoedt. The cascading neural network: building the internet of smart things. In Knowl-
edge and Information Systems 52, issue 3. 2017.

Chandra Prasanta Mahalanobis. On the generalised distance in statistics. In Proceedings of the
National Institute of Sciences of India, pp. 49–55. 1936.

Amit Mandelbaum and Daphna Weinshall. Distance-based confidence score for neural network
classifiers. In arXiv preprint arXiv:1709.09844. 2017.

Priyadarshini Panda, Abhronil Sengupta, and Kaushik Roy. Conditional deep learning for energy-
efficient and enhanced pattern recognition. In Design, Automation & Test in Europe Conference
& Exhibition (DATE). 2016.

Bach Sebastian, Binder Alexander, Montavon Gregorie, Klauschen Frederick, Muller Klaus-Robert,
and Samek Wojciech. On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. In Plos One. 2015.

Dimitrios Stamoulis, Ting-Wu Chin, Anand Krishnan Prakash, Haocheng Fang, Sribhuvan Sajja,
Mitchell Bognar, and Diana Marculescu. Designing adaptive neural networks for energy-
constrained image classification. In ICCAD ’18 Proceedings of the International Conference
on Computer-Aided Design, Article No. 23. 2018.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Computer Vision and Pattern Recognition (CVPR). 2015.

Surat Teerapittayanon, Bradley McDanel, and H.T Kung. Distributed deep neural networks over the
cloud, the edge and end devices. In ICDCS, IEEE, pp. 328339. 2017.

Swagath Venkataramani, Anand Raghunathan, Jie Liu, and Mohammed Shoaib. Scalable-effort
classifiers for energy-efficient machine learning. In DAC. 2015.

10

Under review as a conference paper at ICLR 2020

Samek Wojciech, Montavon Gregorie, Binder Alexander, Lapuschkin Sebastian, and Muller Klaus-
Robert. Interpreting the predictions of complex ml models by layer-wise relevance propagation.
In arXiv preprint arXiv:1611.08191v1. 2016.

Netzer Yuval, Wand Tao, Coates Adam, Bissacco Alessandro, Wu Bo, and Ng Andrew Y. Reading
digits in natural images with unsupervised feature learning. In Neural Information Processing
Systems (NIPS) workshop. 2011.

A APPENDIX

A.1 ADVERSARIAL ATTACKS

We consider the zero knowledge and full knowledge adversaries to evaluate the robustness of the
proposed framework towards adversarial examples targeted Carlini-Wagner (CW) with L2 norm.
The zero knowledge targeted CW-L2 attacks are constructed as

argmin
xcw

{‖x− xcw)‖22 + c.[fy(xcw)− ft(xcw)]} (3)

where x is an input by the final classifier, xcw is a required adversary, c is the penalty term,
fy(xcw) is final classifier’s logit value corresponding to true class and ft(xcw) is the logit value
corresponding to target class when xcw is given as the input to the network. The target class for
correctly classified is chosen as the class with second highest output softmax value. The c value is
adaptively chosen for each network such that the attack success rate CW attack is 95-100%.

For generating full knowledge attacks, we modify the objective function indicated by expression 3
to include RACs’ loss. The full knowledge targeted CW-L2 attacks are constructed as

argmin
xcw

{‖x− xcw)‖22 + c1.[fy(xcw)− ft(xcw)] + c2
[∑

i 6=t

(f1i − f1t)
]
+ c3

[∑
i6=t

(f2i − f2t)
]
}

where c1, c2, c3 are penalty factors, t is the target class, f1j indicates the output of the BLC-j in
RAC1 before applying sigmoid non-linearity, f2j indicates the output of the BLC-j in RAC2 before
applying sigmoid non-linearity. We have adaptively chosen the constants c1, c2, c3 such that the
mean L2 distortion between x and xcw is similar to the zero knowledge attack. For both zero
knowledge and full knowledge attack, the chosen values of hyper-parameters are as follows: learning
rate = 0.01, maximum number of iterations = 400.

11

	Introduction
	Feature Relevance Matrix
	Relevant features based Auxiliary Cell (RAC)
	Training RACs
	Early classification and Error detection

	Experimental methodology
	Tuning Hyper-parameters
	Experimental Results

	Conclusion
	Appendix
	Adversarial attacks

