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Abstract—We present a data driven approach to construct a
library of feedback motion primitives for non-holonomic vehicles
that guarantees bounded error in following arbitrarily long
trajectories. This ensures that motion re-planning can be avoided
as long as disturbances to the vehicle remain within a certain
bound and also potentially when the obstacles are displaced
within a certain bound. The library is constructed along local
abstractions of the dynamics that enables addition of new motion
primitives through abstraction refinement. We provide sufficient
conditions for construction of such robust motion primitives for
a large class of nonlinear dynamics, including commonly used
models, such as the standard Reeds-Shepp model. The algorithm
is applied for motion planning and control of a rover with slipping
without its prior modelling.

I. INTRODUCTION

Various state-the-art motion planning approaches for car-
like vehicles use the bicycle model to generate feasible tra-
jectories for high level planning [4]. The model is either
discretized in lattice based methods or used as a heuristic
for measuring distance between two states in sampling based
methods such as rapidly exploring random trees (RRT) [2]. It
is then up to the low level feedback controllers of the vehicle to
follow the prescribed trajectory; an overview of this group of
approaches can be found in Paden et al. [3]. This might prove a
challenge in cases where the bicycle model does not resemble
the actual vehicle dynamics closely enough; this may result in
growing error between the prescribed trajectory and vehicles
position which in turn may require trajectory re-planning [4].
Recently, approaches such as Howard et al. [1] and Schwarting
et al. [5] have been proposed that can incorporate the vehicle
dynamics in planning to ensure collision avoidance by using
model predictive control. While model predictive control can
provide feasible trajectories for a large class of nonlinear
models, it becomes prohibitively complex for long prediction
horizons and may fall into local optima for short prediction
horizons in non-convex problem settings [6].

In this work we follow the input discretization approach
similar to lattice based methods for motion planning. Instead
of relying on a model, we sample from the input space similar
to Howard et al. [1]. The main contribution in this work is
that we construct locally linear abstractions of the system
around samples in the input space and design local feedback
rules to ensure fixed upper bound on state error after applying
any motion primitive considering both linearization error and
initial state error. Therefore, we can guarantee bounded state
error through application of the motion primitives at all times.
The idea of feedback based motion primitives has also been
presented in Vukosavljev et al. [7] for multi-agent drones with

omni-directional controllability; the main contrast here is that
we provide a tool for construction of such motion primitives
for non-holonomic vehicles. We pose an assumption we refer
to as robustifiability in order to be able to synthesize such
motion primitives.

II. PROBLEM DEFINITION

Consider a vehicle whose dynamics is governed by the
following discrete-time nonlinear system:

x(t +1) ∈ { f (x(t),u(t))}⊕W (1)

with x(t) ∈X ⊆ Rn as system state and u(t) ∈ U ⊂ Rm as
system input and W as a bounded disturbance. Let X and U
be compact sets. The operator ⊕ is used to denote Minkowski
sum of two sets: X⊕Y = {x+ y|x ∈ X , y ∈ Y}.

Let us be given a starting position of the agent x0, a free
sub-space F ⊆X , and a goal region Xg ⊂F . We define the
problem as follows:

Problem 1: Given an agent with translation invari-
ant dynamics (1), Find a sequence of state subsets
(X(0),X(1), ...,X(T )) and a corresponding sequence of mo-
tion primitives, i.e. control strategy (U1(.),U2(.), ...,UT (.))
such that:

1) (i) x0 ∈ X(0)
2) X(T )⊆ Xgoal
3) ∀0≤ t ≤ T → X(t)⊆F
4) ∀0≤ t ≤ T −1,x ∈ X(t)→ f (x,Ut(x))⊕W⊆ X(t +1)

III. APPROACH

Our approach builds on defining each motion primitive as a
composition of a constant input and a feedback control term.
We start by defining coarse motion primitives by splitting
the input space using a coarse grid. We take each grid cell
center as the constant input for the respective motion primitive.
We design a feedback control law around each center such
that there exists a bound ε and a number of time steps k
with the property that if the state uncertainty at time step
t < T − k is less than ε , the state uncertainty at t + k will
also be less than ε . By state uncertainty being less than ε

we mean that the set of states, where the system can be at
time t + k fits inside an ε-ball. We have proved that under
certain assumptions, such feedback control and bound ε can be
found. The assumptions are three-fold: (i) function f is twice
differentiable, (ii) its Hessian is element-wise bounded, and
(iii) it is so-called robustifiable, which is defined as follows:

Definition 1: f is said to be robustifiable on X ×U in k
steps if and only if for all x ∈ int(X ) and u1, ...,un ∈ int(U )
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(b) Feedback motion primitive
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(a) constant input motion primitive

Fig. 1. Implementation of a left turning motion primitive on slippery floor: a)
without feedback and b) with the proposed feedback motion primitives. Black
arrows mark the reference trajectory and the colored arrows are different runs.

the robustifiability matrix [ ∂ f k

∂uk
... ∂ f k

∂u1
] is full rank, where f k is

a multi-step extension of dynamics f .
Note that being full rank is equivalent to not having any
singular value equal to zero, as a result we can associate a well
conditioned robustifiability matrix with good robustifiability,
i.e. possibility to steer the state in any arbitrary direction.
An example of a robustifiable system is the Reeds-Shepp
model as can be seen in Fig. 2. It is robustifiable even when
controlled only through the steering angle, but it is much better
conditioned when controlled through both steering angle and
velocity which is also intuitive. For a linear system f (x,u) =
Ax + Bu robustifiability is equivallent to controllability: We
have ∂ f n

∂un
= B and ∂ f n

∂u1
= An−1B.

Having ensured bounded state uncertainty, we will now
attempt to find a sequence of motion primitives satisfying
Problem 1. We translate the problem into a planning problem
on a discrete graph, where vertices represent centers of ε-
balls that are entirely in the free space, and edges are defined
by motion primitives driving the system from one center of
an ε-ball to another. The feedback control term ensures that
regardless of where within the former ε-ball the system is,
it will end up within the latter ε-ball. The discrete planning
problem can then be addressed e.g., via A*. If a satisfying plan
cannot be found, we compute an over-approximation of the
reachable set to determine, whether the plan does not exist for
the original system, or whether the grid was not fine enough to
prove or disprove existence of such plan. In the latter case, we
refine the grid on the input space, and repeat the procedure.
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(a) Controll by steering angle only
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(b)  Controll by steering angle and velocity
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Fig. 2. Robustifiability of Reeds-Shepp model through feedback on: a)
steering angle only and b) steering angle and velocity. The yellow regions
correspond to inputs around which matrix is better posed and therefore state
can be controlled easier compared to blue regions.

The algorithm is asymptotically complete for deterministic
systems. The size of the graph treated by A* grows exponen-
tially with the number of refinements.

The construction of motion primitives does not require a
model of the dynamics. Only through input sampling, and
under the above stated bounded Hessian and robustifiability
assumptions, it is possible to construct motion primitives that
guarantee bounded state uncertainty at any point in time.

Furthermore, for an environment with a single convex
moving obstacle or in cases where obstacles can be considered
one at a time based on their proximity to the vehicle, it
is straightforward to extend the feedback strategy of motion
primitives using the vehicle’s relative position to the obstacle
rather than its absolute position, having the obstacle’s motion
rate in place of the bounded disturbance. In this case however,
the end state of the vehicle may not converge to the goal set
as the obstacle moves and if the obstacle is close to the goal
set. In general the reach-avoid problem is non-convex and as a
result cannot be addressed only through continuous feedback,
but in many practical cases it may help avoid re-planning.

IV. EXAMPLE: IN THE FACE OF MODEL UNCERTAINTY

We tested our approach on an Erle-Rover Unmanned
Ground Vehicle (UGV) in a room with motion capture for
positioning and slippery floor. The algorithm is run on MAT-
LAB communicating with the rover through ROS. The system
model is derived through input sampling and is shown for one
of the motion primitives in Fig. 1.
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[3] Brian Paden, Michal Čáp, Sze Zheng Yong, Dmitry Yer-
shov, and Emilio Frazzoli. A survey of motion planning
and control techniques for self-driving urban vehicles.
IEEE Transactions on intelligent vehicles, 1(1):33–55,
2016.

[4] Philip Polack, Florent Altché, Brigitte d’Andréa Novel,
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