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Abstract
Parameters are one of the most critical components of machine learning models. As
datasets and learning domains change, it is often necessary and time-consuming to re-learn
entire models. Rather than re-learning the parameters from scratch, replacing learning
with optimization, we propose a framework building upon the theory of optimal transport
to adapt model parameters by discovering correspondences between models and data,
significantly amortizing the training cost. We demonstrate our idea on the challenging
problem of creating probabilistic spatial representations for autonomous robots. Although
recent mapping techniques have facilitated robust occupancy mapping, learning all spatially-
diverse parameters in such approximate Bayesian models demand considerable computational
time, discouraging them to be used in real-world robotic mapping. Considering the fact
that the geometric features a robot would observe with its sensors are similar across various
environments, in this paper, we demonstrate how to re-use parameters and hyperparameters
learned in different domains. This adaptation is computationally more efficient than
variational inference and Monte Carlo techniques. A series of experiments conducted on
realistic settings verified the possibility of transferring thousands of such parameters with a
negligible time and memory cost, enabling large-scale mapping in urban environments.

1. Introduction

The quintessential paradigm in the machine learning pipeline consists of the stages of data
acquisition and inference of the given data. As data become plentiful, or as ones problem
set become more diverse over time, it is common to learn new models tailored to the new
data or problem. Contrasting this conventional modeling archetype, we argue that it is often
redundant to perform inference and re-learn parameters from scratch. Such model adaptation
procedures are indispensable in application domains such as robotics in which the operating
environments change continuously. For instance, if the model is represented as a Bayesian
model, its distribution should be redetermined regularly to adjust for changes in new data.

In this paper, we focus on significantly improving the training time of building Bayesian
occupancy maps such as automorphing Bayesian Hilbert maps (ABHMs) Senanayake et al.
(2018) by transferring model parameters associated with a set of source datasets to a target
dataset in a zero-shot fashion Isele et al. (2016). Despite having attractive theoretical
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properties and being robust, the main reason that hinders models such as ABHM being
used in real-world settings is the run-time cost of learning thousands of parameters (main
parameters and hyperparameters). Moreover, these parameters not only vary across different
places in the same environment, but also change over time.

We demonstrate domain adaptation of “geometry-dependent spatial features” of the
ABHM model from a pool of source domains to the current target domain. This is efficiently
done using the theory of Optimal Transport Arjovsky et al. (2017). Since the proposed
approach completely bypasses explicitly learning parameters of the Bayesian model using
domain adaptation, this process can be thought of as “replacing parameter learning with
domain adapatation.” The notation given in Table 1 will be used throughout the rest of the
paper.

Table 1: Table of notations and terminology

Notation Description

¯and˘ Mean and variance
x, y LIDAR data positions and labels

N and M Number of data points and parameters
h̄ Kernel hinge positions
θ Parameter set except h̄

(S) and (T ) Source and target
P Coupling matrix

a→ b transport = transfer = domain adaptation

Figure 1: The distances between each
datapoint x and kernels hinged in dif-
ferent locations {h̄m}Mm=1 are evalu-
ated.

2. Nonstationary Mapping using Bayesian Logistic Regression

An occupancy model is typically a parameterized function which gives the probability of
a given point in the environment being occupied. For instance, having learned a function
with parameters θ, it is possible to query y∗ = p(occupied|x∗, θ) ∈ [0, 1] for anywhere in
the space x∗ = (longitude, latitude) ∈ R2. The parameters θ must be estimated from data
gathered using a LIDAR sensor with labels y = {0, 1} = {free,hit}. The high level idea of
ABHM is projecting LIDAR data into the reproducing kernel Hilbert space (RKHS)—a rich
high dimensional feature space—and performing Bayesian logistic regression. The occupancy
probability of a point x is given by p(y|x) = sigmoid(

∑M
m=1wm exp (−γm‖x− hm‖22)) with

weights w ∈ R, kernel hinged at spatial locations h ∈ R2, and width of the squared-
exponential (SE) kernel γ ∈ R+. As shown in Figure 1, here, M SE kernels positioned at M
sparial locations {hm}Mm=1 are used to project 2D data into a M dimensional vector such
that each kernel has more effect from data in its locality.

The distributions {wm ∼ N (w̄m, w̆m), γm ∼ Gamma(γ̄m, γ̆m),hm ∼ N (h̄m, h̆m)}Mm=1

must be learned from LIDAR data. Slightly abusing standard notations, in this paper,¯and˘
symbols are used to represent the mean and dispersion parameters, respectively. One of the
most important parameters for later discussions is the location parameter h̄m ∈ R2. Because
of the intractable posterior, the parameters of the model are learned Senanayake et al. (2018)
using variational inference through probabilistic programming Tran et al. (2017).
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3. Parameter Optimal Transport (POT)

In this section, we propose a framework for swiftly adapting thousands of parameter and
hyperparameters of the Bayesian mapping model. To adapt to domains, we require accurately
pre-trained maps from which we can extract spatially relevant features. In the context
of our problem we must extract LIDAR scans (hits and free) with their corresponding
model parameters {(h̄, θ)}. To simplify further discussions, as in Figure 1, θ is defined
as all parameters except the mean location parameter h̄. We define source LIDAR data
{(x(S)

n , y
(S)
n )}N(S)

n=1 with corresponding parameters learned from ABHM {θ(S)
m }M(S)

m=1 as the
source atom. The source is an environment small enough to be trainable with ABHM.

Having determined the source atom, our objective is to determine the new set of
parameters {θ(T )}M(T )

m=1 for a new LIDAR dataset (target) {(x(T )
n , y

(T ))
n }N(T )

n=1 . As illustrated
in Figure 7, we are looking for a nonlinear mapping technique to convert a source (S) to a
target (T ). We recognize this as an optimal transport (OT) problem. In occupancy mapping,
the probability measures are from LIDAR data. For a new target dataset, we attempt to
obtain the optimal coupling,

P∗ = min
P∈Γ(x(S),x(T ))

∑

ij

PijDij − λ−1r(P ) (1)

for a given D ∈ RN(S)×N(T ) distance matrix (e.g. Euclidean distance between source-
target pairs) with the information entropy of P , r(P ) = −∑

ij Pij logPij . This entropic
regularization, commonly known as the Sinkhorn distance Cuturi (2013); Genevay et al.
(2017), enables solving the otherwise hard integer programming problem using an efficient
iterative algorithm Sinkhorn and Knopp (1967). Here, λ controls the amount of regularization.

Having obtained the optimal coupling between source and target LIDAR, as illustrated in
Figures 7 (b)-(c), now it is possible to transport corresponding source parameters θ(S) to the
target domain. This is done by associating the parameter positions with source samples h̄(S)

as a linear map x(S) Perrot et al. (2016). Note that all other θ(S) parameters associated with
h̄(S) will also be transported. This implicit transfer process is depicted in Figure 5. Since
ABHM can only be executed in small areas due to the high computational cost, we learn
individual ABHM maps for different areas and construct a dictionary of source atoms which
we call a dictionary of atoms X (S). As a result, as depicted in Figure 2, atoms from various
domains will be transferred to the target. The entire algorithm is given in Algorithm 1.

4. Experiments

We used the Carla simulator Dosovitskiy et al. (2017) and KITTI benchmark dataset Geiger
et al. (2013) for experiments. A summary of datasets is listed in Table 5. We compared
against vanilla variational inference Senanayake and Ramos (2017); Jaakkola and Jordan
(1997) and variational inference with reparameterization trick Senanayake et al. (2018);
Kingma and Welling (2013).

Intra-domain and inter-domain adaptation Here we consider two paradigms: intra-
domain and inter-domain transfer. In intra-domain transfer, the source atoms are generated
from the first 10 frames of a particular dataset and parameters are transferred within the
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Figure 2: A high-level overview of our method: Parameter Optimal Transport. Training
domains correspond to potentially independent, data-intensive, expensive, yet small-scale pre-
learned models. After storing in a dictionary of atoms, representative data-space and model-
parameter tuples from the pre-learned set of models, we find data-space correspondences
using optimal transport maps via the ranking procedure. These maps are then used to
transport pre-learned parameters to out-of-sample test domains. Our method is largely
insensitive to data-space invariances between source training domains and test domains
reducing knowledge loss during the transfer process.

same dataset. In inter-domain transfer they are transferred to a completely new town.
Results are in Table 4 with 20% randomly sampled test LIDAR beams. We consider two
paradigms: intra-domain and inter-domain transfer. In intra-domain transfer, the source
atoms are generated from the first 10 frames of a particular dataset and parameters are
transferred within the same dataset. In inter-domain transfer they are transferred to a new
town. Results are in Table 4 with 20% randomly sampled test LIDAR beams from each town.
Parameters are aggregated over time to map entire environments visualized in Figure 3.

Figure 3: (a) Street map of Carla Town 2 domain. (b) POT Transported kernels for the
entire domain. (c) POT probabilistic occupancy map.

Building instantaneous maps This experiment demonstrates performance of building
instantaneous maps. For this purpose, we use the two dynamic datasets: SimCarla and
RealKITTI. The source dictionary of atoms was prepared similar to the intra/inter-domain
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Table 2: Instantaneous map building in dy-
namic environments. Mean and SD are given.
We evaluated the test performance of our
model using accuracy (ACC), area under
ROC curve (AUC), and negative log-likelihood
(NLL) Bishop (2006). The higher the ACC
and AUC or lower the NLL, the better.

Target
SimCarla RealKITTI

S
ou

rc
e A
C
C

Town 1 0.74 ± 0.10 0.69 ± 0.06
Town 2 0.70 ± 0.10 0.58 ± 0.06

A
U
C Town 1 0.81 ±0.11 0.77 ±0.06

Town 2 0.77 ±0.12 0.73 ±0.06

N
LL

Town 1 1.06 ± 0.56 1.42 ± 0.38
Town 2 1.90 ± 0.79 3.63 ± 1.04

Table 3: Performance per time unit.

Target
Method Town1 Town2

A
C
C

RePOT 0.95 0.93
POT 0.85 0.83
ABHM 0.77 0.59
BHM 0.66 0.61

A
U
C RePOT 0.99 0.98

POT 0.92 0.92
ABHM 0.95 0.96
BHM 0.94 0.92

N
LL

RePOT 0.71 1.41
POT 1.64 1.69
ABHM 0.58 0.71
BHM 0.63 0.69

adaptation experiment. Such a map is shown in Figure 6. Table 2 shows the performance of
transferring features extracted from each town to the dynamic datasets.

Performance comparison We evaluate various occupancy mapping algorithms in terms
of accuracy and speed, noting that ABHM with a high accuracy cannot be run for large
environments. We measure the time for POT per LIDAR scan then select the number of
kernels to match the same time to run BHM and ABHM; results are in in Table 3. To further
improve the map quality, we propose to use transported parameters as prior distributions of
the BHM and merely update the weights w in using Senanayake and Ramos (2017). This
improved method termed refined POT (RePOT) maps results in further performance gains.

5. Conclusion

This paper introduced optimal transport theory as a framework for distribution (parameter
and hyperparameter) adaptation of a Bayesian model with applications to occupancy mapping.
We demonstrated quickly (1 second) adapting thousands of parameters and benchmarked
the performance with realistic datasets.
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