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ABSTRACT

We investigate global adversarial robustness guarantees for machine learning
models. Specifically, given a trained model we consider the problem of com-
puting the probability that its prediction at any point sampled from the (unknown)
input distribution is susceptible to adversarial attacks. Assuming continuity of the
model, we prove measurability for a selection of local robustness properties used
in the literature. We then show how concentration inequalities can be employed
to compute global robustness with estimation error upper-bounded by ε, for any
ε > 0 selected a priori. We utilise the methods to provide statistically sound
analysis of the robustness/accuracy trade-off for a variety of neural networks ar-
chitectures and training methods on MNIST, Fashion-MNIST and CIFAR. We
empirically observe that robustness and accuracy tend to be negatively correlated
for networks trained via stochastic gradient descent and with iterative pruning
techniques, while a positive trend is observed between them in Bayesian settings.

1 INTRODUCTION

Adversarial attacks are potentially imperceptible input manipulations that when applied to a test
point result in misclassification. Since even state-of-the-art deep learning models have been shown
susceptible to such attacks (Goodfellow et al., 2014), adversarial examples have raised serious con-
cerns about the security and robustness of models learned from data (Biggio & Roli, 2018). As
standard accuracy measures fail to capture model behaviour in an adversarial setting, the develop-
ment of techniques capable of quantifying the robustness of machine learning models is an essential
pre-condition for their application in safety-critical scenarios, where model failures have already
led to fatal accidents (Yadron & Tynan, 2016). In such settings, we require models that are not only
accurate, but also have guaranteed robust behaviour (Michelmore et al., 2019). However, while tech-
niques for the computation of local adversarial robustness guarantees (i.e., specific to a particular
test point) have been developed for a variety of machine learning models (Katz et al., 2017; Biggio
& Roli, 2018; Cardelli et al., 2019b), to the best of our knowledge relatively few studies of global
robustness (Bastani et al., 2016; Ruan et al., 2019; Webb et al., 2018) have been considered, and
none rigorously quantify the probability that a neural network is robust to adversarial perturbations.

Given a neural network (NN) f we investigate the global robustness properties of f .We start from a
local notion of robustness specific to a point (e.g. robustness against bounded norm perturbations or
adversarial attacks) and pose the problem of computing the probability that the prediction of f in a
test point x, sampled from a (possibly unknown) data distribution P , is robust according to a given
local property. Unfortunately, exact computation of such global robustness measures is intractable.
Nevertheless, we show how statistically sound approximations with quantifiable and arbitrarily small
error can be computed by making use of concentration inequalities (Massart, 2007). Crucially, this
allows us to provide statistical guarantees over the estimation of the global robustness measures,
while keeping computations to a minimum. In order to do so, we prove that the global adversarial
robustness property defined here is measurable for a range of commonly used notions of adversarial
examples and NN architectures, and show how global robustness can be reformulated as a sum of
independent and identically distributed random variables. Hence, bounds such as additive Chernoff
or Hoeffding’s inequality can be used to quantify the error with respect to an empirical estimator.

We utilise our techniques to statistically quantify the robustness of a variety of different neural
network architectures and training methods, and experimentally study their robustness profile on
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multiple datasets, including MNIST, Fashion-MNIST and CIFAR. In particular, we analyse the ef-
fects of iterative magnitude pruning on network robustness. Interestingly, while weight pruning may
increase test set accuracy (as observed by Frankle & Carbin (2018)), we find that it does not have
any positive effect on global robustness for the examples we analysed. We further empirically eval-
uate the robustness accuracy trade-off (Tsipras et al., 2018) for a wide selection of different network
architectures and hyper-parameters, which allows us to compare different training regimes. We find
that accuracy and robustness tend to be at odds in networks trained via stochastic gradient descent,
whereas there seems to exist a positive correlation between accuracy and robustness in Bayesian set-
tings. More specifically, for the datasets analysed, we observe that optimising a Bayesian network
architecture for accuracy leads to networks that are more robust against adversarial examples.

In summary, this paper makes the following main contributions:

• We consider probabilistic global adversarial robustness measures for neural networks and
prove their measurability.

• We show how concentration inequalities can be used to provide statistical guarantees on
global robustness estimations with an a priori error bound.

• We investigate the trade off between robustness and accuracy for a variety of networks
architectures and training methods. We provide empirical results that suggest that networks
trained by Bayesian methods might be more robust than their deterministic counter-parts.

Related Works. Various methods, both heuristic and based on formal verification, have been de-
rived to evaluate the local adversarial robustness of neural networks (Goodfellow et al., 2014; Wicker
et al., 2018; Tramèr et al., 2017; Katz et al., 2017; Cardelli et al., 2019a; Carlini et al., 2017). In ad-
dition to local robustness, which focuses on a specific test point, global measures of robustness have
also been discussed in the literature (Bastani et al., 2016; Ruan et al., 2019; Webb et al., 2018). Intu-
itively, these generalise the notion of local robustness to a set of test points (or a data distribution), so
as to marginalise out their influence. This yields a global measure of robustness for the network that
describes the probability wrt the input distribution that a certain local property is satisfied (Dreossi
et al., 2019). While these approaches consider similar global robustness measures to those discussed
here, they lack a characterisation of error bounds. In contrast, our approach provides statistical error
bounds on the estimation of global robustness, up to any a priori specified tolerance ε > 0.

Formal bounds on global adversarial robustness are given by (Fawzi et al., 2018). However, im-
plementation details are given only for linear and quadratic classifiers, since the computation of the
bound relies on the distance from the decision boundary. Our approach instead generalises to any
continuous model for which local robustness can be computed. A worst-case notion of global ro-
bustness is discussed by Katz et al. (2017); Gopinath et al. (2018), where a network is considered
globally adversarially robust if there are no input points that are vulnerable to adversarial attacks.
However, this notion of global robustness tends to be too pessimistic and hard to compute in practice,
since it is valid for all points in the input space (independently of their likelihood wrt the input distri-
bution). Instead, the global robustness measure considered here is probabilistic, in that it computes
the probability that a point drawn from the data distribution is vulnerable to adversarial attacks.

Similar techniques to those used in this paper are applied for the computation of PAC bounds for the
evaluation of the generalisation error of learning models (McAllester, 1999; Vapnik, 2013) and their
robustness (Xu & Mannor, 2012; Gourdeau et al., 2019). This differs from the problem studied here
as PAC aims at bounding the generalisation capabilities of a family of learning models, whereas our
method yields bounds on a specific trained model. Additionally, when computing global robustness,
we focus on analyzing the probability that a perturbation applied to a test point causes a prediction
change, independently of the point ground truth (i.e. independently of the generalisation error).

2 GLOBAL ADVERSARIAL ROBUSTNESS OF NEURAL NETWORKS

In this section we discuss two notions of global robustness for neural networks. Namely, we first
introduce qualitative and quantitative variants of local robustness, and then define global robustness
as their expected values wrt the (possibly unknown) input distribution. Throughout this paper, we
consider a neural network f : Rm → Rn , with any activation function and arbitrarily many layers,
such that, for a test point x ∈ Rm, f(x) = (f1(x), ..., fn(x)) represents the vector of the confidence
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values for each of the n class labels. D = {(x, y)|x ∈ Rm, y ∈ {1, ..., n}} is a test dataset
comprising |D| input points, which we assume to be iid sampled from a distribution P .

A Measure of Global Robustness. Given a test point x sampled from P , we consider the indicator
function g : Rm → {0, 1}, which returns 1 if f is locally robust in x, and is defined as follows.
Definition 1. (Local Robustness) Given x ∈ Rm and δ > 0, let T x = {x̄ ∈ Rm | |x̄ − x|p ≤ δ},
where | · |p is an Lp norm, be a δ−ball around x. Call C(x) = arg maxi∈{1,...,n} fi(x) the set of
classes for which the confidence of f in x is maximised. Then we say that f is locally robust in x
around T x iff g(x) = 1, where:

g(x) =

{
1 if C(x) is a singleton and ∀x̄ ∈ T x C(x̄) = C(x)

0 otherwise.

That is, f is locally robust in x if small perturbations in the input do not cause a classification change.
Note that we require the predicted class of x to be unambiguous, i.e. C(x) comprises only one class,
and otherwise we view the point as not locally robust (as the classification decision output is not
uniquely defined in this case). Local robustness is widely used to investigate the properties of neural
networks and various algorithms have been derived for its computation and approximation (Dreossi
et al., 2019). Details on how we compute or approximate g(x) are given in Section 3.1.

Building on local robustness, we are interested in computing the global robustness of f , which is
defined below as the probability that a test point sampled from P is locally robust.
Definition 2. (Global Robustness) The robustness of f is defined as:

R(g) = Ex∼P [g(x)] =

∫
g(x)p(x)dx, (1)

where p is the density probability associated to P.

It is important to emphasise thatR(g) is a property of the neural network, as the effect of each single
input point is marginalised out when taking the expectation. We remark that, since g is an indicator
function, under the assumption that g is measurable (discussed in detail in Section 3), it follows that
R(g) is a well defined probability measure.

A Quantitative Measure of Global Robustness. As discussed in the previous section, we define
local robustness g as an indicator function. It is often useful to consider a quantitative notion for the
robustness of f . For example, given a δ−ball around a test point x, we may want to know not just if
f is locally robust in x, but also the maximal variation in the classification confidence values of the
various classes, which evaluate the network’s robustness independently of the decision procedure
used for the classification. Further, one could require the model confidence to be robust up to a
specific output threshold (Katz et al., 2017). Specifically, given f and a test point x ∈ Rm, we
consider a function ḡ(x) that quantifies the robustness of f in x and is defined as follows.
Definition 3. (Quantitative Local Robustness) Given x ∈ Rm and δ > 0, let T x = {x ∈ Rm | |x̄−
x|p ≤ δ}, where | · |p is an Lp norm, be a δ−ball around x. We define the quantitative local
robustness of f in x around T x as:

ḡ(x) = max
x̄∈Tx

h(f(x), f(x̄)),

where h : Rn × Rn → R is a given function that measure differences between f predictions.

In Section 4 we provide experimental results using h defined as the L∞ norm between predictions,
as well as by checking whether this norm is greater than a given threshold γ > 0 (which is akin to the
definition introduced by Katz et al. (2017)). Similarly to R(g), the following definition generalises
quantitative local robustness to a global property, by taking the expectation of ḡ(x) with respect to
the input data distribution.
Definition 4. (Quantitative Global Robustness) The quantitative robustness of f is defined as:

D(ḡ) = Ex∼P [ḡ(x)] =

∫
ḡ(x)p(x)dx, (2)

where p is the density probability associated to P.

Exact computation of R(g) and D(ḡ) is infeasible as it requires the computation of an integral with
respect to an unknown input distribution. Nevertheless, in what follows, we show that under mild
assumptions it is possible to estimate these quantities with a priori arbitrarily stringent guarantees.
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3 STATISTICAL GUARANTEES ON ADVERSARIAL ROBUSTNESS

In this section we derive estimations of R(g) and D(ḡ) with arbitrarily stringent a priori statistical
guarantees. In particular, in Equation 3 we consider empirical estimators of these quantities and then
in Theorem 1 and 2 we show that the probability that the error between these quantities and the real
measures is greater than a threshold can be upper bounded by employing concentration inequalities.
In Section 3.1 we review how g and ḡ are computed or approximated in practice, and finally describe
the global robustness guarantees computation pipeline in Section 3.2. Proofs for the Propositions
and Theorems state in this Section are reported in the Appendix Section A.

We consider the following empirical estimators:

Remp(g, S) =
∑

(x,y)∈S

g(x)

|S|
Demp(ḡ, S) =

∑
(x,y)∈S

ḡ(x)

|S|
(3)

where S is a set of size |S| of test points iid sampled from P . In order to derive a worst-case scenario
bound on the distance between R(g) and Remp(g, S), we first have to show that g is a measurable
function1. In fact, the measurability of g guarantees that R(g) is a well defined probability measure
induced by P , the data distribution. Hence, concentration inequalities can be applied to bound the
error between R(g) and Remp(g, S).
Proposition 1. Assume that, for i ∈ {1, ..., n}, fi, the i-th component of the neural network f is a
continuous function, then g(x), as defined in Definition 1, is measurable.

Proof of Proposition is based on noticing that the set {x ∈ Rm | g(x) > 0} can be rewritten as
the union of pre-images of measurable sets for a measurable function. Note that the overwhelming
majority of the neural networks commonly used in practice are continuous. Hence, the assumption
in Proposition 1 is almost always verified in practice. At this point, we can state the following
theorem, which bounds the probability that the distance between R(g) and Remp(g, S) is greater
than ε, for any ε > 0.

Theorem 1. Assume that g is measurable, then for any ε > 0 it holds that that for any (possibly
unknown) input data distribution P

Prob(|Remp(g, S)−R(g)| > ε) ≤ 2e−2ε2|S|. (4)

Theorem 1 gives a bound that is problem and architecture independent, that is it holds for any data
distribution and any architecture of the network f . As illustrated in Section 4.1, the required number
of samples for a given error tolerance ε, although exponential in ε, is generally under control in
practice. The proof of Theorem 1 relies on reformulating Equation 1 as a probability measure and
then the application of the Chernoff bound to a sum of independent Bernoulli random variables.

In the remaining part of this section, we show how to derive statistical guarantees on the error be-
tween D(ḡ) and Demp(ḡ, S). Again, we first show that under mild assumptions ḡ(x) is measurable.
Then, we use this result to bound the error by using concentration inequalities.
Proposition 2. Consider ḡ, as defined in Definition 3. Then, under the assumption that l(x1, x2) =
h(f(x1), f(x2)) is continuous in both x1 and x2, we have that ḡ measurable.

In the following theorem we show that a result similar to that of Theorem 1 can be obtained also for
the more general case of quantitative global robustness.
Theorem 2. Assume that ḡ is measurable and that, for any input point x, ḡ(x) ∈ [A,B] ⊂ Rn.
Then, for any (possibly unknown) input data distribution P , it holds that

Prob(|Demp(ḡ, S)−D(ḡ)| > ε) ≤ 2e
− 2ε2|S|

(B−A)2 . (5)

Note that in practice it is often the case that the output of a neural network is bounded (notably for
classification problems and regression problems over a bounded input space). The proof of Theorem
2 relies on the application of union bound and Hoeffding inequality (Vapnik, 2013), and the resulting
upper bound is again problem and architecture independent.

1In this paper by measurable we mean Borel measurable.
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3.1 COMPUTATION OF LOCAL ROBUSTNESS g(x) AND ḡ(x)

The computation of global robustness depends on the ability to compute local robustness g(x) (or
analogously ḡ(x)) for every input point x, that is, to establish the presence or absence of an adver-
sarial attack in a neighbourhood of x. For deep neural networks this is known to be NP-complete
(Katz et al., 2017). For exact computation of g(x) we employ the verification method introduced by
(Huang et al., 2017), which builds on input space discretisation and constraint solving to perform
exhaustive search of the neighbourhood. Results for this are discussed in Section 4.1. Unfortunately,
the computational complexity for the exact computation of g(x) quickly gets prohibitive for large
networks. As in (Bastani et al., 2016), in these cases we proceed by approximating local robust-
ness. The trade-off between scalability and approximation quality of an adversarial attack method
is empirically discussed in (Carlini et al., 2017). We remark that the statistical bounds we compute
are fully transparent to the way in which g is computed or approximated. More precisely, the meth-
ods discussed in Section 3 provide sound, statistical bounds on the global robustness estimation,
independently on the definition and computation of g(x).

3.2 COMPUTATION OF GLOBAL ROBUSTNESS R(g) AND D(ḡ)

We detail how global robustness with statistical guarantees can be computed. In Theorems 1 and 2
we proved that statistical guarantees can be computed on standard estimators for R(g) and D(ḡ).
In fact, given a statistical tolerance ε > 0, this can be done by computing the smallest number of
samples N = |S| that satisfies Equation 4 (respectively Equation 5 for the computation of D(ḡ)).
Let S = {xi, i = 1, . . . , N} be N test points randomly taken from the test datasetD, we then com-
pute the values of g(xi) (respectively ḡ(xi)) using the methods discussed in the previous subsection.
We finally use these values to evaluate Equation 3. This provides us with an estimator Remp(g, S)
(respectively Demp(ḡ, S)) that meets the required statistical guarantees by construction.

4 EXPERIMENTS AND APPLICATIONS

We apply the presented techniques to obtain statistically sound estimation of the robustness profile
for an array of NN architectures. In Section 4.1 we analyse the convergence rate of the bound on
global robustness, using the exact local robustness method of Huang et al. (2017). In Section 4.2 we
report empirical robustness/accuracy trade-off for a variety of different networks trained on MNIST
and CIFAR, using FGSM (Goodfellow et al., 2014) for approximate computation of local robustness.
Section 4.3 analyses the effects of pruning on the network generalisation and global robustness on
MNIST and Fashion-MNIST. Results for Bayesian networks are discussed in Section 4.42.

Figure 1: Convergence of the global robustness estimation wrt error tolerance ε (decreasing values
along the x-axis). For each ε we compute 50 empirical estimates (blue dots). As the error tolerance
decreases the estimated quantities converge to a tight cluster. The red line interpolates the number
of sampled images needed for the computation of each blue dot.

4.1 CONVERGENCE ANALYSIS OF BOUND

Figure 1 depicts the convergence rate of our robustness estimation method wrt the error tolerance ε.
Namely, we train a CNN on MNIST and estimate its global robustness up to a decreasing value of ε.

2Code can be found at: link left blank during peer review.
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For each value of ε we compute 50 different estimates of global robustness (blue dots in the figure),
statistically guaranteed to be ε-close to the actual robustness of the network. In order to do so, for
every ε we compute the number of samples required to meet the guarantees (using Equations 4 and
5), and independently build 50 subset of the test dataset D. Hence, for each value of ε this give rise
to 50 different estimation of global robustness. As ε decreases, the variance of the estimated values
decreases as well, quickly converging at around 5% error. The red line in the plot shows the number
of samples needed to obtain the required guarantees. Notice that, though the number of samples is
exponential wrt ε, 5% tolerance is already obtained with just above 700 samples taken from the input
distribution. This is orders of magnitudes smaller than test datasets used for training deep networks.

4.2 ROBUSTNESS OF DETERMINISTIC NEURAL NETWORKS

In this section, we empirically evaluate the trade-off between global robustness and accuracy for
deterministic networks. Recent works have suggested that robustness and accuracy might be at
odds, and observed that this was the case when training neural networks on a selection of datasets
(Tsipras et al., 2018). While the trade-off between robustness and accuracy is generally different
for each application, we contribute to these analyses by quantifying (i.e. with guaranteed statistical
error) the robustness/accuracy trade-off in fully connected networks (FCNs) and convolutional neu-
ral networks (CNNs) trained on MNIST, Fashion-MNIST (Xiao et al., 2017) and CIFAR-10 using
Stochastic Gradient Descent (SGD).

Figure 2 depicts the empirical robustness/accuracy trade-off we observe, computed with statistical
error ε = 0.05. Overall, the observed trade-off is computed on approximately 3800 different neu-
ral network models (each blue dot in the figure represents robustness and accuracy obtained with a
particular neural network), namely 1000 fully-connected networks (FCNs) and 1000 convolutional
neural networks (CNNs) for MNIST, 500 FCNs and 500 CNNs for Fashion MNIST, and 800 CNNs
for CIFAR-10. The different networks were obtained by means of a grid search over the hyperparam-
eters space, where we vary depths, widths, activation functions, learning rates and training epochs.
In the case of CNNs we also vary the number of convolutional layers, number of filters in each
convolutional layer, and the size of the kernel used (additional details about the hyperparameters
used and values explored can be found in the Appendix Section B). For CIFAR-10 approximately
200 models are taken from the DEMOGEN model dataset (Jiang et al., 2018). The global properties
checked in these analyses are global robustness induced by: checking whether NNs prediction on
L∞ δ-ball produces confidence variations above 0.50 (shown in Figures (a) and (c)); computing
maximum softmax variation in L∞ norm (shown in Figures (b), (d) and (e)); checking for changes
in classification (shown in Figure (c)). These are further reported in each figure box. Notice that the
δ used for Fashion-MNIST and CIFAR-10 is smaller than the one used for MNIST, as every network
was found fully non-robust for larger values of δ. We find that for harder problems, the network per-
formance is more varied which results in greater noise in the quantification of the trade-off (as seen
in Figure 2).

For each of the datasets analysed and for all tested measures of robustness, we find a negative
correlation between accuracy and robustness. This supports the current hypothesis of the robust-
ness/accuracy trade off, and demonstrates that optimizing hyperparameters for accuracy might have
a negative effect on the resulting network robustness. We perform empirical analysis to find the
hyper-parameters that have a most profound effect on the network robustness. These are shown in
the boxplots in Figure 2, which are computed by averaging out the results across all the networks
tested. We find that both increasing model capacity (purple boxplots) and increasing training du-
ration (green boxplots) tend to have a negative effect on robustness. Interestingly, these suggest a
relationship between adversarial vulnerability and overfitting. We remark, however, that, though
they align with previous hypothesis and similar empirical results (Tsipras et al., 2018), these results
are empirical, and inevitably based on observations from only finitely many networks.

4.3 EFFECT OF ITERATIVE MAGNITUDE PRUNING ON ROBUSTNESS

Iterative Magnitude Pruning (IMP) is a network compression technique which has shown, empir-
ically, to be effective at reducing the number of weight parameters in neural networks. Empirical
analyses demonstrated that IMP can at times remove up to 99% of the weights, while keeping (and
even improving on) the original network test accuracy (Frankle & Carbin, 2018). As the existence of
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 2: Analysis of empirical accuracy/robustness trade-off computed on 4000 deterministic FCNs
and CNNs (each blue dot in the center plots represents the accuracy/robustness result for each net-
work). Each set of plots has been labeled with the functions used to compute robustness. First row:
analyses on the MNIST dataset. Second row: analyses on the Fashion-MNIST dataset. Third row:
analyses on the CIFAR-10 dataset. We observe a negative trend between accuracy and robustness.

a non-trivial interplay between model capacity and adversarial robustness has been suggested in the
literature (Goodfellow et al., 2014), we here explore the effect of IMP on global robustness on the
same architectures described in Section 4.2 for MNIST and Fashion-MNIST. Results for this anal-
ysis are shown in Figure 3, where we show the effect of IMP when removing 50%, 75%, 90% and
99% of the weights (IMP results reported in green dots and normal training results reported using
blue dots in (a) and (b)). We find for IMP a similar trade-off to the one observed when pruning is not
applied, with a slight reduction in accuracy when severe pruning strength is applied (shown in (c)).
As the boxplots show, we find that the amount of pruning has no statistically significant effect on any
of the global robustness measures investigated here. These observations are inline with the impact
of other notions of weight regularization observed in (Goodfellow et al., 2014), further highlighting
a relationship between weight pruning and network regularisation.

4.4 ROBUSTNESS OF BAYESIAN NEURAL NETWORKS

In this section we explore the global robustness of networks trained in Bayesian settings, which in
principle should not suffer from overfitting-like issues (Gal & Smith, 2018). We perform approx-
imate Bayesian training on MNIST and Fashion-MNIST using Hamiltonian Monte Carlo (HMC),
which is the gold-standard for Bayesian inference (Neal et al., 2011). Unfortunately, this does
not allow us to scale to CIFAR-10. While this could be possible by using other Bayesian approx-
imate training techniques, it would add a non-trivial interplay between the results observed and
the quality of the approximation. We again explore the model architecture space using the same
hyper-parameters discussed in Section 4.1 (instead of varying learning rates and epochs, we vary
the parameters of the numerical integrator for the Hamiltonian dynamics and the number of samples
that we use in order to approximate the posterior distribution). As such, the explored architectures
are exactly the same as those explored for deterministic NNs and the only difference lies hence in
the training methods (that is, deterministic vs. Bayesian). Results for this analysis are given Fig-
ure 4, with pink dots showing Bayesian results and blue dots the deterministic ones (as in Figure
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(a)

(b)

(c)

Figure 3: Quantitative analysis of global adversarial robustness on models trained with iterative
magnitude pruning. (a): robustness results on MNIST; (b): robustness results on Fashion-MNIST;
(c): quantitative robustness on MNIST (top) and Fashion-MNIST (bottom). We observe that prun-
ing leads to comparable trade-off wrt when pruning is not applied. The boxplots show a lack of
correlation between the proportion of weights pruned and global robustness.

(a) (b)

Figure 4: Global robustness analysis of Bayesian NNs. (a): results on MNIST; (b): results on
Fashion-MNIST. Each plot is labeled with the notion of robustness used. In the rightmost plot, SGD
was measured with attacks an order of magnitude weaker as the models were more vulnerable.

2). Interestingly, we find that, not only do Bayesian networks not exhibit the negative correlation
between robustness and accuracy, they in fact reverse this correlation. This shows that, for the ar-
chitectures analysed here, and for MNIST and Fashion-MNIST, robustness and accuracy are not at
odds. Actually, the results suggest that selecting a Bayesian network hyper-parameters to optimise
test accuracy leads to more globally robust networks as well. We further inspect the effect of model
capacity on the global adversarial robustness. Interestingly, we show that there is a weak positive
correlation between model capacity and robustness for both MNIST and Fashion-MNIST, which
again reverses the trend observed for deterministic networks.

5 CONCLUSION

We considered a probabilistic measure of global adversarial robustness of neural networks and gave
methods for its estimation with a-priori statistical guarantees. The presented techniques were em-
ployed to provide statistically sound estimates of the robustness profile of an array of neural network
architectures on MNIST, CIFAR-10 and Fashion-MNIST. We further investigated how the robust-
ness/accuracy trade-off is affected by different training approaches, including Bayesian and iterative
pruning methods. The methods discussed here rely only on the continuity of neural network models,
and thus generalise to any machine learning model characterised by a continuous function, provided
that the given notion of local robustness can be computed in practice.
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A PROOFS

In this Section of the Appendix we provide proofs for the Propositions and Theorems stated in the
main paper.

Proof of Theorem 1 By Definition we have

Prob(|Remp(g, S)−R(g)| > ε) =

Prob(|
∑
x∈S

g(x)

|S|
− Ex∼P [g(x)]| > ε)

Since g(x) is an indicator function, and under the assumption that g is measurable, Ex∼P [g(x)]
defines the probability of a random variable taking values in {0, 1}. Hence, the difference between
Ex∼P [g(x)] and its empirical frequency

∑
(x,y)∈S

g(x)
|S| can be upper bounded by employing additive

Chernoff bounds (Vapnik (2013)), yielding Equation 4.

Proof of Theorem 2

Prob(|Remp(g, S)−R(g)| > ε)

=Prob(Remp(g, S)−R(g) > ε ∨ Remp(g, S)−R(g) < −ε)
=Prob(Remp(g, S)−R(g) > ε ∨ R(g)−Remp(g, S) > ε)

(By the union bound)
≤Prob(Remp(g, S)−R(g) > ε) + Prob(R(g)−Remp(g, S) > ε)

Each of these terms can now be bounded by using Hoeffding’s inequalities (Vapnik, 2013).

Proof of Proposition 1 For x ∈ Rm and j ∈ {1, ..., n}, define

rj(x) = min
y∈Tx

(
fj(y)−max

i6=j
fi(y)

)
.
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Note that, by definition of rj and of g, it holds that g(x) = 1 and C(x) = {j} if and only if
rj(x) > 0. Furthermore, rj is measurable by the Measurable Maximum Theorem (Theorem 18.19
in (Guide (2006))). It thus follows that the set

Xj = {x ∈ Rm | rj(x) > 0}

is measurable, being it a super-level set of a measurable function (hence, the counter-image via a
measurable function of a Borel-measurable set), and so is its indicator function 1Xj (x). Measura-
bility of g then follows from the fact that

g(x) =

n∑
j=1

1Xj (x).

Proof of Proposition 2

l : Rm ×Rm → R is a Carathèodory function. Hence, measurability of ḡ follows from the Measur-
able Maximum Theorem (Theorem 18.19 in (Guide (2006))).

B EXPERIMENTAL SETTINGS

In this Section of the appendix we provide details on the training of the NN models that are discussed
in Section 4 of the main paper.

For all networks, save those for CIFAR10, we use standard stochatic gradient descent with the noted
learning rates, for CIFAR10, in order to speed up convergence we use the Adam optimizer. For
HMC, we approximate the posterior using built-in functions provided by Tensorflow and Edward.

For lottery ticket, we implemented a general iterative magnitude pruning method which works with
models written in Keras. Source code for this method is supplied in the project repository.

Below, we list the hyperparameter grid searchs that was performed in order to generate the plots
found in the paper.

B.1 MNIST - SGD - FCNS

Parameter Values
Depth 1, 2, 3
Width 64, 128, 256, 512

Activation Function ReLu, Tanh, Sigmoid
Learning Rates 0.05, 0.01, 0.005, 0.001

Epochs 5, 10, 15, 20, 25

B.2 MNIST - SGD - CNNS

Parameter Values
FC Depth 1, 2
FC Width 128, 256

Activation Function ReLu
Convolutional Filters 5, 10, 20, 30

Convolutional Kernel Size 3, 5, 7
Convolutional Depth 1, 2, 3

Learning Rates 0.05, 0.01, 0.005, 0.001
Epochs 3, 6, 9, 12, 15
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B.3 FASHION MNIST - SGD - FCNS

Parameter Values
Depth 2, 3, 4
Width 256, 512, 1024

Activation Function ReLu, Tanh, Sigmoid
Learning Rates 0.01, 0.005, 0.001

Epochs 5, 10, 15, 20, 25

B.4 FASHION MNIST - SGD - CNNS

Parameter Values
FC Depth 1, 2
FC Width 128, 256

Activation Function ReLu
Convolutional Filters 5, 20, 30

Convolutional Kernel Size 3, 5, 7
Convolutional Depth 1, 2, 3, 4

Learning Rates 0.0001, 0.001, 0.005
Epochs 3, 6, 9, 12, 15

B.5 CIFAR-10 - SGD - CNNS

Please refer to the Google DEMOGEN paper in order to extract their parameters for the network-
in-network models. Below, where we list convolutional depth we are reporting the number of VGG-
style blocks (two consecutive convolutional layers followed by a max pooling layer).

Parameter Values
FC Depth 1, 2, 3
FC Width 128, 256, 512

Activation Function ReLu
Convolutional Filters 24, 48, 64

Convolutional Kernel Size 3, 5, 7
Convolutional Depth 1, 2, 3

Learning Rates 0.0001, 0.0005, 0.001, 0.005
Epochs 3, 6, 9, 12, 15

B.6 MNIST - IMP - FCNS

Parameter Values
Depth 1, 2, 3
Width 128, 256, 512, 1024

Activation Function ReLu, Tanh, Sigmoid
Prop. Weight Reduction 0.5, 0.75, 0.9, 0.99

Iterations of Pruning 1, 2, 5
Learning Rates 0.001

Epochs 5, 10, 15
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B.7 FASHION MNIST - IMP - FCNS

Parameter Values
Depth 1, 2, 3, 4
Width 256, 512

Activation Function ReLu, Tanh, Sigmoid
Prop. Weight Reduction 0.5, 0.75, 0.9, 0.99

Iterations of Pruning 1, 2, 5
Learning Rates 0.001

Epochs 5, 10, 15

B.8 MNIST - HMC - FCNS

Parameter Values
Depth 1, 2, 3
Width 128, 256, 512

Activation Function ReLu, Tanh, Sigmoid
Step Size 0.01, 0.005, 0.001, 0.0001

Number of Steps 10, 15, 20
Samples from Posterior 100, 200, 400, 600

B.9 FASHION MNIST - HMC - FCNS

Parameter Values
Depth 1, 2, 3
Width 128, 256, 512

Activation Function ReLu
Step Size 0.01, 0.005, 0.001, 0.0001

Number of Steps 10, 15, 20
Samples from Posterior 100, 200, 400, 600
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