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Abstract

We consider the problem of patch classification in digital pathology. We introduce a simple
yet effective way to boost patch classification performance via metric learning. We hypoth-
esize that the self perturbation and contrastive loss are both useful in improving generaliza-
tion of the classification model. In our experiments with the PCam dataset (Veeling et al.,
2018), we showed that models trained with both losses indeed outperformed our baseline
where only cross-entropy loss is used. In addition, we also achieved state-of-the-art results
on the PCam dataset (90.36% accuracy).
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1. Introduction

In digital pathology (DP), classifying gigapixel-sized whole slide images (WSI) is a very
challenging task. Many off-the-shelf methods will not work directly with DP because resizing
gigapixel images loses granular information, which is vital in differentiating between normal
and tumor cells. Moreover, processing entire gigapixel images directly poses algorithmic
and computational challenges. A commonly used pipeline first identifies tissue regions in
WSI. This is followed by extracting patches that correspond to tissue and training a patch
tumor classifier, which is then used to generate a heatmap for the WSI. Finally, another
tumor classifier is trained using the morphological and geometrical information from the
thresholded heatmap as features to classify WSI.

Current techniques (Liu et al., 2017; Lee and Paeng, 2018; Wang et al., 2016) for patch
classification in DP optimize the cross-entropy loss. However, these techniques do not
exploit comparison between data samples which we hypothesize is a useful way to regularize
the network. In this work, we explore how this can be achieved through metric learning.

Metric Learning is a task to learn the similarity and dissimilarity between examples. It is
commonly used for re-identifying objects such as people (Rahman et al., 2017), animals (Deb
et al., 2018) or insects (Murali et al., 2019). In the context of classification, the benefit of
metric learning over traditional setups (e.g. softmax) is that it does not assume the number
of individuals to be fixed. Recently, metric learning has also been used in semi-supervised
learning (Laine and Aila, 2016; Tarvainen and Valpola, 2017), which allows a model to
be trained with little supervised information by utilizing unlabeled data. Conventionally,
features are learned by training an auto-encoder on the unlabeled data where the difference
between original image and reconstructed image is minimized (Rasmus et al., 2014). With
metric learning, features can be learned by self-comparison under different perturbations.
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Contribution: We use metric learning to improve the generalization of patch tumor classi-
fication models. Specifically, we learn two distance metrics: a) distance between perturbed
samples and b) distance between samples from the same classes and different classes. We
show that both distance metrics can be optimized together yielding a stacking improvement
over one another. Our proposed models are illustrated in Fig. 1.
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Figure 1: The proposed models: Pi and Pi+. The Pi model uses the self-perturbation
loss which is the mean squared distance between the classification outputs of
perturbed samples. The Pi+ model uses an additional loss function, contrastive
loss which minimizes intra-class differences and maximizes inter-class differences.

2. Methods

Our method uses a standard CNN-based softmax classifier augmented with additional losses.

Self-Perturbation Loss: One way to learn the similarity between samples is by self-
comparison. This can be achieved by minimizing the differences between the same sample
under different perturbations (Laine and Aila, 2016). Let xi be a training example and zi
and z∗i be the pre-softmax predictions of xi under different perturbations. Perturbation in
our experiment is done via data augmentation which is described in Sec. 3. Self-Perturbation
Loss, L1 is defined as the mean squared differences between zi and z∗i .

L1 =
1

N

N∑
i

(zi − z∗i )2 (1)

Contrastive Loss: Another way to learn the distance metric between samples is via
contrastive learning. Koch et al. introduced the use of the contrastive loss in a Siamese
Network for the one-shot learning task (Koch, 2015). Let xi and xj be two randomly
chosen inputs with yi and yj labels and zi and zj the pre-softmax prediction of xi and xj .

The distance between zi and zj is defined as Dist(i, j) = 1
N

∑N
i (zi − zj)

2. The contrastive
Loss, L2 is defined as:

L2 =
1

N

∑
i

1(yi = yj) ∗Dist(i, j)) + 1(yi 6= yj) ∗max(0, 1−Dist(i, j)) (2)
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3. Experiments

Dataset: We experimented on PCam, a subset of the CAMELYON16 dataset (Bejnordi
et al., 2017), which consists of CAMELYON16 image patches at 10× magnification with a
train/validate/test split of 74/12.5/12.5%. There are 327, 680 total patches of size 96× 96
pixels. Similar to (Veeling et al., 2018), we trained our model on the training set and use
the validation set for hyper parameter tuning. We reported our results on the test set.

Experiment Settings: ResNet-34 (He et al., 2016) architecture is used in all of the
experiments. The models were trained using the Adam optimizer (Kingma and Ba, 2014)
with an initial learning rate of 1e−4 for 10 epochs. The learning rate is reduced by a
factor of 10 at the 6th epoch. During training, various data augmentations were performed,
these include: a) Random Cropping b) Random Horizontal Flip c) Random Rotation (0◦

to 360◦) and d) Color Jittering. In detail, we use Pytorch Deep learning framework in our
experiments. We also use TorchVision package for data augmentation. Random cropping of
size 224× 224 were performed on padded images (256× 256), where the padded regions are
generated via reflection. Color jittering was performed by setting the brightness, contrast,
saturation and hue to 0.4. The best performing model on validation data is kepted at each
epoch. During testing, images were resized to 224× 224 without any augmentation.

Method Accuracy Confidence Interval Significance Test (p-value)

Baseline 89.21 ± 0.56 (88.81, 89.61) —

Pi 89.94 ± 0.34 (89.69, 90.18) 0.003

Pi+ 90.36 ± 0.41 (90.06, 90.65) 0.024

P4M(Veeling et al., 2018) 89.80 — —

Table 1: Accuracy of our models on PCam dataset. The experiment was run 10 times
with different random seeds and we report the mean and standard deviation for
each method. We also compared our models with P4M, which is the state-of-the-
art architecture. In addition, we also we report 95% confidence interval for each
method and perform significance testing for a) Baseline vs Pi (row 2) b) Pi vs
Pi+ (row 3). The p-values indicate that the results are statistically significant.

Results: The results of the experiments are shown in Table 1, where the mean accuracy
and standard deviation were reported. We see that the Pi model outperforms the baseline
model. In addition, Pi+ model is better than Pi model and is able to outperform the
state-of-the-art architecture (Veeling et al., 2018).

4. Conclusion

The experimental results showed that both distance metrics can be optimized together
yielding a stacking improvement over one another. This work suggests that metric learning
works in DP. Future work could focus on advanced metric learning methods, semi-supervised
learning and image retrieval problems.
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