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Abstract—Generative priors have become highly effective in
solving inverse problems including denoising, inpainting, and
reconstruction from few and noisy measurements. With a gen-
erative model we can represent an image with a much lower
dimensional latent codes. In the context of compressive sensing,
if the unknown image belongs to the range of a pretrained
generative network, then we can recover the image by estimating
the underlying compact latent code from the available measure-
ments. However, recent studies revealed that even untrained deep
neural networks can work as a prior for recovering natural
images. These approaches update the network weights keeping
latent codes fixed to reconstruct the target image from the given
measurements. In this paper, we optimize over network weights
and latent codes to use untrained generative network as prior for
video compressive sensing problem. We show that by optimizing
over latent code, we can additionally get concise representation
of the frames which retain the structural similarity of the video
frames. We also apply low-rank constraint on the latent codes to
represent the video sequences in even lower dimensional latent
space. We empirically show that our proposed methods provide
better or comparable accuracy and low computational complexity
compared to the existing methods.

I. INTRODUCTION
A. Motivation and Related Works

Compressive sensing refers to a broad class of problems
in which we aim to recover a signal from a small number of
measurements [[1]-[3]]. Suppose we are given a sequence of
measurements for t = 1,...,7T as

ey
where x; denotes the ¢*" frame in the unknown video se-
quence, y; denotes its observed measurements, A; denotes
the respective measurement operator, and e; denotes noise
or error in the measurements. Our goal is to recover the
video sequence (x;) from the available measurements (y;).
The recovery problem becomes especially challenging as the
number of measurements (in y;) becomes very small compared
to the number of unknowns (in ;).

Classical signal priors exploit sparse and low-rank structures
in images and videos for their reconstruction [4]]-[16]. However,
the natural images exhibits far richer nonlinear structures than
sparsity alone. We focus on a newly emerging generative priors
that learn a function that maps vectors drawn from a certain
distribution in a low-dimensional space into images in a high-
dimensional space.

The generative model and optimization problems we use
are inspired by recent work on using generative models for
compressive sensing in [[17]—[23]. Compressive sensing using
generative models was introduced in [[17]], which used a trained
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deep generative network as a prior for image reconstruction
from compressive measurements. Afterwards deep image prior
(DIP) used an untrained convolutional generative model as
a prior for solving inverse problems such as inpainting and
denoising because of their tendency to generate natural images
[22]; the reconstruction problem involves optimization of
generator network parameters. Inspired by these observations, a
number of methods have been proposed for solving compressive
sensing problem by optimizing generator network weights
while keeping the latent code fixed at a random value [19],
[20]. Both DIP [22]] and deep decoder [20] update the model
weights to generate a given image; therefore, the generator
can reconstruct wide range of images. One key difference
between the two approaches is that the network used in DIP is
highly overparameterized, while the one used in deep decoder
is underparameterized.

We observed two main limitations in the DIP and deep
decoder-based video recovery that we seek to address in this
paper. (1) The latent codes in DIP and deep decoder methods
are initialized at random and stay fixed throughout the recovery
process. Therefore, we cannot infer the structural similarities
in the images from the structural similarities in the latent codes.
(2) Both of these methods train one network per image. A
naive approach to train one network per frame in a video will
be computationally prohibitive, and if we train a single network
to generate the entire video sequence, then their performance
degrades.

Therefore, we propose joint optimization over network
weights « and the latent codes z; to reconstruct video sequence.
Thus we learn a single generator and a set of latent codes to
represent a video sequence. We observe that when we optimize
over latent code alongside network weights, the temporal
similarity in the video frames is reflected in the latent code
representation. To exploit similarities among the frames in a
video sequence, we also include low-rank constraints on the
latent codes. An illustration of different types of representations
we use in this paper are shown in Figure [I}

B. Our Contribution

In this paper, we reconstruct a video sequence from the
compressive measurements in (I) by jointly optimizing over
the latent codes z; and the network parameters ~y. Since the
frames in a video sequence exhibit rich redundancies in their
representation, we impose a low-rank constraint on the latent
codes to represent the video sequence with a more compact
representation of the latent codes.
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Fig. 1: An illustration of different generative priors discussed in the paper:
(a) Optimizing latent codes can only reconstruct images in the range of the
generative network. (b) Jointly optimizing latent code and network weights
enables recovery of a larger range of images. (¢) Low-rank and similarity
constraints on latent code further regularize the problem and potentially explain
other structures in data.
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The key contributions of this paper are as follows.

« We demonstrate that joint optimization allows us to learn a
single generator network for an entire video sequence and
corresponding latent codes simultaneously. We demonstrate
that this approach has lower computational complexity and
requires less number of parameters to reliably generate the
entire video sequence. Furthermore, joint optimization retains
the similarity structure of the video frames in their latent
representation which leaves further scope for different tasks
which involves latent space manipulation.

« Consecutive frames in a video sequence share lot of similar-
ities. To encode similarities among the reconstructed frames,
we introduce low-rank constraints on the generator latent
codes. This enables us to represent a video sequence with
even smaller number of parameters in the latent space. We
show that, in some cases, the low-rank structure on the latent
codes also provides a nice low-dimensional manifold.

II. PROPOSED METHOD
A. Joint Latent Codes and Generator Optimization

For a single image reconstruction, deep image prior solve
the following optimization to obtain optimal 7,

2)

In this optimization, z is initialized randomly and kept unaltered.
To jointly optimize the latent codes and generator parameters
for a video sequence, we use the similar formulation as in @)
but optimize it over the z; and ~. The resulting optimization
problem can be written as

T

Dy = AGL (=)
t=1

The reconstructed video sequence can be generated using the
estimated latent codes (21, ..., 27) and generator weights (%)
as L%t = G@(it)

We initialize latent codes with samples drawn from a
Gaussian distribution and normalize them to have unit norm.
We initialize  with random weights using the initialization
scheme in [24]. Initilizing the generator with a pretrained set
of weights can potentially serve as a good initialization and
lead to good and faster convergence. We tested both variants,

argmin ||y — AG,(2)|3
¥

minimize
Z1ye+y2T5Y

3)

but observed little difference in performance; therefore, we
use random initialization of parameters in this paper. Each
iteration of joint optimization consists of two steps: 1) latent
code optimization and 2) network parameter optimization. After
every gradient descent update of the latent codes, z;, we update
the model parameters with stochastic gradient descent. In all
of our experiments with joint optimization, we learned a single
set of network weights for the entire sequence. We note that
it is possible to divide a longer video sequences into small
segments and learn different sets of network weights for each
of them. At the end of our reconstruction process, we have a
single set of trained weights ¥, reconstructed frames Z; and
their corresponding optimal latent codes 2.

B. Low Rank Constraint

As we optimize over the latent codes and the network
weights in joint optimization, the latent codes capture the
temporal similarity of the video frames. To further exploit
the redundancies in a video sequence, we assume that the
variation in the sequence of images are localized and the latent
codes sequence can be represented in a low-dimensional space
compared to their ambient dimension. Let us define a matrix
Z with all the latent codes as

21},

where z; is the latent code corresponding to t!" image of
the sequence. To impose a low-rank constraint, we solve the
following constrained optimization:

T
Dy — AGL(=)I13
t=1

s.t. rank(Z) =r.

We solve @) using a projected gradient descent method in
which we project the latent code estimates after every iteration
to a manifold of rank-r matrices. To do that, we compute Z
matrix and its rank-r approximation using principal component
analysis (PCA) or singular value decomposition (SVD).

In this manner, we can express each of the latent codes in
terms of r orthogonal basis vectors vectors uq, ..., u, as

r
Z; = E ozijuj
j=1

where «;; is the weight of the corresponding basis vector.
We can represent a video sequence with 7' frames with r
orthogonal codes, and the lowrank representation of latent
codes requires r X k + r x T parameters compared to 7" X k.
This offers (7 + 1) times compression to our latent code
representation. As we observe later, we use r = 4 for k = 256
and T' = 32 which gives us compression of 0.14 in latent code

representation.
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ITII. EXPERIMENTAL RESULTS
A. Setup and Performance Comparison

In this paper we report the results for one synthetic sequence
which we refer to as ‘Rorating MNIST’. In this sequence, we
resize one MNIST digit to 64 x 64 and rotate by 2° per frame
for a total of 32 frames. We experiment on different real video



Algorithm 1 Generative Models for Low Rank Representation
and Recovery of Videos

Input: Measurements ¥;, measurement matrices A;, A gener-
ator structure G- (-)
Initialize the latent codes z; and generator weights
randomly and normalize z; with its 2-norm.
repeat
Compute gradients w.r.t. z; via backpropagation.
Update latent code matrix Z = [z --- z7].
Truncate Z to a rank-r matrix via SVD or PCA.
Compute gradients w.r.t. v via backpropagation.
Update network weights .
until convergence or maximum epochs
Output: Latent codes: z1,...,zr and network weights:

sequences from publicly available KTH human action video
dataset [25] and UCF101 dataset [26]. In TableE], we report our
results for ‘Handclapping’, ‘Handwaving’ and ‘Walking’ video
sequences from KTH dataset; ‘Archery’, ‘Apply Eye Makeup’
and ‘Band Marching’ video sequences from UCF101 dataset.
We centered and resized every frame in KTH videos to 64 x 64
and UCF101 videos to 256 x 256 pixels.

We used the well-known DCGAN architecture [27] for our
generators, except that we do not use any batch-normalization
layer. The latent code dimensions for grayscale 64 x 64, RGB
64 x 64 and RGB 256 x 256 video sequences are 64, 256
and 512 respectively. We use Adam optimizer for generator
weights optimization and SGD for latent code optimization.
Unless otherwise mentioned, we use rank=4 constraint as low
rank constraint because we empirically found that we need
a least rank=4 for a video sequence with 32 frames to get
comparable performance.

We show comparison with classical total variation min-
imization based TVAL3D (3D extension of TVAL3 [28])
algorithm and state-of-the-art untrained generative prior based
deep decoder [20]] on denoising, inpainting, and compressive
sensing tasks. We use two different deep decoder settings:
underparameterized deep decoder (UP deep decoder) and
overparameterized deep decoder (OP deepdecoder). Although
the authors suggested deep decoder to be UP, we report the
results for OP deep decoder as well because it shows better
performance and its hyperparameters are tuned by the authors
of deep decoder.

Other then denoising and inpainting, we performed compres-
sive random projection experiments where we used separable
measurements, Y = PT X P, where X,Y are reshaped versions
of x,y as 2D matrices, P is a random projection matrix.

We report the results for denoising experiment at 20 dB
SNR noise, inpainting experiment for 80% missing pixels
and compressive sensing experiments for 20% available mea-
surements in Table [II From the results, we can observe that
joint optimization with/without low-rank constraint outperform
TVAL3D algorithm and UP deep decoder. It performs at par
with OP deep decoder. In Figure 2] we show reconstruction
performance for denoising, inpainting and compressive sensing
at different measurement rate or noise level for ‘Handwaving’
video sequence. We can get the similar observation from these
curves as well. We report some reconstruction results for

‘Handwaving’ sequence in Figure 2] From the reconstructions,
we can say that joint optimization performs at par with
the comparing algorithms. It especially performs well in
reconstructing details from masked frames.

TABLE I: Reconstruction performance measured in terms of PSNR for
different compressive sensing problems. We show comparison with TVAL3D
(3D extension of TVAL3 [28]) and deep decoder [20]]. The results are average
over five experiments with different random measurement matrices (or noise
in the case of denoising).
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Denoising for additive Gaussian noise of 20dB SNR
TVAL3D 358 | 32.2 | 304 | 30.5 | 34.5 | 31.5 | 30.6
UP deep decoder 289 | 284 | 25.6 | 283 | 28.1 | 29.6 | 28.1
OP deep decoder 36.6 | 31.1 | 30 31 344 | 33 31.6
Joint optimization 369 | 32.7 | 30.7 | 31.2 | 36.1 | 32.1 | 31.3
Joint opt+lowrank | 36.8 | 32.3 | 30.8 | 30.7 | 364 | 32 31.7
Inpainting with 80% pixels randomly missing
TVAL3D 21.1 | 292 | 234 | 245 | 282 | 27.1 | 24.8
UP deep decoder 255 | 265 | 233 | 263 | 272 | 29 233
OP deep decoder 30.1 | 30.2 | 26.7 | 27.9 | 324 | 32.5 | 262
Joint optimization 293 | 349 | 281 | 289 | 358 | 32 26.8
Joint opt+lowrank | 29.5 | 343 | 273 | 27.8 | 36.6 | 30.4 | 27.6
Spatial compressive sensing with compression rate = (.2
TVAL3D 29.8 | 32.1 | 289 | 28 339 | 284 | 27.8
UP deep decoder 30 27 249 | 26.7 | 262 | 27.6 | 22.5
OP deep decoder 352 | 329 | 30.6 | 29 331 | 31.2 | 274
Joint optimization 353 | 35.6 | 29.7 | 289 | 36 293 | 27.8
Joint opt+lowrank | 354 | 347 | 29 29.1 | 359 | 28.8 | 29.1

B. Computational Complexity

The computational complexity of our proposed methods
vary with the choice of the generator structure. We have
chosen DCGAN generator structure for our experiments. We
calculate memory requirement for gradient descent using
torchsummary package [29]. For a single 64 x 64 RGB
image, memory requirement for UP deep decoder, OP deep
decoder and joint optimization is 2.75 MB, 66.48 MB and
2.06 MB respectively. For a single 256 x 256 RGB image,
memory requirement for UP deep decoder, OP deep decoder
and joint optimization is 44.03 MB, 1239.75 MB and 10.88
MB respectively. For a RGB video seqence with 32 frames, UP
deep decoder will require 11,304 x 32 (361,728) parameters
while OP deep decoder will have 397,056 x 32 ( 12.7M)
parameters. On the other hand we need 4,852,736 and 6,988,544
network parameters to represent RGB 64 x 64 and 256 x 256
video sequences, respectively in joint optimization method with
DCGAN generator.

Because of the huge memory requirement, OP deep decoder
is not suitable for optimization over entire video sequence
whereas the low capacity hinders UP deep decoder from
generating entire video sequence.

C. Similarity Structure in the Latent Codes

To investigate the similarity structure in the latent codes
obtained by joint optimization, we performed another experi-
ment in which we concatenated 16 frames from each of the
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Fig. 2: (a)-(c) are some reconstructions for Handwaving sequence for (a) denoising with 20 dB SNR noise level, (b) inpainting from masked frames with 80%
missing pixels, (c) compressive sensing from 20% measurements. The deep decoder reconstruction here correspond to OP deep decoder structure because
quantitative reconstruction results for UP deep decoder are significantly worse. Joint optimization with/without low rank constraint performs at par with other
comparing algorithms. (d)-(f) are reconstruction quality curves for (d) denoising (e) inpainting (f) compressive sensing for Handwaving sequence. We can
observe that joint optimization performs consistently for different measurement rates or noise level.
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Fig. 3: Pairwise cosine similarity between frames, measurements or latent codes for extended mixed video sequence where 16 frames of 6 different video
sequences (Handwaving, Handclapping, Walking, Archery, Apply Eye Makeup ,Band Marching in order) are concatenated in the temporal dimension. Blue
indicates highest similarity whereas yellow indicates lowest similarity. We observe that adding low rank constraint further bolster the similarity observed in the

the frames of same video sequences found by joint optimization.

six different video sequences (‘Handwaving’, ‘Handclapping’,
‘Walking’, ‘Archery’, ‘Apply Eye Makeup’, and ‘Band March-
ing’, in the same order) to create a new sequence with 96
frames. We performed compressive sensing experiment on this
video sequence with 20% measurements.
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Fig. 4: Linear representation of latent space of Rotating MNIST sequence
using rank=2 constraint for image inpainting task with 80% missing pixels.
The annotations for each point denotes the latent code corresponding to ¢*%
frame.

The cosine similarity matrices for the video frames, com-

pressive measurements, latent codes for with fixed latent
codes (random), latent codes for joint optimization, and latent
codes for joint optimization with low-rank are presented in
Figure Eka)—(e). We can distinguish the video sequences from
the pairwise similarity matrices of the latent codes we estimate
with joint optimization. We also observe that the low-rank
constraint improves the similarity matrix.

We mentioned that using low rank constraint we can
represent the video sequences in much lower dimensional space.
If the generator function is continuous it makes sense that the
latent space representation of a video sequence will retain their
sequential structure in some low dimensional representation. We
demonstrate one such example using rank=2 constraint on the
latent codes while reconstructing ‘Rotating MNIST’ sequence
from its masked version with 80% pixels missing. As we are
enforcing, rank=2 constraint taking mean and first principal
component, the latent codes should fall on line. In Figure E
we represent the latent codes in a 2D plane using 2 orthogonal
basis vectors. t*" point in Figure E, represent latent code of
tt" frame. We can observe that latent codes are maintaining
sequence in their 2D dimensional representation. For complex
motions, it might take higher dimensional representation to
observe such sequential pattern.
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