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ABSTRACT

In information retrieval, learning to rank constructs a machine-based ranking
model which given a query, sorts the search results by their degree of relevance or
importance to the query. Neural networks have been successfully applied to this
problem, and in this paper, we propose an attention-based deep neural network
which better incorporates different embeddings of the queries and search results
with an attention-based mechanism. This model also applies a decoder mechanism
to learn the ranks of the search results in a listwise fashion. The embeddings are
trained with convolutional neural networks or the word2vec model. We demonstrate
the performance of this model with image retrieval and text querying data sets.

1 INTRODUCTION

Learning to rank applies supervised or semi-supervised machine learning to construct ranking models
for information retrieval problems. In learning to rank, a query is given and a number of search results
are to be ranked by their relevant importance given the query. Many problems in information retrieval
can be formulated or partially solved by learning to rank. In learning to rank, there are typically three
approaches: the pointwise, pairwise, and listwise approaches Liu (2011). The pointwise approach
assigns an importance score to each pair of query and search result. The pairwise approach discerns
which search result is more relevant for a certain query and a pair of search results. The listwise
approach outputs the ranks for all search results given a specific query, therefore being the most
general.

For learning to rank, neural networks are known to enjoy a success. Generally in such models, neural
networks are applied to model the ranking probabilities with the features of queries and search results
as the input. For instance, RankNet Burges et al. (2005) applies a neural network to calculate a
probability for any search result being more relevant compared to another. Each pair of query and
search result is combined into a feature vector, which is the input of the neural network, and a ranking
priority score is the output. Another approach learns the matching mechanism between the query
and the search result, which is particularly suitable for image retrieval. Usually the mechanism is
represented by a similarity matrix which outputs a bilinear form as the ranking priority score; for
instance, such a structure is applied in Severyn & Moschitti (2015).

We postulate that it could be beneficial to apply multiple embeddings of the queries and search
results to a learning to rank model. It has already been observed that for training images, applying a
committee of convolutional neural nets improves digit and character recognition Ciresan et al. (2011);
Meier et al. (2011). From such an approach, the randomness of the architecture of a single neural
network can be effectively reduced. For training text data, combining different techniques such as
tf-idf, latent Dirichlet allocation (LDA) Blei et al. (2003), or word2vec Mikolov et al. (2013), has also
been explored by Das et al. (2015). This is due to the fact that it is relatively hard to judge different
models a priori. However, we have seen no literature on designing a mechanism to incorporate
different embeddings for ranking. We hypothesize that applying multiple embeddings to a ranking
neural network can improve the accuracy not only in terms of “averaging out” the error, but it can
also provide a more robust solution compared to applying a single embedding.

For learning to rank, we propose the application of the attention mechanism Bahdanau et al. (2015);
Cho et al. (2015), which is demonstrated to be successful in focusing on different aspects of the
input so that it can incorporate distinct features. It incorporates different embeddings with weights
changing over time, derived from a recurrent neural network (RNN) structure. Thus, it can help us
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better summarize information from the query and search results. We also apply a decoder mechanism
to rank all the search results, which provides a flexible list-wise ranking approach that can be applied
to both image retrieval and text querying. Our model has the following contributions: (1) it applies
the attention mechanism to listwise learning to rank problems, which we think is novel in the
learning to rank literature; (2) it takes different embeddings of queries and search results into account,
incorporating them with the attention mechanism; (3) double attention mechanisms are applied to
both queries and search results.

Section 2 reviews RankNet, similarity matching, and the attention mechanism in details. Section 3
constructs the attention-based deep net for ranking, and discusses how to calibrate the model. Section
4 demonstrates the performance of our model on image retrieval and text querying data sets. Section
5 discusses about potential future research and concludes the paper.

2 LITERATURE REVIEW

To begin with, for RankNet, each pair of query and search result is turned into a feature vector. For
two feature vectors x0 ∈ Rd0 and x′0 ∈ Rd0 sharing the same query, we define x0 ≺ x′0 if the search
result associated with x0 is ranked before that with x′0, and vice versa. For x0,{

x1 = f(W0x0 + b0) ∈ Rd1 ,
x2 = f(W1x1 + b1) ∈ Rd2 = R,

and similarly for x′0. Here Wl is a dl+1 × dl weight matrix, and bl ∈ Rdl+1 is a bias for l = 0, 1.
Function f is an element-wise nonlinear activation function; for instance, it can be the sigmoid
function σ(u) = eu/(1 + eu). Then for RankNet, the ranking probability is defined as P (x0 ≺
x′0) = ex2−x′

2/(1 + ex2−x′
2). Therefore the ranking priority of two search results can be determined

with a two-layer neural network structure, offering a pairwise approach. A deeper application of
RankNet can be found in Song et al. (2014), where a five-layer RankNet is proposed, and each data
example is weighed differently for each user in order to adapt to personalized search. A global model
is first trained with the training data, and then a different regularized model is adapted for each user
with a validation data set.

A number of models similar to RankNet has been proposed. For instance, LambdaRank Burges et al.
(2006) speeds up RankNet by altering the cost function according to the change in NDCG caused
by swapping search results. LambdaMART Burges (2010) applies the boosted tree algorithm to
LambdaRank. Ranking SVM Joachims (2002) applies the support vector machine to pairs of search
results. Additional models such as ListNet Cao et al. (2007) and FRank Tsai et al. (2007) can be
found in the summary of Liu (2011).

However, we are different from the above models not only because we integrate different embeddings
with the attention mechanism, but also because we learn the matching mechanism between a query
and search results with a similarity matrix. There are a number of papers applying this structure.
For instance, Severyn & Moschitti (2015) applied a text convolutional neural net together with such
a structure for text querying. For image querying, Wan et al. (2014) applied deep convolutional
neural nets together with the OASIS algorithm Chechik et al. (2009) for similarity learning. Still, our
approach is different from them in that we apply the attention mechanism, and develop an approach
allowing both image and text queries.

We explain the idea of similarity matching as follows. We take a triplet (q, r, r′) into account, where
q denotes an embedding, i.e. vectorized feature representation of a query, and (r, r′) denotes the
embeddings of two search results. A similarity function is defined as SW (q, r) = qTWr, and
apparently r ≺ r′ if and only if SW (q, r) > SW (q, r′).

Note that we may create multiple deep convolutional nets so that we obtain multiple embeddings
for the queries and search results. Therefore, it is a question how to incorporate them together. The
attention mechanism weighs the embeddings with different sets of weights for each state t, which
are derived with a recurrent neural network (RNN) from t = 1 to t = T . Therefore, for each state t,
the different embeddings can be “attended” differently by the attention mechanism, thus making the
model more flexible. This model has been successfully applied to various problems. For instance,
Bahdanau et al. (2015) applied it to neural machine translation with a bidirectional recurrent neural
network. Cho et al. (2015) further applied it to image caption and video description generation with
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convolutional neural nets. Vinyals et al. (2015) applied it for solving combinatorial problems with
the sequence-to-sequence paradigm.

Note that in our scenario, the ranking process, i.e. sorting the search results from the most related
one to the least related one for a query, can be modeled by different “states.” Thus, the attention
mechanism helps incorporating different embeddings along with the ranking process, therefore
providing a listwise approach. Below we explain our model in more details.

3 MODEL AND ALGORITHM

3.1 INTRODUCTION TO THE MODEL

Both queries and search results can be embedded with neural networks. Given an input vector
x0 representing a query or a search result, we denote the l-th layer in a neural net as xl ∈ Rdl ,
l = 0, 1, . . . , L. We have xl+1 = f(Wlxl + bl), l = 0, 1, . . . , L− 1 where Wl is a dl+1 × dl weight
matrix, bl ∈ Rdl+1 is the bias, and f is a nonlinear activation function. If the goal is classification
with C categories, then (P (y = 1), . . . , P (y = C)) = softmax(WLxL + bL), where y is a class
indicator, and softmax(u) = (eu1/

∑d
i=1 e

ui , . . . , eud/
∑d
i=1 e

ui) for u ∈ Rd.

From training this model, we may take the softmax probabilities as the embedding, and create
different embeddings with different neural network structures. For images, convolutional neural
nets (CNNs) LeCun et al. (1998) are more suitable, in which each node only takes information from
neighborhoods of the previous layer. Pooling over each neighborhood is also performed for each
layer of a convolutional neural net.

With different networks, we can obtain different embeddings c1, . . . , cM . In the attention mechanism
below, we generate the weights αt with an RNN structure, and summarize ct in a decoder series zt,

etm = fATT (zt−1, c
m, αt−1), m = 1, . . . ,M,

αt = softmax(et),

ct =
∑M
m=1 αtmc

m,

zt = φθ(zt−1, ct).

Here fATT and φθ are chosen as tanh layers in our experiments. Note that the attention weight αt
at state t depends on the previous attention weight αt−1, the embeddings, and the previous decoder
state zt−1, and the decoder series zt sums up information of ct up to state t.

As aforementioned, given multiple embeddings, the ranking process can be viewed as applying
different attention weights to the embeddings and generating the decoder series zt, offering a listwise
approach. However, since there are features for both queries and search results, we consider them
as separately, and apply double attention mechanisms to each of them. Our full model is described
below.

3.2 MODEL CONSTRUCTION

For each query Q, we represent M different embeddings of the query as q = (q1, . . . , qM ), where
each qm is multi-dimensional. For the search results R1, . . . , RT associated with Q, which are to
be ranked, we can map each result into N different embeddings with a same structure, and obtain
rt = (rt1, . . . , rtN ) as the embeddings of Rt, t = 1, . . . , T . Each rtn is also multi-dimensional. All
these embeddings can either correspond to raw data or they can be the output of a parametric model,
i.e. the output of a CNN in the case of images. In the latter case, they are trained jointly with the rest
of the model.

Below we represent queries or search results in their embeddings. We assume that given the query
q, the results r1, . . . rT are retrieved in the order r̃1, . . . , r̃T in equation (12) below. Note that
{r1, . . . , rT } = {r̃1, . . . , r̃T }.
We observe that both the query q and the results r1, . . . , rT can be “attended” with different weights.
To implement the attention-based mechanism, we assign different weights for different components
of for each different t = 1, . . . , T . Specifically, we assign the attention weights α1, . . . , αT for the
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query, and β1, . . . , βT for the search results. To achieve this, we need to assign the pre-softmax
weights et and ft, t = 1, . . . , T . Therefore we first let

etm = eATT (zt−1, qm, g(r1, . . . , rT ), αt−1, βt−1),

ftn = fATT (zt−1, q, hn(r1, . . . , rT ), αt−1, βt−1),

m = 1, . . . ,M, n = 1, . . . , N, t = 1, . . . , T.

(1)

Note that there are two different attention functions. While they both consider the previous weights
αt−1 and βt−1, the pre-softmax weight etm considers the m-th component of the query qm and all
information from the search results, and ftn considers the opposite. In our experiments, g takes
an average while h averages over the n-th embedding of each result. Here zt−1 is the value of the
decoder at state t − 1. Letting et = (et1, . . . , etM ), ft = (ft1, . . . , ftN ), we impose the softmax
functions for t = 1, . . . , T ,

αt = softmax(et), βt = softmax(ft). (2)
The attention weights αt and βt can then be assigned to create the context vectors ct for the query
and d̄t for the search results, which are defined as follows,

ct =

M∑
m=1

αtmqm, d̄t =

N∑
n=1

βtnhn(r1, . . . , rT ). (3)

With the context vectors ct and d̄t depending on the state t, we can finally output the decoder zt,
zt = φθ(zt−1, ct, d̄t), t = 1, . . . , T. (4)

Equations (8-11) are carried out iteratively from t = 1 to t = T . The hidden states z1, . . . , zT ,
together with the context vectors c1, . . . , cT , are used to rank results r1, . . . , rT . For each rt, we
define a context vector dt,t′ which can be directly compared against the context vector ct for queries,

dt,t′ =

N∑
n=1

βtnrt′n, t = 1, . . . , T. (5)

This context vector dt,t′ , unlike d̄t, is not only specific for each state t, but also specific for each result
rt′ , t′ = 1, . . . , T . Now suppose in terms of ranking that r̃1, . . . , r̃t−1 have already been selected.
For choosing r̃t, we apply the softmax function for the similarity scores st,t′ between the query q and
each result rt′ .
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Figure 2: The error rates of AttRN-HL given
different numbers of embeddings with 95%
upper and lower confidence bounds.

Thus we have 
P (r̃t = rt′ |r̃1, . . . , r̃t−1) ∝ softmax(st,rt′ ),

st,rt′ = dTt,t′Wct + dTt,t′V zt,

rt′ ∈ {r1, . . . , rT }\{r̃1, . . . , r̃t−1}.
(6)
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Therefore r̃1, . . . , r̃T can be retrieved in a listwise fashion. Equations (1-6) complete our model,
which is shown in Figure 1 in the case of image retrieval.

3.3 MODEL CALIBRATION

To calibrate the parameters of this model, we apply the stochastic gradient descent algorithm which
trains a minibatch, a subsample of the training data at each iteration. To rank search results for the
testing data, we apply the beam search algorithm Reddy (1977) with a beam width of 3, which keeps
a number of paths, i.e. sequences of r̃1, . . . , r̃t at state t, of the highest log-likelihood. Other paths
are trimmed at each state t, and finally the path with the highest log-likelihood is chosen.

Alternatively, we may consider the hinge loss function to replace the softmax function. Com-
paring a potentially chosen result r̃t against any other unranked result rt′ , with rt′ ∈
{r1, . . . , rT }\{r̃1, . . . , r̃t−1}, we apply the hinge loss function, similar to Chechik et al. (2009)
L(r̃t, rt′) = max{0, 1− st,r̃t + st,rt′}. When training the model, for a single query q and all related
search results, we apply the stochastic gradient descent algorithm to minimize

∑T
t=1

∑
rt′
L(r̃t, rt′).

For this method, we maximize st,rt′ at each step, i.e. apply beam search with a beam width of 1.

4 DATA STUDIES

We perform studies on three datasets: MNIST presented in Section 4.1, CIFAR-10 listed in Appendix,
and 20 Newsgroups in Section 4.2.

4.1 THE MNIST DATA SET

The MNIST data set contains handwritings of 0-9 digits. There are 50,000 training, 10,000 validation,
and 10,000 testing images. We take each image among them as a query. For each query image, we
construct the set of retrieved images as follows. We first uniformly at random sample a random
integer k from {1, 2, . . . , 9}. Next we select k related random images (an image is related if it is of
the same digit as the query image). Finally, we randomly select 30-k unrelated images (an image is
unrelated if it corresponds to a different digit than the query image). The order is imposed so that
images of the same digit are considered as related and images of different digits not related.

For this data set, we pretrain 5 convolutional neural networks based on different L2 regularization
rates for all layers and Dropout Srivastava et al. (2014) regularization for fully connected (FC)
layers with respect to the values shown in Table 1. We vary the regularization rate because it can
be expensive to determine a most suitable regularization rate in practice, and therefore applying the
attention mechanism to different regularization rates can reduce the impact of improper regularization
rates and find a better model.

Table 1: Different regularization rates applied
to MNIST.

Dropout’s p for Conv. 1 1 1 1 1
Dropout’s p for FC 1 1 0.9 1 0.9
L2’s λ for All 0 1e-5 1e-5 1e-4 1e-4

Table 2: Errors of “mean” and “max” pooling
as for MNIST.

error MAP NDCG3 NDCG5

AttRN-HL-mean 0.44% 0.65% 0.52%
sd. (0.01%) (0.02%) (0.02%)

AttRN-HL-max 0.44% 0.66% 0.53%
sd. (0.01%) (0.02%) (0.02%)

The pretrained models are standard digit classification. The softmax layers of the five models as
embeddings are plugged into our full model (where the CNNs are trained together with the rest). We
initialize the similarity matrix W with the identity matrix and the remaining parameters with zeros.
Our model is trained given such embeddings with a batch size of 100, a learning rate of 0.001, and
20 epochs. We choose the best epoch using the validation data set.

We compare our algorithm against OASIS Chechik et al. (2009), Ranking SVM, and LambdaMART,
in the setting of image retrieval problems Wan et al. (2014); Wang et al. (2014); Wu et al. (2013).
For OASIS, we set the batch size and maximum learning rate to be the same as our model. For
Ranking SVM and LambdaMART, we combine the embeddings of a query and a search result to
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create features, apply sklearn and pyltr in Python, and use NDCG5 and 100 trees for LambdaMART.
To compare the results, we apply MAP and NDCGp Liu (2011) as the criteria, and calculate the
standard deviations averaged over five runs for each model. The error rates, which are one minus
MAPs and NDCGs, are shown in Table 3. The lowest error rates are in bold. The top row shows the
average value while the bottom one (sd.) exhibits the standard deviation for 5 randomized runs.

We name our model as an “Attention-based Ranking Network” (AttRN). In Table 3, “AttRN-SM” or
“AttRN-HL” denote our model with softmax or hinge loss ranking functions. “OASIS-1” or “OASIS-5”
denote, respectively, OASIS trained with the first set of embeddings, or the average of all five sets of
embeddings. For Ranking SVM and LambdaMART, we use all embeddings. “RSVM-100k” means
that 105 pairs are sampled for the SVM, “λMART-2%” means that 2% of all feature vectors are
sampled for each tree in LambdaRank, and so forth.

Table 3: Errors of different image retrieval methods for MNIST.
error OASIS-1 OASIS-5 AttRN-SM AttRN-HL
MAP 0.55% 0.47% 0.46% 0.44%

sd. (0.02%) (0.01%) (0.01%) (0.01%)
NDCG3 0.81% 0.70% 0.68% 0.65%

sd. (0.02%) (0.01%) (0.01%) (0.02%)
NDCG5 0.65% 0.57% 0.55% 0.52%

sd. (0.02%) (0.01%) (0.02%) (0.02%)
error RSVM-100k RSVM-500k λMART-2% λMART-5%
MAP 0.52% 0.54% 0.87% 0.88%

sd. (0.02%) (0.01%) (0.02%) (0.03%)
NDCG3 0.74% 0.75% 0.93% 0.96%

sd. (0.03%) (0.01%) (0.01%) (0.02%)
NDCG5 0.61% 0.62% 0.89% 0.91%

sd. (0.02%) (0.01%) (0.02%) (0.03%)

From Table 3, we observe that AttRN-HL outperforms other methods, and AttRN-SM achieves the
second best. Moreover, OASIS-5 clearly outperforms OASIS-1, which demonstrates the benefit of
applying multiple embeddings. Ranking SVM and LambdaMART do not seem very suitable for the
data, and increasing the sample size does not seem to improve their performance.

It needs to be investigated how sensitive AttRN-HL is against the number of embeddings. In Figure
2, we show the error rates of AttRN-HL with different numbers of embeddings. Here we apply
regularization parameters (1, 0.8, 1e-4) and (1, 0.8, 2e-4) to the new embeddings. From Figure 2, the
error rates steadily decrease as the number of embeddings increases, which is consistent with the
intuition that adding more information to the model should yield better results. We also observe that
the error rates tend to stabilize as the number of embeddings increases.

However, while applying 7 embeddings slightly lowers the error rates as shown in Figure 2, the
training time is roughly 33% longer than for 5 embeddings. Therefore we consider applying 7
embeddings to be unnecessary, and consider the current practice to be representative of AttRN.

Table 2 shows the differences in error rates by changing the pooling functions g and hn in (7) from
“mean” to ”max.” We observe that the changes are very small, which means that AttRN is quite robust
to such changes.

Table 4: Errors of “mean” and “max” pooling as for MNIST.
error MAP NDCG3 NDCG5

AttRN-HL-mean 0.44% 0.65% 0.52%
sd. (0.01%) (0.02%) (0.02%)

AttRN-HL-max 0.44% 0.66% 0.53%
sd. (0.01%) (0.02%) (0.02%)

Table 4 shows the changes in weights of the convolutional neural networks. The unregularized CNN
is used as an example. The L2 norms sum over the weights of each layer and are averaged over
5 randomized runs. They tend to increase after AttRN is trained, possibly because it requires the
weights to be larger to adjust for the ranking mechanism.

6



Under review as a conference paper at ICLR 2020

Table 5: L2 norms of each layer in the convolutional neural net before and after training AttRN as for
MNIST.

L2 norm 1st Conv. 2nd Conv. FC Softmax
Before 4.99 9.66 25.74 7.15

sd. (0.05) (0.03) (0.02) (0.04)
After 5.26 9.91 25.90 7.81
sd. (0.05) (0.03) (0.02) (0.04)

query/images considered related /     unrelated

good

poor

Figure 3: Actual query images and the 1st to
8th retrieved images in the MNIST data set.

query/ considered related /     unrelated

good

poor

Figure 4: Actual query images and the 1st
to 7th retrieved images in the CIFAR-10 data
set.

Next we display three good cases of retrieval together with three poorer ones from AttRN-HL in
terms of the actual images, which are shown in Figure 3. We observe that the poorer cases of retrieval
in the MNIST data set are basically due to the distortion of the query images.

4.2 THE 20 NEWSGROUPS DATA SET

The 20 Newsgroups data set contains online news documents with 20 different topics. There are
11,293 training documents, from which 1,293 are held out for validation, and 7,528 testing documents.
The topics can be categorized into 7 superclasses: religion, computer, “for sale,” cars, sports, science,
and politics. We consider each document as a query, and randomly choose 30 retrieved documents
as follows: the number of documents of the same topic is uniformly distributed from 3 to 7, the
number of documents of the same superclass but different topics is also uniformly distributed from 3
to 7, and the remaining documents are of different superclasses. We impose the order on different
documents so that: (1) documents with the same topic are considered to be related, and otherwise
not; (2) documents with the same superclass are considered to be related, and otherwise not. We train
our model with the first type of order, and calculate error rates for both orders.

We pretrain the documents with three different word2vec-type Mikolov et al. (2013) models: CBOW,
skip-gram, and GLOVE Pennington et al. (2014). We note that all these techniques apply neighboring
words to predict word occurrences with a neural network based on different assumptions. There-
fore, applying the attention mechanism to incorporate the three models can weaken the underlying
distributional assumptions and result in a more flexible word embedding structure.

We apply text8 as the training corpus for CBOW and skip-gram, and download the pretrained weights
for GLOVE from Wikipedia 2014 and Gigaword 5. Each vector representing a word of dimension
300. For each document, we represent it as a tf-idf vector Aggarwal & Zhai (2012) and apply the
word2vec weights to transform it into a 300-dimensional vector, which is the same as VecAvg in
Socher et al. (2013). For this instance, the embeddings are fixed and not modified during the training
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process of our model. We also impose a softmax layer corresponding to the 20 classes on top of
word2vec and use the resulting final weights as pretrained weights to AttRN. We compare our model
against OASIS as well as Ranking SVM and LambdaMART. The results of RankNet are not shown
here because we have found it to be unsuitable for this data set.

For AttRN and OASIS, we apply a batch size of 100 and a learning rate of 0.0001, and 50 epochs.
Other computational details are the same as in the previous data sets. Table 8 considers any two
documents of the same topic to be related, while Table 9 considers any two documents of the same
superclass to be related.

Table 6: Errors of different text retrieval methods for 20 Newsgroups with regard to different topics.
error OASIS-1 OASIS-3 AttRN-SM AttRN-HL
MAP 15.56% 15.07% 14.78% 14.79%

sd. (0.01%) (0.01%) (0.01%) (0.004%)
NDCG3 17.83% 17.25% 16.87% 16.93%

sd. (0.02%) (0.02%) (0.02%) (0.01%)
NDCG5 17.16% 16.59% 16.28% 16.29%

sd. (0.02%) (0.02%) (0.01%) (0.02%)
error RSVM-20k RSVM-100k λMART-2% λMART-5%
MAP 23.24% 19.98% 32.90% 31.58%

sd. (0.60%) (0.10%) (1.20%) (0.87%)
NDCG3 24.35% 21.20% 34.62% 33.55%

sd. (0.20%) (0.05%) (1.26%) (0.88%)
NDCG5 24.73% 21.37% 35.33% 34.04%

sd. (0.48%) (0.08%) (1.27%) (0.95%)

Table 7: Errors of different text retrieval methods for 20 Newsgroups with regard to different
superclasses.

error OASIS-1 OASIS-3 AttRN-SM AttRN-HL
MAP 30.58% 30.15% 30.14% 30.19%

sd. (0.02%) (0.01%) (0.01%) (0.04%)
NDCG3 13.59% 13.14% 12.93% 12.95%

sd. (0.02%) (0.02%) (0.02%) (0.01%)
NDCG5 18.36% 17.92% 17.82% 17.79%

sd. (0.03%) (0.01%) (0.01%) (0.01%)
error RSVM-20k RSVM-100k λMART-2% λMART-5%
MAP 35.87% 34.03% 41.52% 40.27%

sd. (0.30%) (0.06%) (0.91%) (0.55%)
NDCG3 19.61% 16.83% 29.35% 28.34%

sd. (0.25%) (0.04%) (1.24%) (0.63%)
NDCG5 24.92% 22.10% 34.05% 32.65%

sd. (0.38%) (0.08%) (1.14%) (0.70%)

Tables 8 and 9 show that AttRN-SM is the most suitable for 20 Newsgroups while AttRN-HL achieves
the second best, and is relatively close. We also observe that MAP for superclasses is too strict for
this data set, because all documents of the same superclass are taken into account. NDCG scores are
more realistic because a threshold is given and less related search results are down-weighted.

To conclude, AttRN-HL has the most robust performance across all three data sets, and is thus the
recommended choice. Moreover, for the problems considered in this work, OASIS is more suitable
than Ranking SVM and LambdaMART, and thus a competitive baseline.

5 CONCLUSION

In this paper, we proposed a new neural network for learning-to-rank problems which applies the
attention mechanism to incorporate different embeddings of queries and search results, and ranks the
search results with a listwise approach. Data experiments show that our model yields improvements
over state-of-the-art techniques. For the future, it would be of interest to consider improving the RNN
structure in the attention mechanism, and tailoring the embedding part of the neural network to this
problem.
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A APPENDIX

A.1 THE CIFAR-10 DATA SET

The CIFAR-10 data set contains images of 10 different classes. There are 50,000 training images,
from which we take 5,000 images for validation, and 10,000 testing images. Again we took each
image as a query, and randomly created 30 search results with the number of related images uniformly
distributed from 1 to 9. The order is imposed in the same way as MNIST except that it is based
on different classes. We use 5 convolutional neural networks in the same way as MNIST based on
regularization rates shown in Table 5.

Table 8: Different regularization rates applied to CIFAR-10.
Dropout’s p for Conv. 0.25 0.25 0.25 0.1 0.1

Dropout’s p for FC 0.5 0.3 0.1 0.3 0.1
L2’s λ 5e-4 5e-4 5e-4 5e-4 5e-4

We apply a batch size of 50, a learning rate of 0.0005 and 20 epochs to train AttRN. Other compu-
tational details are the same as in the MNIST data set. The error rates and the standard deviations
are shown in Table 6. AttRN-HL again achieves the best performance followed by AttRN-SM and
OASIS-5 in terms of MAP.
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Table 9: Errors of different image retrieval methods for CIFAR-10.
error OASIS-1 OASIS-5 AttRN-SM AttRN-HL
MAP 16.46% 13.72% 13.65% 13.41%

sd. (0.08%) (0.08%) (0.06%) (0.07%)
NDCG3 19.19% 15.95% 15.93% 15.61%

sd. (0.11%) (0.08%) (0.06%) (0.08%)
NDCG5 17.94% 14.86% 14.80% 14.55%

sd. (0.06%) (0.08%) (0.08%) (0.07%)
error RSVM-100k RSVM-500k λMART-2% λMART-5%
MAP 13.74% 13.77% 18.49% 19.27%

sd. (0.20%) (0.13%) (0.06%) (0.14%)
NDCG3 15.91% 15.87% 19.34% 20.05%

sd. (0.20%) (0.15%) (0.22%) (0.46%)
NDCG5 14.78% 14.81% 18.71% 19.28%

sd. (0.20%) (0.14%) (0.11%) (0.26%)

Table 7 also shows that replacing the pooling functions from “mean” to ”max” again yields very
small changes in error rates, which means that AttRN is quite robust.

Table 10: Errors of “mean” and “max” pooling as for CIFAR-10.
error MAP NDCG3 NDCG5

AttRN-HL-mean 13.41% 15.61% 14.55%
sd. (0.07%) (0.08%) (0.07%)

AttRN-HL-max 13.40% 15.61% 14.54%
sd. (0.07%) (0.08%) (0.07%)

Again we display three good cases of retrieval and three poorer ones from AttRN-HL in terms of the
actual images, shown in Figure 4 below. We observe that the images considered as related tend to be
in the same superclass as the query, but may be in a different class due to the variation within each
class of images and blurred images.
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