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ABSTRACT

Minimum hyperspherical energy (MHE) has demonstrated its potential in regu-
larizing neural networks and improving the generalization. MHE was inspired
by the Thomson problem in physics where the distribution of multiple propelling
electrons on a unit sphere can be modeled via minimizing some potential energy.
Despite its practical effectiveness, MHE suffers from some difficulties in opti-
mization as the dimensionality of the space becomes higher, therefore limiting
the potential to improve network generalization. To address these problems, we
propose the compressive minimum hyperspherical energy (CoMHE) as a more
effective regularization for neural networks. Specifically, CoMHE utilizes a pro-
jection mapping to reduce the dimensionality of neurons and minimizes their
hyperspherical energy. According to different constructions for the projection
mapping, we propose two major variants: random projection CoMHE and angle-
preserving CoMHE. As a novel extension, We further consider adversarial pro-
jection CoMHE and group CoMHE. We also provide some theoretical insights to
justify the effectiveness. Our comprehensive experiments show that CoMHE con-
sistently outperforms MHE by a considerable margin, and can be easily applied to
improve different tasks such as image recognition and point cloud recognition.

1 INTRODUCTION

Recent years have witnessed the tremendous success of deep neural networks in a variety of tasks.
With its over-parameterization nature and hierarchical structure, deep neural networks achieve un-
precedented performance on many challenging problems [1–3], but their strong approximation abil-
ity also makes it easy to overfit the training set, which greatly affects the generalization on unseen
samples. Therefore, how to restrict the huge parameter space and properly regularize the deep
networks becomes increasingly important. Regularization of neural networks can be roughly cate-
gorized into implicit and explicit. Implicit regularization usually does not directly impose explicit
constraints on the neuron weights, and instead it regularizes the networks in an implicit manner in
order to prevent overfitting and stabilize the training dynamics. A lot of classic methods fall into
this category, such as batch normalization [4], dropout [5], weight normalization [6], group normal-
ization [7], etc. Explicit regularization [8–13] usually introduces some penalty terms for the neuron
weights, and jointly optimizes it along with the other objective functions.

Among many explicit regularizations, minimum hyperspherical energy (MHE) [13] is a simple yet
effective regularization that encourages the hyperspherical diversity among neurons and signifi-
cantly improves the network generalization. From geometric perspective, MHE regularizes the
directions of neuron weights by minimizing a special potential energy on a unit hypersphere that
characterizes the hyperspherical diversity (such energy is defined as hyperspherical energy [13]). In
contrast, standard weight decay only regularizes the norm of neuron weights, which can be viewed
as regularizing one dimension of the neuron weight. In fact, MHE completes an important miss-
ing piece in the standard regularization in neural networks by introducing the regularization for the
neuron directions (i.e., regularizing the rest dimensions of the neuron weight).

Despite its elegant interpretation and good performance, MHE still has a few critical problems which
limit MHE to unleash its full potential. First, MHE suffers from huge number of local minima
and stationary points due to its highly non-convex objective function. The problem can get even
worse when the dimension gets higher and the number of neurons becomes larger [14, 15]. Second,
the gradient w.r.t the neuron weight of the original MHE objective is deterministic. Unlike the
weight decay whose objective is convex, MHE has a complex and non-convex regularization term.
Therefore, deterministic gradients may quickly fall into one of the stationary points and get stuck
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there. Third, when the number of neurons is smaller than the dimension of the space (it is often the
case in neural networks), MHE defines an ill-posed problem because the neurons can not even fully
occupy the space. It will be less meaningful in this case to encourage the hyperspherical diversity.
Last, in high-dimensional spaces, neurons are likely to be orthogonal to each other. As a result, in
the original measure of diversity in MHE, these high-dimensional neurons can be trivially “diverse”,
leading to very small gradients that may result in optimization difficulties.

In order to address these problems, we propose the compressive minimum hyperspherical energy
(CoMHE) as a more effective regularization for neural networks. The high-level intuition behind
CoMHE is to project neurons to various spaces whose dimensions are significantly smaller than the
original one such that the hyperspherical energy can get minimized more effectively. Specifically,
CoMHE first maps the neuron weight from a high-dimensional space to a low-dimensional one
and then applies standard MHE to regularize these neurons. As a result, how to map the neuron
weights to a low-dimensional space while preserving some of the desirable information in high-
dimensional space is our major focus. Since MHE regualrizes the directions of neurons, the most
important information we care in MHE is the angular similarity between different neuron weights.
To this end, we explore multiple novel methods to perform the projection propose and propose
two main approaches: random projection and angle-preserving projection, which can reduce the
dimensionality of neurons while still partially preserving the angles.

Random projection (RP) [16] is a naturally motivated choice to achieve the dimensionality reduction
in MHE due to its simplicity and nice theoretical properties. RP can provably preserve the angular
information, and most importantly, introduce certain degree of randomness to the gradients, which
can help MHE escape from some stationary points. The role that the randomness of RP serves in
CoMHE is actually similar to the simulated annealing [17, 18] that is widely used in Physics to solve
Thomson problem. Such randomness is also empirically shown to benefit the network generaliza-
tion [19]. Furthermore, we also prove that using RP can well preserve the pairwise angles between
neurons. Building upon RP, we propose the angle-preserving projection (AP) as an alternative way
to project the neurons. AP is inspired by the goal that we aim to preserve the pairwise angles between
neurons. Constructing an AP that can project neurons to a low-dimensional space and preserve the
angles is usually very difficult even with powerful non-linear functions, which is suggested by the
strong conditions required for conformal mapping in complex analysis [20]. Therefore, we adopt
a different approach to construct AP by framing the AP construction as an optimization problem
which can be solved jointly with the neural network. Furthermore, we propose the adversarial pro-
jection for CoMHE, which minimizes the maximal energy attained by learning the projection. We
formulate it as a min-max optimization and solve it jointly with the neural network.

However, it is inevitable to lose some information in the high-dimensional space and the neurons
may only get diverse in some low-dimensional spaces. To address this, we introduce multiple pro-
jections to approximate the learning objective of MHE in the original high-dimensional space more
accurately. Specifically, we project the neurons to multiple subspaces, compute the MHE loss in each
space separately and finally minimize the aggregation (i.e., average or max) of these MHE losses.
Besides, we also reinitialize these projection matrix randomly every certain number of iterations to
avoid trivial solutions. Our empirical study shows that CoMHE with RP or AP performs consistently
better than the standard MHE in nearly all applications. Our contributions can be summarized as:

• To address the drawbacks of MHE, we propose CoMHE as a generic regularization to effectively
minimize hyperspherical energy of neurons for better generalizability of neural networks.

• We explore a number of ways to construct the projection for dimensionality reduction. Random
projection and angle-preserving projection are proposed to achieve the dimensionality reduction
of neurons while being able to partially preserve the angular information in MHE. Moreover, we
consider several interesting variants such as adversarial projection CoMHE and group CoMHE.

• We provide partial theoretical insights to show that some projections used in the paper can well
preserve the angular similarity between different neurons.

• We apply CoMHE to image recognition and point cloud recognition, and demonstrate consistent
and significant improvement over the standard MHE. Notably, a 9-layer plain CNN regularized
by CoMHE outperforms a 1001-layer ResNet by nearly 2% on CIFAR-100.

2 RELATED WORK

Diversity-based regularization has been found useful in sparse coding [21, 22], ensemble learn-
ing [23, 24], self-paced learning [25], metric learning [26], latent variable models [27], person re-
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identification [28], face recognition [13], etc. There are a number of ways to characterize diversity
in previous works. Early studies in sparse coding [21, 22] model the diversity with the empirical
covariance matrix and show that the generalization capability of dictionary can be improved by reg-
ularizing its diversity. [29] promotes the uniformity among eigenvalues of the component matrix in
a latent space model. [30] encourages the diversity of latent space models by imposing constraints to
the pairwise angle among components. [9, 10, 31–33, 33] characterize diversity among neurons with
orthogonality, and regularize the neural network using the orthogonality. Inspired by the Thomson
problem in physics, MHE [13] defines the hyperspherical energy to characterize the diversity on
a unit hypersphere and shows significant and consistent improvement in supervised learning tasks.
There are two MHE variants in [13]: full-space MHE and half-space MHE. Compared to full-space
MHE, the half-space variant [13] further eliminates the collinear redundancy by constructing virtual
neurons with the opposite direction to the original ones and then minimizing their hyperspherical
energy together. The importance of regularizing angular information is also discussed in [34–41].

3 COMPRESSIVE MHE
3.1 REVISITING STANDARD MHE
MHE characterizes the diversity of N neurons (WN ={w1, · · · ,wN ∈Rd+1}) on a unit hyper-
sphere using hyperspherical energy which is defined as

Es,d(ŵi|Ni=1) =

N∑
i=1

N∑
j=1,j 6=i

fs
(
‖ŵi − ŵj‖

)
=

{ ∑
i6=j ‖ŵi − ŵj‖−s , s > 0∑
i6=j log

(
‖ŵi − ŵj‖−1 ), s = 0

, (1)

where ‖·‖ denotes `2 norm, fs(·) is a decreasing real-valued function (we use fs(z)=z−s, s>0,
i.e., Riesz s-kernels), and ŵi=

wi

‖wi‖ is the i-th neuron weight projected onto the unit hyper-

sphere Sd={v∈Rd+1| ‖v‖=1}. For convenience, we denote ŴN ={ŵ1, · · · , ŵN ∈Sd}, and
Es=Es,d(ŵi|Ni=1). Note that, each neuron is a convolution kernel in convolutional neural networks
(CNNs). MHE minimizes the hyperspherical energy of neurons using gradient descent during back-
propagation, and MHE is typically applied to the neural network layer-wise. For example, we write
down the gradient of E2 w.r.t ŵi and make the gradient to be zero:

∇ŵiE2 =

N∑
j=1,j 6=i

−2(ŵi − ŵj)

‖ŵi − ŵj‖4
∇ŵi

E2=0
=======⇒ ŵi =

∑N
j=1,j 6=i αjŵj∑N
j=1,j 6=i αj

, (2)

where αj=‖ŵi−ŵj‖−4. We use toy and informal examples to show that high dimensional space
(i.e., d is large) leads to much more stationary points than low-dimensional one. Assume there
are K=K1+K2 stationary points in total for ŴN to satisfy Eq. 2, where K1 denotes the number
of stationary points in which every element in the solution is distinct and K2 denotes the number
of the rest stationary points. We give two examples: (i) For (d+2)-dimensional space, we can
extend the solutions in (d+1)-dimensional space by introducing a new dimension with zero value.
The new solutions satisfy Eq. 2. Because there are d+2 ways to insert the zero, we have at least
(d+2)K stationary points in (d+2)-dimensional space. (ii) We denote K ′1=

K1

(d+1)! as the number
of unordered sets that construct the stationary points. Then in (2d+2)-dimensional space, we have
ŵE
j = 1√

2
{ŵj ; ŵj}∈S2d+1,∀j satisfying Eq. 2. Moreover, the order of the elements in ŵE

j does

not matter for Eq. 2.Thus, there are at least (2d+2)!
2d+1 K ′1+K2 stationary points for ŴN in (2d+2)-

dimensional space, and besides this trivial construction, there are much more stationary points. Now
one can know that there are increasingly more stationary points for MHE in higher dimensions.

3.2 GENERAL FRAMEWORK

To overcome MHE’s drawbacks in high dimension, we propose the compressive MHE that projects
the neurons to a low-dimensional space and then minimizes the hyperspherical energy of the pro-
jected neurons. In general, CoMHE aims to minimize the following form of hyperspherical energy:

EC
s (ŴN ) =

N∑
i=1

N∑
j=1,j 6=i

fs
(
‖g(ŵi)− g(ŵj)‖

)
(3)

where g :Sd→Sk takes a normalized (d+1)-dimensional input and outputs a normalized (k+1)-
dimensional vector. g(·) can be either linear or nonlinear mapping. In this paper, we only focus on
the linear mapping. For nonlinear mapping, the simplest case is to apply a multi-layer perceptron.
Similar to MHE, CoMHE also serves as a regularization penalty in neural networks.
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3.3 RANDOM PROJECTION FOR COMHE
Random projection is in fact one of the most straightforward way to reduce dimensionality while par-
tially preserving the angular information. More specifically, we use a random mapping g(v)= Pv

‖Pv‖
where P ∈R(k+1)×(d+1) is a Gaussian distributed random matrix (each entry follows i.i.d. normal
distribution). In order to reduce the variance of the objective value, we use multiple random projec-
tion matrix to project the neurons and compute the MHE objective separately, shown as follows:

ER
s (ŴN ) =

1

C

C∑
c=1

N∑
i=1

N∑
j=1,j 6=i

fs
( ∥∥∥∥ Pcŵi

‖Pcŵi‖
− Pcŵj

‖Pcŵj‖

∥∥∥∥ ) (4)

where Pc,∀c is a random matrix with each entry satisfying the normal distribution N (0, 1). Ac-
cording to the properties of normal distribution [42], every normalized row of the random matrix P
is uniformly distributed on a hypersphere Sd, which indicates that the projection matrix P is able to
cover all the possible subspaces. Multiple projection matrices can also be interpreted as multi-view
projection, because we are making use of information from multiple projection views. In fact, we
do not necessarily need to average the energy for multiple projections, and instead we can use max-
imum operation (or some other meaningful aggregation operations). Then the objective becomes
maxc

∑N
i=1

∑N
j=1,j 6=i fs(‖

Pcŵi

‖Pcŵi‖ −
Pcŵj

‖Pcŵj‖‖). Considering that we aim to minimize this objec-
tive, the problem is in fact a simple min-max optimization. Note that, we will typically re-initialize
the random projection matrices every certain number of iterations. Most importantly, using RP can
provably preserve the angular similarity between different neurons.

3.4 ANGLE-PRESERVING PROJECTION FOR COMHE
Recall that our goal is to find a projection to project the neurons to a low-dimensional space while
simultaneously preserving angular information. We transform the goal to an optimization problem:

P ? = argmin
P
LP :=

∑
i 6=j

(θ(ŵi,ŵj) − θ(Pŵi,Pŵj))
2 (5)

where P ∈R(k+1)×(d+1) is the projection matrix and θ(v1,v2) denotes the angle between v1 and
v2. For implementation convenience, we can replace the angle with the cosine value (e.g.., use
cos(θ(ŵi,ŵj)) to replace θ(ŵi,ŵj)), so that we can directly use the inner product of normalized
vectors to measure the angular similarity. With P̂ obtained in Eq. 5, we use a nested loss function:

EA
s (ŴN ,P

?) =

N∑
i=1

N∑
j=1,j 6=i

fs
( ∥∥∥∥ P ?ŵi

‖P ?ŵi‖
− P ?ŵj

‖P ?ŵj‖

∥∥∥∥ )
s.t. P ? = argmin

P

∑
i 6=j

(θ(ŵi,ŵj) − θ(Pŵi,Pŵj))
2

(6)

for which we propose two different ways to optimize the projection matrix P . We can approximate
P ? using a few gradient descent updates. Specifically, we use two different ways to perform the
optimization. Naively, we use a few gradient descent steps to update P in order to approximate
P ? and then update WN , which proceeds alternatively. The number of iteration steps that we use
to update P is a hyperparemter and needs to be determined by cross-validation. Besides the naive
alternative one, we also use a different optimization of WN by unrolling the gradient update of P .

Alternative optimization. The alternative optimization is to optimize P alternatively with the
network parameters WN . Specifically, in each iteration of updating the network parameters, we
update P every number of inner iterations and use it as an approximation to P ? (the error depends
on the number of gradient steps we take). Essentially, we are alternatively solving two separate
optimization problems for P and WN with gradient descent.

Unrolled optimization. Instead of naively updating WN with approximate P ? in the alternative
optimization, the unrolled optimization further unrolls the update rule of P and embed it within
the optimization of network parameters WN . If we denote the CoMHE loss with a given projec-
tion matrix P as EA

s (WN ,P ) which takes WN and P as input, then the unrolled optimization
is essentially optimizing EA

s (WN ,P −η · ∂LP

∂P ). It can also be viewed as minimizing the CoMHE
loss after a single step of gradient descent w.r.t. the projection matrix. This optimization includes
the computation of second-order partial derivatives. Note that, it is also possible to unroll multiple
gradient descent steps. Similar unrolling is also applied in [43–45].
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3.5 NOTABLE COMHE VARIANTS

We provide more interesting CoMHE variants as an extension and complement to the previous two
major methods. We will have some preliminary empirical study on these variants, but our main
focus is still on RP and AP.

Adversarial Projection for CoMHE. We consider a very novel CoMHE variant that adversarially
learns the projection. The intuition behind is that we want to learn a projection basis that maxi-
mizes the hyperspherical energy while the final goal is to minimize this maximal energy. With such
intuition, we can naturally construct a min-max optimization problem:

min
ŴN

max
P

N∑
i=1

N∑
j=1,j 6=i

fs
( ∥∥∥∥ Pŵi

‖Pŵi‖
− Pŵj

‖Pŵj‖

∥∥∥∥ ) (7)

which can be solved by gradient descent similar to [46]. From a game-theoretical perspective, P and
ŴN can be viewed as two players that are competing with each other. However, due to the instability
of solving the min-max problem, the performance of adversarial projection is also unstable. We will
empirically evaluate this approach in experiments.

Group CoMHE. Group CoMHE is a very special case in the CoMHE framework. The basic idea
is to divide the weights of each neuron into several groups and then minimize the hyperspherical
energy within each group. For example in CNNs, group MHE divides the channels into groups and
minimizes within each group the MHE loss. Specifically, the objective function of group CoMHE is

EG
s (ŴN ) =

1

C

C∑
c=1

N∑
i=1

N∑
j=1,j 6=i

fs
( ∥∥∥∥ Pcŵi

‖Pcŵi‖
− Pcŵj

‖Pcŵj‖

∥∥∥∥ ) (8)

where Pc is a diagonal matrix with every diagonal entry being either 0 or 1, and
∑
cPc=I (in fact,

this is optional). There are multiple ways to divide groups for the neurons, and typically we will
divide groups according to the channels, similar to [7]. More interestingly, one can also divide the
groups in a stochastic fashion.

Mixed CoMHE. Since all the proposed CoMHE variants and the original MHE share the same
goal of diversifying the neurons on a unit hypersphere, we can in fact combine any of these MHE
variants and use them together. It also has some flavor of multi-view learning [47], since we opti-
mize hyperspherical energy with different objectives. Experimenting all the possible combination is
cumbersome and also out of the main scope of this paper, so we defer it to future investigation.

3.6 SHARED PROJECTION BASIS IN NEURAL NETWORKS

In general, we usually need different projection bases for neurons in different layers of the neural
network. However, we find it beneficial to share some projection bases across different layers. We
only share the projection matrix for the neurons in different layers that have the same dimensionality.
For example in a neural network, if the neurons in the first layer have the same dimensionality with
the neurons in the second layer, we will share their projection matrix that reduces the dimensionality.
Sharing the projection basis can effectively reduce the number of projection parameters and may
also reduce the inconsistency within the hyperspherical energy minimization of projected neurons in
different layers. Most importantly, it can empirically improve the network generalizability (as shown
in our experiment) while using much fewer parameters and saving more computational overheads.

4 THEORETICAL INSIGHTS

The section mainly discusses some theoretical insights towards understanding CoMHE in terms of
angular approximation accuracy and statistical intuitions.

4.1 ANGLE PRESERVATION

We start with some highly relevant properties of random projection and then delve into the analysis
of angular preservation.

Lemma 1 (Mean Preservation of Random Projection). For any w1,w1 ∈ Rd and any random
Gaussian distributed matrix P ∈ Rk×d where Pij =

1√
n
rij , if rij ,∀i, j are i.i.d. random variables

from N (0, 1), we have E(〈Pw1,Pw2〉) = 〈w1,w2〉.
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This lemma indicates that the mean of randomly projected inner product is well preserved, partially
justifying why using random projection actually makes senses.
Lemma 2 (Johnson-Lindenstrauss Lemma [48, 49]). Let w1, w2 ∈ Rd be vectors, and P ∈
Rk×d, k < d be a random projection matrix with entries i.i.d. drawn from a 0-mean σ-subgaussian
distribution. With Pw1,Pw2 ∈ Rk being the projected vectors of w1,w2, then, ∀ε ∈ (0, 1),

(1− ε) ‖w1 −w2‖2 kσ2 < ‖Pw1 − Pw2‖2 < (1 + ε) ‖w1 −w2‖2 kσ2 (9)

holds with probability at least 1− 2 exp(−kε
2

8 ).

Johnson-Lindenstrauss lemma (JLL) establishes a guarantee for the Euclidean distance between
randomly projected vectors. Note that,N (0, 1) is a 1-subgaussian distribution, so Gaussian random
projection satisfies this lemma. However, JLL does not show anything informative about the angle
preservation, and it is also nontrivial to give a useful guarantee for angular similarity from JLL.
Theorem 1 (Angle Preservation I). Given w1,w2 ∈ Rd, P ∈ Rk×d is a random projection matrix
that has i.i.d. 0-mean σ-subgaussian entries, and Pw1,Pw2 ∈ Rk are the randomly projected
vectors of w1,w2 under P . Then ∀ε ∈ (0, 1), we have that

cos(θ(w1,w2))− ε
1 + ε

< cos(θ(Pw1,Pw2)) <
cos(θ(w1,w2)) + ε

1− ε
(10)

which holds with probability
(
1− 2 exp(−kε

2

8 )
)2

.

Theorem 2 (Angle Preservation II). Given w1,w2 ∈ Rd, P ∈ Rk×d is a Gaussian random
projection matrix where Pij=

1√
n
rij (rij ,∀i, j are i.i.d. random variables from N (0, 1)), and

Pw1,Pw2 ∈ Rk are the randomly projected vectors of w1,w2 under P . Then ∀ε ∈ (0, 1) and
w>1 w2 > 0, we have that

1 + ε

1− ε cos(θ(w1,w2))−
2ε

1− ε < cos(θ(Pw1,Pw2)) <
1− ε
1 + ε

cos(θ(w1,w2)) +
1 + 2ε

1 + ε
−
√

(1− ε2)
1 + ε

(11)

which holds with probability 1− 6 exp(−k2 (
ε2

2 −
ε3

3 )).

Theorem 1 is one of our main theoretical results and reveals that the angle between randomly pro-
jected vectors is well preserved. Note that, the parameter σ of the subgaussian distribution is not
related to our bound for the angle, so any Gaussian distributed random matrix has the property of
angle preservation. The projection dimension k is related to the probability that the angle preser-
vation bound holds. Theorem 2 is a direct result from [50]. It again shows that the angle between
randomly projected vectors is provably preserved. Both Theorem 1 and Theorem 2 give upper
and lower bounds for the angle between randomly projected vectors. If θ(w1,w2)>arccos( ε+3ε2

3ε+ε2 ),
then the lower bound in Theorem 1 is tighter than the lower bound in Theorem 2. If θ(w1,w2)>

arccos( 1−3ε
2−(1−ε)

√
1−ε2

3ε−ε2 ), the upper bound in Theorem 1 is tighter than the upper bound in Theo-
rem 2. To conclude, Theorem 1 gives tighter bounds when the angle of original vectors is large.

Since AP is randomly initialized every certain number of iterations and learned to minimize the
angular difference before and after the projection, AP usually performs better than RP in preserving
angles. Without the angle-preserving optimization, AP reduces to RP.

4.2 STATISTICAL INSIGHTS

In fact, we can also draw some theoretical intuitions from spherical uniform testing [51] in statistics.
Spherical uniform testing is a nonparametric statistical hypothesis test that checks whether a set of
observed data is generated from a uniform distribution on a hypersphere or not. Random projection
is in fact an important tool [51] in statistics to test the uniformity on hyperspheres, while our goal
is to promote the same type of hyperspherical uniformity (i.e., diversity). Specifically, we have N
random samples w1, · · · ,wN of Sd-valued random variables, and the random projection p which
is another random variable independent of wi,∀i and uniformly distributed on Sd. The projected
points of wi,∀i is yi=p>wi,∀i. The distribution of yi,∀i uniquely determines the distribution of
w1, which is specified by Theorem 3.
Theorem 3 (Unique Distribution Determination of Random Projection). Let w be a Sd-valued
random variable and p be a random variable that is uniformly distributed on Sd and independent
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of w. With probability one, the distribution of w is uniquely determined by the distribution of the
projection of w on p. More specifically, if w1 and w2 are Sd-valued random variables, independent
of p and we have a positive probability for the event that p takes a value p0 such that the two
distributions satisfy p>0 w1 ∼ p>0 w2, then w1 and w2 are identically distributed.

Theorem 3 shows that the distributional information is well preserved after random projection, pro-
viding the CoMHE framework a statistical intuition and foundation. We emphasize that the random-
ness here is in fact very crucial. For a fixed projection p0, Theorem 3 does not hold in general. As a
result, random projection for CoMHE is well motivated from the statistical perspective.

5 DISCUSSIONS

Comparison to existing works. One of the widely used regularizations is the orthonormal regular-
ization [35, 52] that minimizes ‖W>W −I‖F where W denotes the weights of a group of neurons
with each column being one neuron and I is an identity matrix. [10, 32] are also built upon orthog-
onality. In contrast, both MHE and CoMHE do not encourage orthogonality among neurons and
instead promote hyperspherical uniformity and diversity.

The significance of CoMHE. CoMHE addresses some key problems in MHE, and further boosts
the performance on various applications while enjoying elegant theoretical interpretations and prop-
erties. By projecting the neurons to a low-dimensional space, CoMHE is able to effectively reduce
the number of stationary points and introduce more regularity to the neurons.

Randomness helps generalization? Both RP and AP introduce certain degree of randomness to
CoMHE, and the empirical results show that such randomness can largely benefit the network gen-
eralization. It is well-known that randomness in SGD is one of the key ingredients that help deep
models well generalize to unseen samples. Why CoMHE works well may also have some implicit
relations to this observation. Beside this, [19] also theoretically shows that randomness can help
generalization, which also partially justifies the effectiveness of CoMHE.

Computational overhead. One of the significant advantages of CoMHE is its savings of floating-
point operations (FLOPs). Assume there are N neurons with dimension d and the projection matrix
is of size k×d. Then the FLOPs of original MHE is N(N−1)(d+2), while the FLOPs of CoMHE
is 2kd+N(N−1)(k+2). In a standard setting where N=512, d=3×3×512, k=10, we have
that MHE has nearly 1200M FLOPs and CoMHE has only 3.32M FLOPs (even with multiple pro-
jection matrix, it is still much less than MHE), showing that CoMHE is much more efficient to
compute. Both MHE and CoMHE are only used in training and do not affect inference speed.

6 EXPERIMENTS AND RESULTS

6.1 IMAGE RECOGNITION

We perform image recognition to show the improvement of regularizing CNNs with CoMHE. Our
goal is to show the superiority of CoMHE rather than achieving stat-of-the-art accuracies on par-
ticular tasks. For all the experiments on CIFAR-10 and CIFAR-100 in the paper, we use the same
data augmentation as [1, 37]. For ImageNet-2012, we use the same data augmentation in [35]. We
train all the networks using SGD with momentum 0.9. All the networks use BN [4] and ReLU if not
otherwise specified. By default, all the variants of CoMHE are built upon half-space MHE. More
experimental details are given in each subsection and Appendix A.

6.1.1 ABLATION STUDY AND EXPLORATORY EXPERIMENTS
Method Error (%)

Baseline 28.03
HS-MHE [13] 25.96

G-CoMHE 25.08
Adv-CoMHE 25.09
RP-CoMHE 24.39

RP-CoMHE (max) 24.77
AP-CoMHE (alter.) 24.95
AP-CoMHE (unroll) 24.33

Table 1: Testing error (%) of different
CoMHE variants on CIFAR-100.

Variants of CoMHE. We compare different variants of CoMHE
with the same plain CNN-9 (see Appendix A). Specifically, we eval-
uate the baseline CNN without any regularization, half-space MHE
(HS-MHE) which is the best MHE variant from [13], random pro-
jection CoMHE (RP-CoMHE), RP-CoMHE (max) that uses max
instead of average for loss aggregation, angle-preserving projec-
tion CoMHE (AP-CoMHE), adversarial projection CoMHE (Adv-
CoMHE) and group CoMHE (G-CoMHE) on CIFAR-100. For RP,
we set the projection dimension to 30 (i.e., k=29) and the number
of projection to 5 (i.e., C=5). For AP, the number of projection is 1 and the projection dimension is
set to 30. For AP, we evaluate both alternative optimization and unrolled optimization. In alternative
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optimization, we update the projection matrix every 10 steps of network update. In unrolled opti-
mization, we only unroll one-step gradient in the optimization. For G-CoMHE, we construct a group
with every 8 consecutive channels. All these design choices are obtained using cross-validation. We
will also study how these hyperparameters affect the performance in the following experiments.
The results in Table 1 show that all of our proposed CoMHE variants can outperform the original
half-space MHE by a large margin. The unrolled optimization in AP-CoMHE shows the significant
advantage over alternative one and achieves the best accuracy. Both Adv-CoMHE and G-CoMHE
achieve decent performance gain over HS-MHE, but not as good as RP-CoMHE and AP-CoMHE.
Therefore, we will mostly focus on RP-CoMHE and AP-CoMHE in the remaining experiments.

Projection Dimension 10 20 30 40 80

RP-CoMHE 25.48 25.32 24.60 24.75 25.46
AP-CoMHE (alter.) 25.21 24.60 24.95 24.97 24.99

AP-CoMHE (unroll.) 25.32 24.59 24.33 24.93 25.12

Table 2: Error (%) on CIFAR-100 under different dimension of projection.

Dimension of projection. We evaluate
how the dimension of projection (i.e., k)
affects the performance. We use the plain
CNN-9 as the backbone network and test
on CIFAR-100. We fix the number of pro-
jections in RP-CoMHE to 20. Because AP-CoMHE does not need to use multiple projections to
reduce variance, we only use one projection in AP-CoMHE. Results are given in Table 2. In gen-
eral, RP-CoMHE and AP-CoMHE with different projection dimensions can consistently and signif-
icantly outperform the half-space MHE, validating the effectiveness and superiority of the proposed
CoMHE framework. Specifically, we find that both RP-CoMHE and AP-CoMHE usually achieve
the best accuracy when the projection dimension is 20 or 30. Since the unrolled optimization in
AP-CoMHE is consistently better than the alternative optimization, we will stick to the unrolled
optimization for AP-CoMHE in the remaining experiments if not otherwise specified.

# Projections 1 5 10 20 30 80

RP-CoMHE 25.11 24.39 25.11 24.6 24.82 24.92
AP-CoMHE 24.33 - - - - -

Table 3: Error (%) on CIFAR-100 under different numbers of projections.

Number of projections. We evaluate RP-
CoMHE under different numbers of pro-
jections. We use the plain CNN-9 as the
baseline and test on CIFAR-100. Results
in Table 3 show that the performance of RP-CoMHE is generally not very sensitive to the number
of projections. Surprisingly, we find that it is not necessarily better to use more projections for
variance reduction. Our experiment show that using 5 projections can achieve the best accuracy. It
might be because large variance can somehow help the solution to escape more bad local minima in
the optimization. Note that, we generally do not use multiple projections in AP-CoMHE, because
AP-CoMHE learns the projection and variance reduction is unnecessary. Moreover, our empirical
results do not show any noticeable performance gain by using multiple projections in AP-CoMHE.

Width t = 1 t = 2 t = 4 t = 8 t = 16

Baseline 47.72 38.64 28.13 24.95 25.45
HS-MHE [13] 35.16 29.33 25.96 23.38 21.83

RP-CoMHE 34.73 28.92 24.39 22.44 20.81
AP-CoMHE 34.89 29.01 24.33 22.6 20.72

Table 4: Error (%) on CIFAR-100 with different network width.

Network width. We evaluate RP-CoMHE
and AP-CoMHE with different network
width on CIFAR-100. We use the plain
CNN-9 as our backbone network architec-
ture, and set its filter number in Conv1.x,
Conv2.x and Conv3.x (see Appendix A) to
16× t, 32× t and 64× t, respectively. Specifically, we test the cases where t = 1, 2, 4, 8, 16. Taking
t = 2 as an example, then the filter numbers in Conv1.x, Conv2.x and Conv3.x are 32, 64 and 128,
respectively. For RP, we set the projection dimension to 30 and the number of projection to 5. For
AP, the number of projection is 1 and the projection dimension is set to 30. The results are shown in
Table 4. Note that, we use the unrolled optimization in AP-CoMHE. From Table 4, one can observe
that the performance gains of both RP-CoMHE and AP-CoMHE are very consistent and signifi-
cant. With wider network, CoMHE also achieves better accuracy. Compared to the strong results of
half-space MHE, CoMHE still obtains more than 1% accuracy boost under different network width.

Depth CNN-6 CNN-9 CNN-15

Baseline 32.08 28.13 Not Converged
HS-MHE [13] 27.56 25.96 25.84

RP-CoMHE 26.73 24.39 24.21
AP-CoMHE 26.55 24.33 24.55

Table 5: Error on CIFAR-100 with different network depth.

Network depth. We evaluate RP-CoMHE and AP-
CoMHE with different network depth on CIFAR-
100. We use three plain CNN with 6, 9 and 15 con-
volution layers, respectively. For all the networks,
we set the filter number in Conv1.x, Conv2.x and
Conv3.x to 64, 128 and 256, respectively. Detailed
network architectures are given in Appendix A. For RP, we set the projection dimension to 30 and
the number of projection to 5. For AP, the number of projection is 1 and the projection dimension
is set to 30. The results in Table 5 show that both RP-CoMHE and AP-CoMHE can outperform
half-space MHE by a considerable margin while regularizing a plain CNN with different depth.
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Shared projection basis. We take RP-CoMHE as an example to empirically verify the advantages
of shared projection basis across different layers. We set the projection dimension to 20 and the
number of projections to 30. The plain CNN-9 is used as baseline. Specifically for shared projection
basis, we share the random projection basis in Conv1.x, Conv2.x and Conv3.x separately. The shared
projection yields 24.6% error rate. For independent projection basis, we use separated projection
basis for different layers and only obtain 26.05% error rate. The results show that using shared
random projection basis for neurons of the same dimensionality improves the network generalization
while saving parameters. Note that, all the other experiments use shared projection basis by default.

Baseline
Orthogonal
HS-MHE
AP-CoMHE
RP-CoMHE
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Figure 1: Hyperspherical energy during training. All net-
works are initialized with the same random weights, so the
hyperpsherical energy is the same before the training starts.

Effectiveness of optimization. In order to verify
that our CoMHE can better minimize the hyperspheri-
cal energy, we compute the hyperspherical energy E2

(Eq. 1) for basedline CNN and CNN regularized by
orthogonal regularization, HS-MHE, RP-CoMHE and
AP-CoMHE during training. Note that, we compute
the original hyperspherical energy rather than the en-
ergy after projection. All the networks use exactly the
same initialization (the initial hyperspherical energy is
the same). The results are averaged over five indepen-
dent runs. We show the hyperspherical energy after the
20000-th iteration, because at the begining of the train-
ing, hyperspherical energy fluctuates dramatically and
is unstable. Interested readers can refer to Appendix C
for the complete energy dynamics. From Fig. 1, one can observe that both RP-CoMHE and AP-
CoMHE can better minimize the hyperspherical energy. RP-CoMHE can achieve the lowest energy
with smallest standard deviation. From the absolute scale, the optimization gain does not seem to be
significant. However, this is not the case. In the high-dimensional space, the variance of hyperspher-
ical energy is usually small (already close to the smallest energy value) and is already very difficult
to minimize, so the improvement achieved by our CoMHE is in fact very significant.

Naively learning projection basis from training data. We study the case where we enable the
back-propagation gradient to flow back to the projection basis. That is to say, the model learns the
projection basis naively using training data. We find that naively learning the projection basis yields
much worse performance (26.5%), compared to RP-CoMHE (24.6%). It is even worse than our
baseline half-space MHE (25.96%). The results show that naively learning projection basis from
training data leads to inferior performance. Allowing the projection basis to be updated according
to the training data could undermine the strength of CoMHE regularization imposed on the neurons.

# Iterations 1 200 1000 ∞
RP-CoMHE 24.6 24.84 24.62 26.09

Table 6: Err. of different # iterations for re-initialization.

Frequency of re-initialization in RP-CoMHE. In RP-
CoMHE, we need to re-initialize the random projections
every certain number of iterations to avoid trivial solu-
tions caused by bad initialization. Here, we test how the
frequency of re-initialization will affect the accuracy on CIFAR-100, with the projection dimension
being 30 and the number of projection being 20. The iteration number being ∞ in Table 6 repre-
sents that the random projection is fixed throughout the training once it is initialized. The results
shows the performance is not very sensitive to the frequency of re-initialization, but we cannot fix
the random projection during training as it may cause trivial solutions and hurt the performance.

6.1.2 CIFAR-10 AND CIFAR-100
Method CIFAR-10 CIFAR-100

ResNet-110-original [1] 6.61 25.16
ResNet-1001 [53] 4.92 22.71

ResNet-1001 (64 batch) [53] 4.64 -

Baseline 5.19 22.87
MHE [13] 4.72 22.19

Half-space MHE [13] 4.66 22.04
RP-CoMHE 4.59 21.82
AP-CoMHE 4.57 21.63

Table 7: Error (%) on CIFAR-10/100 using ResNets.

All the experiments in ablation study are per-
formed using a VGG-like plain CNN, so we use
the more powerful ResNet [1] to show that CoMHE
is architecture-agnostic. We use the same experi-
mental setting in [53] for fair comparison. We use
a standard ResNet-32 as our baseline and the net-
work architecture is specified in Appendix A. From
the results in Table 7, one can observe that both
RP-CoMHE and AP-CoMHE can consistently out-
perform half-space MHE, showing that CoMHE can boost the performance across different network
architectures. More interestingly, ResNet-32 regularized by CoMHE achieves impressive accuracy
and is able to outperform 1001-layer ResNet by a large margin. Additionally, we note that from
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Baseline CoMHE

Figure 2: Visualization of the first-layer filters in ResNet.

Method ResNet-18 ResNet-34 ResNet-50

baseline 32.95 30.04 25.30
Orthogonal [32] 32.65 29.74 25.19
Orthnormal [35] 32.61 29.75 25.21

MHE [13] 32.50 29.60 25.02
HS-MHE [13] 32.45 29.50 24.98

RP-CoMHE 31.90 29.38 24.51
AP-CoMHE 31.80 29.32 24.53

Table 8: Top-1 center crop error (%) on ImageNet-2012.

Table 4, we can regularize a plain VGG-like 9-layer CNN with CoMHE and achieve 20.81% error
rate, which is nearly 2% improvement over the 1001-layer ResNet.

6.1.3 IMAGENET-2012

We evaluate CoMHE for large-scale image recognition on ImageNet-2012 [54]. We perform the
experiment using ResNet-18, ResNet-34 and ResNet-50, and then report the top-1 validation error
(center crop) in Table 8. Our results show consistent and significant performance gain of CoMHE
in all ResNet variants. Compared to the baselines, CoMHE can reduce the top-1 error for more than
1%. Since the computational overhead of CoMHE is almost neglectable, the performance gain is
obtained without many efforts. Most importantly, as a plug-in regularization, CoMHE is shown to
be architecture-agnostic and produces considerable accuracy gain in most circumstances.

Besides the accuracy improvement, we also visualize in Fig. 2 the first-layer filters learned by the
baseline ResNet and the CoMHE-regularized ResNet. The filters look quite different after we regu-
larize the network using CoMHE. Each filter learned by baseline focuses on a particular local pattern
(e.g., edge, color and shape) and each one has a clear local semantic meaning. In contrast, filters
learned by CoMHE focuses more on edges, textures and global patterns which do not necessarily
have a clear local semantic meaning. However, from a representation basis perspective, it seems that
having such global patterns is beneficial to the recognition accuracy. We also observe that filters
learned by CoMHE does not pay too much attention to the color information, which is reasonable
since humans generally do not need to use color to identify an object.

6.2 POINT CLOUD RECOGNITION

Method PointNet PointNet (T) PointNet++

Original 87.1 89.20 90.07
HS-MHE [13] 87.44 89.41 90.31
RP-CoMHE 87.82 89.69 90.52
AP-CoMHE 87.85 89.70 90.56

Table 9: Testing accuracy (%) on ModelNet-40.

Besides image recognition, we apply CoMHE to
improve point cloud recognition. Our goal is to
validate the effectiveness of CoMHE on a differ-
ent network architecture with a different form of
input data structure, rather than achieving state-of-
the-art performance on point cloud recognition. To
this end, we conduct experiments on widely used neural networks that handles point clouds: Point-
Net [55] and PointNet++ [56]. We combine half-space MHE, RP-CoMHE and AP-CoMHE into
PointNet (without T-Net), PointNet (with T-Net) and PointNet++. More experimental details are
given in Appendix A. We evaluate the performance on ModelNet-40 [57]. Specifically, since Point-
Net can be viewed as 1×1 convolutions before the max pooling layer, we can apply all these MHE
variants similarly to CNN. After the max pooling layer, there is a standard fully connected network
where we can still apply the MHE variants. We compare the performance of regularizing PointNet
and PointNet++ with half-space MHE, RP-CoMHE or AP-CoMHE. Table 9 shows that all MHE
variants consistently improve PointNet and PointNet++, while RP-CoMHE and AP-CoMHE again
perform the best among all. We demonstrate that CoMHE is generally useful for different kinds of
neural networks, not limited to CNNs.

7 CONCLUDING REMARKS

This paper first analyzes some critical problems that the original MHE [13] encounters in high-
dimensional space. To address these problems, we propose a compressive hyperspherical energy
minimization framework which first projects the neurons to a low-dimensional space and minimizes
the hyperspherical energy for the projected neurons. The CoMHE gradients will flow from the
projected space to the original space via the projection mapping and then update the original neurons.
Specifically, we propose two important CoMHE variants: random projection CoMHE and angle-
preserving CoMHE. We also provide some theoretical insights for CoMHE. Experiments on image
recognition and point cloud recognition show the effectiveness of CoMHE.
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Appendix

A EXPERIMENTAL DETAILS

Layer CNN-6 CNN-9 CNN-15

Conv1.x [3×3, 64]×2 [3×3, 64]×3 [3×3, 64]×5
Pool1 2×2 Max Pooling, Stride 2

Conv2.x [3×3, 128]×2 [3×3, 128]×3 [3×3, 128]×5
Pool2 2×2 Max Pooling, Stride 2

Conv3.x [3×3, 256]×2 [3×3, 256]×3 [3×3, 256]×5
Pool3 2×2 Max Pooling, Stride 2

Fully Connected 256 256 256

Table 10: Our plain CNN architectures with different convolutional layers. Conv1.x, Conv2.x and Conv3.x
denote convolution units that may contain multiple convolution layers. E.g., [3×3, 64]×3 denotes 3 cascaded
convolution layers with 64 filters of size 3×3.

Layer ResNet-32 for CIFAR-10/100 ResNet-18 for ImageNet-2012 ResNet-34 for ImageNet-2012

Conv0.x N/A [7×7, 64], Stride 2
3×3, Max Pooling, Stride 2

[7×7, 64], Stride 2
3×3, Max Pooling, Stride 2

Conv1.x

[3×3, 64]×1[
3× 3, 64

3× 3, 64

]
× 5

[
3× 3, 64

3× 3, 64

]
× 2

[
3× 3, 64

3× 3, 64

]
× 3

Conv2.x

[
3× 3, 128

3× 3, 128

]
× 5

[
3× 3, 128

3× 3, 128

]
× 2

[
3× 3, 128

3× 3, 128

]
× 4

Conv3.x

[
3× 3, 256

3× 3, 256

]
× 5

[
3× 3, 256

3× 3, 256

]
× 2

[
3× 3, 256

3× 3, 256

]
× 6

Conv4.x N/A

[
3× 3, 512

3× 3, 512

]
× 2

[
3× 3, 512

3× 3, 512

]
× 3

Average Pooling

Table 11: Our ResNet architectures with different convolutional layers. Conv0.x, Conv1.x, Conv2.x, Conv3.x
and Conv4.x denote convolution units that may contain multiple convolutional layers, and residual units are
shown in double-column brackets. Conv1.x, Conv2.x and Conv3.x usually operate on different size feature
maps. These networks are essentially the same as [1], but some may have a different number of filters in
each layer. The downsampling is performed by convolutions with a stride of 2. E.g., [3×3, 64]×4 denotes 4
cascaded convolution layers with 64 filters of size 3×3, and S2 denotes stride 2.

Image recognition settings. The network architectures used in the paper are elaborated in Table 10
and Table 11. For CIFAR-10 and CIFAR-100, we use batch size 128. We start with learning rate
0.1, divide it when the performance is saturated. For ImageNet-2012, we use batch size 64 and start
with learning rate 0.1. The learning rate is divided by 10 when the performance is saturated, and
the training is terminated at 500k iterations. Note that, for all the compared methods, we always use
the best possible hyperparameters to make sure that the comparison is fair. The baseline has exactly
the same architecture and training settings as the one that CoMHE uses. For both half-space MHE
and all the variants of CoMHE in hidden layers, we set the weighting hyperparameter as 1 in all
experiments. [13] already shows that MHE type of losses are not senstitive to the weighting hyper-
parameter. We use 1e−5 for the orthonormal regularization. If not otherwise specified, standard
`2 weight decay (1e−4) is applied to all the neural network including baselines and the networks
that use MHE regularization. Note that, all the neuron weights in the neural networks used in the
paper are not normalized (unless otherwise specified), but both MHE and CoMHE will normalize
the neuron weights while computing the regularization loss. For all experiments, we use s = 2 in
both MHE and CoMHE. As a result, CoMHE does not need to modify any component of the origi-
nal neural networks, and it can simply be viewed as an extra regularization loss that can boost the
performance. All the network architectures are implemented by ourselves, so there might be perfor-
mance difference between our implementation and the original paper due to some different network
and optimization hyperparameters. For example, due to limitation of computation resources, our
batch size for ImageNet-2012 is 64 batch size, which might has some performance loss. However,
the network and training settings for the baseline and all the compared regularizations are the same,
which ensures the fairness of our experiments.
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Point cloud recognition settings. For all the PointNet and PointNet++ experiments, we exactly
follow the same setting in the original papers [55, 56] and their official repositories1 2. Specifically,
we combine CoMHE regularization to neurons in all the 1×1 convolution layers before the max
pooling layer and the multi-layer perceptron classifier after the max pooling layer. All the regular-
ization is added without changing any components in PointNet. For PointNet experiments, we use
point number 1024, batch size 32 and Adam optimizer started with learning rate 0.001, the learn-
ing rate will decay by 0.7 every 200k iterations, and the training is terminated at 250 epochs. For
PointNet++ experiments, since the MRG (multi-resolution grouping) model is not provided in the
official repository, we use the SSG (single scale grouping) model as baseline. Specifically, we use
point number 1024, batch size 16 and Adam optimizer started with learning rate 0.001, the learning
rate will decay by 0.7 every 200k iterations, and the training is terminated at 251 epochs. For all
experiments, we use s = 2 in both MHE and CoMHE.

We evaluate on PointNet with T-Net and without T-Net in order to demonstrate that CoMHE is not
sensitive to architecture modifications. We follow all the default hyperparameters used in the official
released code, and the only difference is that we further combine an additional regularization loss for
the neurons in each layer. One can observe that CoMHE consistently performs better than half-space
MHE [13].

Besides PointNet, we combine CoMHE to PointNet++ [56] and further show the improvement of
generalization introduced by CoMHE is agnostic to the architecture. We evaluate PointNet++ with
and without CoMHE on ModelNet-40. Note that, we exactly follow the released code in the official
repository where PointNet++ uses the single scale grouping model. Because the original paper [56]
uses the multi-resolution grouping model, the baseline performance reported in our paper is not
as good as the accuracy reported in the original paper. However, our purpose is to validate the
effectiveness of CoMHE, so we only focus on the performance gain. One can observe that CoMHE
achieves about 0.5% accuracy gain, while half-space MHE [13] only has about 0.2% accuracy gain.

1https://github.com/charlesq34/pointnet
2https://github.com/charlesq34/pointnet2
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B PROOFS

In the section, we aim to provide the complete proof for self-containedness. We note that some of
these proofs below are not our contributions.

B.1 LEMMA 1

We take the expectation of the inner product between projected vectors:

E(〈Pw1,Pw2〉) =
1

n
E
( n∑
l=1

( d∑
j=1

rlj{w1}j
d∑
i=1

rli{w2}i
))

=
1

n

n∑
l=1

( d∑
j=1

E(r2lj){w1}j{w2}j +
d∑
j=1

E(rlj){w1}j ·
d∑

i 6=j:i=1

E(rli){w2}i
)

= 〈w1,w2〉
(12)

where {w1}i is the i-th element of the vector w1, and {w2}i is the i-th element of the vector w2.
From the equation, we see that the lemma is proved.

B.2 THEOREM 1

Before proving the the main theorem, we first show a lemma from [49].

Lemma 3 (Dot Product under Random Projection). Let w1,w2 ∈ Rd, P ∈ Rk×d, k < d be a ran-
dom projection matrix having i.i.d. 0-mean subgaussian entries with parameter σ2, and Pw1,Pw2

be the images of w1,w2 under projection P . Then, ∀ε ∈ (0, 1):

w>1 w2kσ
2 − εkσ2 ‖w1‖ ‖w2‖ < (Pw1)

>Pw2 < w>1 w2kσ
2 + εkσ2 ‖w1‖ ‖w2‖ (13)

holds with probability 1− 2 exp(−kσ
2

8 ).

From Lemma 2, we have that

(1− ε) ‖w1‖2 kσ2 < ‖Pw1‖2 < (1 + ε) ‖w1‖2 kσ2

(1− ε) ‖w2‖2 kσ2 < ‖Pw2‖2 < (1 + ε) ‖w2‖2 kσ2
(14)

which holds with probability
(
1− 2 exp(−kε

2

8 )
)2

.

Then we combine Eq. 14 to Lemma 3 and obtain that

cos(θ(w1,w2))− ε
1 + ε

< cos(θ(Pw1,Pw2)) <
cos(θ(w1,w2)) + ε

1− ε
(15)

which holds with probability
(
1−2 exp(−kε

2

8 )
)2

. θ(Pw1,Pw2) denotes the angle between Pw1 and
Pw2, and θ(w1,w2) denotes the angle between w1 and w2.

B.3 THEOREM 2

Before proving our main theorem, we first show a lemma below:

Lemma 4. For any w ∈ Rd, any random Gaussian matrix P ∈ Rk×d where Pij = 1√
n
rij and

rij ,∀i, j are i.i.d. random variables from N (0, 1), and ε ∈ (0, 1)

Pr
(
(1− ε) ≤ ‖Pw‖2

‖w‖2
≤ (1 + ε)

)
≥ 1− 2 exp

(
− n

2
(
ε2

2
− ε3

3
)
)

(16)
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Proof of Lemma 4. From Lemma 1, we have that E(‖Pw‖2) = ‖w‖2. Due to 2-stability of the
Gaussian distribution, we have that

∑d
j=1 rljwj = ‖w‖ zl where zl ∼ N (0, 1). As a result, we

have that

‖Pw‖2 =
1

n
w2

n∑
l=1

z2l (17)

where
∑n
l=1 z

2
l is chi-square distributed with n-degree freedom. Then we apply the standard tail

bound of the chi-square distribution and obtain

Pr
(
‖Pw‖2 ≤ (1− ε)

∥∥w2
∥∥) ≤ exp

(
n

2

(
1− (1− ε) + ln(1− ε)

))
≤ exp(−n

4
ε2)

(18)

where the inequality ln(1− ε) ≤ −ε− ε2

2 is applied. Similarly, one can have

Pr
(
‖Pw‖2 ≤ (1 + ε)

∥∥w2
∥∥) ≤ exp

(
n

2

(
1− (1 + ε) + ln(1 + ε)

))
≤ exp(−n

2
(
ε2

2
− ε3

3
))

(19)

where the inequality ln(1 + ε) ≤ ε− ε2

2 + ε3

3 is used.

From the lemma above, we apply the union bound and have that

(1− ε) ≤ ‖Pw1‖2

‖w1‖2
≤ (1 + ε)

(1− ε) ≤ ‖Pw2‖2

‖w2‖2
≤ (1 + ε)

(20)

which holds with probability at least 1− 4 exp(−n2 (
ε2

2 −
ε3

3 )). Using Eq. 20, we can have that

∥∥∥∥ Pw1

‖Pw1‖
− Pw2

‖Pw2‖

∥∥∥∥2 ≤ ∥∥∥∥ Pw1√
1− ε ‖w1‖

− Pw2√
1− ε ‖w2‖

∥∥∥∥2 (21)

From Eq. 20 and the condition that w>1 w2 > 0, we further have that

∥∥∥∥Pw1

‖w1‖
− Pw2

‖w2‖

∥∥∥∥2 ≤ ∥∥√1 + ε−
√
1− ε

∥∥2
≤
∥∥∥∥√1 + ε

(
Pw1

‖Pw1‖
− Pw2

‖Pw2‖

)∥∥∥∥2 + ∥∥√1 + ε−
√
1− ε

∥∥2 (22)

Then we apply Lemma 4 to the vector ( w1

‖w1‖ −
w2

‖w2‖ ) and see that

(1− ε)
∥∥∥∥ w1

‖w1‖
− w2

‖w2‖

∥∥∥∥2 ≤ ∥∥∥∥Pw1

‖w1‖
− Pw2

‖w2‖

∥∥∥∥2 ≤ (1 + ε)

∥∥∥∥ w1

‖w1‖
− w2

‖w2‖

∥∥∥∥2 (23)

which holds with probability 1− 2 exp
(
− n

2 (
ε2

2 −
ε3

3 )
)
. Then we have that

〈w1,w2〉
‖w1‖ ‖w2‖

= 1− 1

2

∥∥∥∥ w1

‖w1‖
− w2

‖w2‖

∥∥∥∥2 ,
〈Pw1,Pw2〉
‖Pw1‖ ‖Pw2‖

= 1− 1

2

∥∥∥∥ Pw1

‖Pw1‖
− Pw2

‖Pw2‖

∥∥∥∥2 .
(24)
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From Eq. 21, Eq. 22 and Eq. 23, we can learn that
∥∥∥ Pw1

‖Pw1‖ −
Pw2

‖Pw2‖

∥∥∥2 is bounded below and above.
Further combining Eq. 24, we have that

1 + ε

1− ε
cos(θ(w1,w2))−

2ε

1− ε
< cos(θ(Pw1,Pw2)) <

1− ε
1 + ε

cos(θ(w1,w2)) +
1 + 2ε

1 + ε
−
√

(1− ε2)
1 + ε

(25)
where θ(Pw1,Pw2) denotes the angle between Pw1 and Pw2, and θ(w1,w2) denotes the angle be-
tween w1 and w2. The unorganized original proof is given in [50].

B.4 THEOREM 3

We first introduce a lemma before proving the theorem.
Lemma 5. [Direct Result from [58]] Let H be a separable Hilbert space, and let µ be a non-
degenerate Gaussian measure onH. Let P,Q be Borel probability measures onH. Assume that:

• The abosolute moments mn :=
∫
‖x‖n dP (x) are finite and satisfy

∑
n≥1m

−1
n
n =∞;

• The set ε(P,Q) := {x ∈ H : P〈x〉 = Q〈x〉}, where 〈x〉 denotes the one-dimensional
subspace spanned by x, is of positive µ-measure.

Then we have P = Q.

If we consider w ∈ Rd as a bounded variable, and without loss of generality, we assume that
p = z/ ‖z‖ where z is a Gaussian distribution, and then the condition on the moments of w in
Lemma 5 holds. Then with the following lemma, we can easily have the desired result.
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C MORE DISCUSSION ON THE EFFECTIVENESS OF COMHE

Baseline
Orthogonal
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RP-CoMHE

Iterations
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Figure 3: 2D CNN features with or without MHE on both training set and testing set. The features are computed
by setting the output feature dimension as 2, similar to [34]. Each point denotes the 2D feature of a data point,
and each color denotes a class. The red arrows are the classifier neurons of the output layer.

Fig. 3 shows the entire training dynamics (from initialization to the end of training) of the hyper-
spherical energy of baseline CNN and CNN regularized by orthogonal regularization, HS-MHE,
AP-CoMHE and RP-CoMHE. All the networks use exactly the same initialized weights to ensure
the hyperspherical energy is the same at the beginning. One can observe that the hyperpsherical
energy is actually very low for the initialized weights. This is because the initialized weights fol-
lows Gaussian distribution and the hyperspherical energy is computed with normalized weights.
The normalized weights (sampled from Gassuain distribution) follows the uniform distribution on
the hypersphere (see the theorem below), which can obtain the lowest hyperspherical distribution in
expectation. However, when the weights of the neural network start to fit the data and minimize the
data approximation loss, the neuron weights no longer follow the hyperspherical uniform distribu-
tion. Therefore the hyperspherical energy will quickly get large. This is when MHE and CoMHE
are useful. From Fig. 3, one can see that without any regularization on hyperspherical energy, the
hyperspherical energy of the baseline network gets extremely large at the beginning and then de-
creases as the training goes. However, the final hyperspherical energy of the baseline network is still
way higher than the CNNs regularized by MHE and CoMHE. Notice that, the orthogonal regular-
ized CNN also obtain high hyperspherical energy at the end (similar to the baseline network). In
contrast to MHE, we can observe that CoMHE can effectively minimize the hyperspherical energy
and RP-CoMHE achieves significantly lower hyperspherical energy in the end, which well verifies
the superiority of the proposed CoMHE.
Theorem 4. The normalized vector of Gaussian variables is uniformly distributed on the sphere.
Formally, let x1, x2, · · · , xn ∼ N (0, 1) and be independent. Then the vector

x =

[
x1
z
,
x2
z
, · · · , xn

z

]
(26)

follows the uniform distribution on Sn−1, where z =
√
x21 + x22 + · · ·+ x2n is a normalization

factor.

Proof. A random variable has distribution N (0, 1) if it has the density function

f(x) =
1√
2π
e−

1
2x

2

. (27)

A n-dimensional random vector x has distribution N (0, 1) if the components are independent and
have distribution N (0, 1) each. Then the density of x is given by

f(x) =
1

(
√
2π)n

e−
1
2 〈x,x〉. (28)
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Then we introduce the following lemma about the orthogonal-invariance of the normal distribution.

Lemma 6. Let x be a n-dimensional random vector with distribution N (0, 1) and U ∈ Rn×n be
an orthogonal matrix (UU> = U>U = I). Then Y = Ux also has distribution N (0, 1).

Proof. For any measurable set A ⊂ Rn, we have that

P (Y ∈ A) = P (X ∈ U>A)

=

∫
U>A

1

(
√
2π)n

e−
1
2 〈x,x〉

=

∫
A

1

(
√
2π)n

e−
1
2 〈Ux,Ux〉

=

∫
A

1

(
√
2π)n

e−
1
2 〈x,x〉

(29)

because of orthogonality of U . Therefore the lemma holds.

Because any rotation is just a multiplication with some orthogonal matrix, we know that normally
distributed random vectors are invariant to rotation. As a result, generating x ∈ Rn with distribution
N(0, 1) and then projecting it onto the hypersphere Sn−1 produces random vectors U = x

‖x‖ that
are uniformly distributed on the hypersphere. Therefore the theorem holds.
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D TRAINING RUNTIME COMPARISON

We also provide runtime comparison for all the proposed CoMHE. We use the plain CNN-9 for all
the methods in this experiment. For RP, we set the projection dimension to 30 and the number of
projection to 5. For AP, the number of projection is 1 and the projection dimension is set to 30.
This hyperparameter setting for CoMHE can achieve the best testing accuracy on CIFAR-100. The
results in Table 12 are computed using the total runtime of runing 100 iterations. We can see that the
runtime of RP-CoMHE, AP-CoMHE and Adv-CoMHE is comparable to HS-MHE and the baseline.
Without any code optimization, RP-CoMHE is 36% slower than the baseline and 18% slower than
the HS-MHE, and AP-CoMHE is 34% slower than the baseline and 17% slower than the HS-MHE.
Note that, although CoMHE is relatively slower in terms of training runtime, it will affect the testing
runtime of a trained model. That is to say, CoMHE-regularized CNN has the same inference speed
with its baseline CNN counterpart.

Method Runtime (s)
Baseline 5.61
HS-MHE 6.46

RP-CoMHE 7.62
AP-CoMHE 7.48
Adv-CoMHE 6.27

Group CoMHE 11.12

Table 12: Training Runtime (s / 100 iterations) comparison on CIFAR-100.
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