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ABSTRACT

This paper introduces the concept of continuous convolution to neural networks
and deep learning applications in general. Rather than directly using discretized
information, input data is first projected into a high-dimensional Reproducing Ker-
nel Hilbert Space (RKHS), where it can be modeled as a continuous function us-
ing a series of kernel bases. We then proceed to derive a closed-form solution to
the continuous convolution operation between two arbitrary functions operating
in different RKHS. Within this framework, convolutional filters also take the form
of continuous functions, and the training procedure involves learning the RKHS
to which each of these filters is projected, alongside their weight parameters. This
results in much more expressive filters, that do not require spatial discretization
and benefit from properties such as adaptive support and non-stationarity. Experi-
ments on image classification are performed, using classical datasets, with results
indicating that the proposed continuous convolutional neural network is able to
achieve competitive accuracy rates with far fewer parameters and a faster conver-
gence rate.

1 INTRODUCTION

In recent years, convolutional neural networks (CNNs) have become widely popular as a deep learn-
ing tool for addressing various sorts of problems, most predominantly in computer vision, such as
image classification (Krizhevsky et al., 2012; He et al., 2016), object detection (Ren et al., 2015) and
semantic segmentation (Ghiasi & Fowlkes, 2016). The introduction of convolutional filters produces
many desirable effects, including: translational invariance, since the same patterns are detected in
the entire image; spatial connectivity, as neighboring information is taken into consideration during
the convolution process; and shared weights, which results in significantly fewer training parameters
and smaller memory footprint.

Even though the convolution operation is continuous in nature (Hirschman & Widder, 1955), a
common assumption in most computational tasks is data discretization, since that is usually how
information is obtained and stored: 2D images are divided into pixels, 3D point clouds are divided
into voxels, and so forth. Because of that, the exact convolution formulation is often substituted
by a discrete approximation (Damelin & Miller, 2011), calculated by sliding the filter over the
input data and calculating the dot product of overlapping areas. While much simpler to compute, it
requires substantially more computational power, especially for larger datasets and filter sizes (Pavel
& David, 2013). The fast Fourier transform has been shown to significantly increase performance
in convolutional neural network calculations (Highlander & Rodriguez, 2015; Rippel et al., 2015),
however these improvements are mostly circumstantial, with the added cost of performing such
transforms, and do not address memory requirements.

To the best of our knowledge, all versions of CNNs currently available in the literature use this dis-
crete approximation to convolution, as a way to simplify calculations at the expense of a potentially
more descriptive model. In Liu et al. (2015) a sparse network was used to dramatically decrease
computational times by exploiting redundancies, and in Graham (2014) spatial sparseness was ex-
ploited to achieve state-of-the-art results in various image classification datasets. Similarly, Riegler
et al. (2016) used octrees to efficiently partition the space during convolution, thus focusing mem-
ory allocation and computation to denser regions. A quantized version was proposed in Wu et al.
(2016) to improve performance on mobile devices, with simultaneous computational acceleration
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and model compression. A lookup-based network is described in Bagherinezhad et al. (2016), that
encodes convolution as a series of lookups to a dictionary that is trained to cover the observed weight
space.

This paper takes a different approach and introduces the concept of continuous convolution to neural
networks and deep learning applications in general. This is achieved by projecting information into
a Reproducing Kernel Hilbert Space (RKHS) (Schölkopf & Smola, 2001), in which point evaluation
takes the form of a continuous linear functional. We employ the Hilbert Maps framework, initially
described in Ramos & Ott (2015), to reconstruct discrete input data as a continuous function, based
on the methodology proposed in Guizilini & Ramos (2016). Within this framework, we derive a
closed-form solution to the continuous convolution between two functions that takes place directly
in this high-dimensional space, where arbitrarily complex patterns are represented using a series
of simple kernels, that can be efficiently convolved to produce a third RKHS modeling activation
values. Optimizing this neural network involves learning not only weight parameters, but also the
RKHS that defines each convolutional filter, which results is much more descriptive feature maps
that can be used for both discriminative and generative tasks. The use of high-dimensional projec-
tion, including infinite-layer neural networks Hazan & Jaakkola (2015); Globerson & Livni (2016),
has been extensively studied in recent times, as a way to combine kernel-based learning with deep
learning applications. Note that, while works such as Mairal et al. (2014) and Mairal (2016) take
a similar approach of projecting input data into a RKHS, using the kernel trick, it still relies on
discretized image patches, whereas ours operates solely on data already projected to these high-
dimensional spaces. Also, in these works extra kernel parameters are predetermined and remain
fixed during the training process, while ours jointly learns these parameters alongside traditional
weight values, thus increasing the degrees of freedom in the resulting feature maps.

The proposed technique, entitled Continuous Convolutional Neural Networks (CCNNs), was eval-
uated in an image classification context, using standard computer vision benchmarks, and achieved
competitive accuracy results with substantially smaller network sizes. We also demonstrate its appli-
cability to unsupervised learning, by describing a convolutional auto-encoder that is able to produce
latent feature representations in the form of continuous functions, which are then used as initial
filters for classification using labeled data.

2 HILBERT MAPS

The Hilbert Maps (HM) framework, initially proposed in Ramos & Ott (2015), approximates real-
world complexity by projecting discrete input data into a continuous Reproducing Kernel Hilbert
Space (RKHS), where calculations take place. Since its introduction, it has been primarily used
as a classification tool for occupancy mapping (Guizilini & Ramos, 2016; Doherty et al., 2016;
Senanayake et al., 2016) and more recently terrain modeling (Guizilini & Ramos, 2017). This
section provides an overview of its fundamental concepts, before moving on to a description of the
feature vector used in this work, and finally we show how model weights and kernel parameters can
be jointly learned to produce more flexible representations.

2.1 OVERVIEW

We start by assuming a dataset D = (x, y)Ni=1, in which xi ∈ RD are observed points and yi =
{−1,+1} are their corresponding occupancy values (i.e. the probability of that particular point
being occupied or not). This dataset is used to learn a discriminative model p(y|x,w), parametrized
by a weight vector w. Since calculations will be performed in a high-dimensional space, a simple
linear classifier is almost always adequate to model even highly complex functions (Komarek, 2004).
Here we use a Logistic Regression (LR) classifier (Freedman, 2005), due to its computational speed
and direct extension to online learning. The probability of occupancy for a query point x∗ is given
by:

p(y∗ = 1|Φ(x∗),w) =
1

1 + exp (−wT Φ(x∗))
, (1)

where Φ(.) is the feature vector, that projects input data into the RKHS. To optimize the weight
parameters w based on the information contained in D, we minimize the following negative log-
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likelihood cost function:

LNLL(w) =

N∑
i=1

(
1 + exp

(
−yiwT Φ(xi)

))
+ R(w), (2)

with R(w) serving as a regularization term, used to avoid over-fitting. Once training is complete,
the resulting model can be used to query the occupancy state of any input point x∗ using Equation
1, at arbitrary resolutions and without the need of space discretization.

2.2 LOCALIZED LENGTH-SCALES

The choice of feature vector Φ(.) is very important, since it defines how input points will be rep-
resented when projected to the RKHS, and can be used to approximate popular kernels such that
k(x, x′) ≈ Φ(x)T Φ(x′). In Guizilini & Ramos (2016), the authors propose a feature vector that
places a setM of inducing points throughout the input space, either as a grid-like structure or by
clustering D. Inducing points are commonly used in machine learning tasks Snelson & Ghahramani
(2006) to project a large number of data points into a smaller subset, and here they serve to corre-
late input data based on a kernel function, here chosen to be a Gaussian distribution with automatic
relevance determination:

k(x,µ,Σ) =
1

(2π)
D
2 |Σ| 12

exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
, (3)

where µ ∈ RD is a location in the input space and Σ is a symmetric positive-definite covariance
matrix that models length-scale. Each inducing point maintains its own mean and covariance param-
eters, so thatM = {µ,Σ}Mi=1. The resulting feature vector Φ(x,M) is given by the concatenation
of all kernel values calculated for x in relation toM:

Φ(x,M) =
[
k(x,M1) , k(x,M2) , . . . , k(x,MM )

]T
. (4)

Note that Equation 4 is similar to the sparse random feature vector proposed in the original Hilbert
Maps paper (Ramos & Ott, 2015), but with different length-scale matrices for each inducing point.
This modification naturally embeds non-stationarity into the feature vector, since different areas of
the input space are governed by their own subset of inducing points, with varying properties. To
increase efficiency, only a subset of nearest neighbors can be used for feature vector calculation,
while all others are set to zero. Indeed, this feature vector has been successfully applied to accu-
rately reconstruct large-scale 3D datasets at a fraction of the computational cost required by other
similar kernel-based techniques (Callaghan & Ramos, 2012), which makes it attractive for big data
processing.

2.3 JOINT KERNEL LEARNING

In the original implementation, the parameters {µ,Σ}i of each kernel in M are fixed and calcu-
lated based on statistical information obtained directly from D. Only the classifier weights w are
optimized during the training process, according to Equation 2. However, this approach severely
limits the descriptiveness of each kernel, especially if training data is not readily available for pre-
processing. Here we show how the HM training methodology can be reformulated to include the
optimization of all its parameters P = {µ,Σ,w}Mi=1.

The key insight is realizing that the HM framework is analogous to a neural network layer (Haykin,
1998), in which input data is described as a Gram Matrix (Hazewinkel, 2001) in relation to the
inducing setM, such that:

h = σ (KXM · w + bh) , (5)

where X = {x}Ni=1 are input points, KXM is a N ×M matrix with rows Ki = Φ(xi,M) (i.e. with
coefficients Kij = k(xi,Mj)) as defined by Equation 3, σ is the sigmoid activation function and bh
is an optional bias term. Within this alternative framework, standard back-propagation (LeCun et al.,
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(a) 20 inducing points, weight learning. (b) 20 inducing points, weight and kernel learning.

(c) 6 inducing points, weight learning. (d) 6 inducing points, weight and kernel learning.

Figure 1: 1D example of the joint learning of weights and kernels parameters. Crosses indicate data
points, dots indicate cluster centers (red for positive weights and blue for negative), horizontal lines
indicate length-scales and the magenta line indicates optimal occupancy probabilities. The cluster
centers are vertically offset purely to facilitate length-scale visualization.

1998) can be used to jointly optimize kernel parameters, using the corresponding partial derivatives:

∂k(x,Mi)

∂µi
= − diΣ

− 1
2

i√
(2π)D|Σi|

exp

(
−1

2
dT
i Σ
− 1

2
i di

)
= diΣ

− 1
2

i · k(x,Mi) (6)

∂k(x,Mi)

∂Σi
=

dT
i Σ
− 1

3
i di − 1

|Σi|√
(2π)D|Σi|

exp

(
−1

2
dT
i Σ
− 1

2
i di

)
=
(

dT
i Σ−

1
3 di −

1

|Σi|

)
· k(x,Mi), (7)

which can be efficiently calculated during feature vector generation. An example of this joint learn-
ing process can be found in Figure 1, for a simple 1D classification problem. In the left column, the
standard HM framework was used, with only weight learning, whereas in the right column kernel
parameters were also learned, using the proposed HL framework (Hilbert Layer). In the top row 20
inducing points were used, initially equally spaced, while in the bottom row only 6 inducing points
were used. Note that, for higher densities, HM converges to good results, however it fails to capture
some occupancy behaviors in lower densities, due to its smaller descriptive power. On the other
hand, HL is able to achieve considerably better results in both cases, with reasonable convergence
even in lower densities. Particularly, in Figure 1b we can see how inducing points migrate to dis-
continuous areas, thus ensuring sharper transitions, and in Figure 1d one inducing points assumed a
larger length-scale to reach a particular occupied area that was under-represented.

Lastly, note that, while the standard HM framework as described in Section 2.1 only addresses
classification tasks, the proposed joint learning methodology can be easily modified to address gen-
eral regression tasks, simply by removing the activation function σ and optimizing a different loss
function (i.e. mean squared error instead of cross-entropy).

3 CONTINUOUS CONVOLUTIONAL LAYER

In this section we show how the Hilbert layer, as defined by Equation 5, can be extended to a
convolutional scenario, in which two functions in different RKHS are convolved to produce a third
RKHS defining functions that approximate activation values. We start by formulating a closed-form
solution to the continuous convolution between kernels that describe a feature vector for projection
in the HL framework, move on to a formal definition of the Convolutional Hilbert Layer (CHL), and
lastly describe how this novel framework can be used for image classification tasks.
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3.1 CLOSED-FORM KERNEL CONVOLUTION

Convolution is a mathematical operation that takes two functions f and g and produces a third
function h = f ∗ g, that can be viewed as the amount of overlapping between both functions as one
is reversed and shifted over the other. Formally, it is defined as:

h(t) = (f ∗ g)(t) =

∫ +∞

−∞
f(t− τ)g(τ)dτ. (8)

Solving Equation 8 analytically can be a difficult (or even impossible) task for most functions that
define real-world phenomena, due to their complexity. However, as shown in Sec. 2.2, the Hilbert
Maps framework is able to approximate arbitrarily complex functions using simple kernels, by pro-
jecting input data into a high-dimensional RKHS. Although the proposed methodology can be ap-
plied to any two kernel functions with a closed-form convolution formula, for notation simplicity we
assume, without loss of generality, that the kernels describing both functions are given by Equation
3. This choice greatly simplifies the problem because the convolution of two Gaussian distributions
is also a Gaussian distribution with automatic relevance determination (Bromiley, 2003):

k(x,Mi) ∗ k(x,Mj) = k(x,Mi +Mj), (9)

whereMi +Mj = {µi + µj ,Σi + Σj}. Note that this new kernel does not model function states
in the RKHS, but rather activation values, representing convolution results between Mi and Mj ,
and can be queried at arbitrary resolutions using the HL framework described in Section 2.3. More
importantly, it can be optimized using the same training methodology, to produce better generative
or discriminative models.

3.2 CONVOLUTIONAL HILBERT LAYER

Now that convolution between kernels that define functions in the RKHS has been established, here
we show how convolution between two parameter sets Pf and Pg , each representing a different
function in its respective RKHS, is performed. Comparing to the Hilbert layer defined in Equation
5, the convolutional Hilbert Layer takes the form:

h = σ


∑
fg


wf ·



[
K1

fg

]
[
K2

fg

]
...[

KMh

fg

]


· wg


+ bh


= σ

∑
fg

(
wf ·Kfg · wg

)
+ bh

 (10)

where Kk
fg is a Mf ×Mg matrix, with coefficients Kfg = k(µk

h,Mi
f +Mj

g). Note that Kfg is
a block-matrix, so weight multiplications are performed independently for each entry before sum-
mation, which benefits the use of parallel computing for faster calculations. The output h are the
weights that approximate f ∗ g in the RKHS defined by the cluster setMh, and together these com-
pose the parameter set Ph = {Mh,h} = {µh,Σh,wh}. Pseudo-code for this convolution process
is given in Algorithm 1, where we can see how it operates: for each inducing point in Pf and Pg ,

Algorithm 1 Convolutional Hilbert Layer
Require: Input Pf and filter Pg parameter sets, convolvedMh cluster set
Ensure: Convolved Ph parameter set

1: Ph ←Mh % Convolved parameter set is initialized with cluster set values
2: wh ← 0 % Convolved parameter set weights are set to zero
3: for Pi

f ∈ Pf do
4: for Pj

g ∈ Pg do
5: for Pk

h ∈ Ph do
6: wk

h += wi
fw

j
g · k(µk

h,Mf
i +Mg

j )
7: end for
8: end for
9: end for
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(a) Input occupancy values.

(b) Filter occupancy values. (c) Convolution results between input and filter.

Figure 2: 1D example of continuous convolution between two occupancy functions. The input in
(a) is convolved with the filter in (b) to produce the convolution results depicted in (c).

their kernel convolution is calculated (Equation 9) and used to evaluate all points in Ph (Eq. 3), each
one contributing to its corresponding weight parameter wk

h. Multiple P input channels and Q filters
can be incorporated by concatenating the various Kpq

fg into a single block-matrix, while augmenting
wf and wg accordingly, such that:

H = σ

∑
fgp

(
Wf ·Kfg ·Wg

)
+ bh

 , (11)

where Kfg is a P × Q block-matrix with entries Kij = Kpq
fg , Wf =

[[
w1

f

]
, ...,

[
wP

f

]]
, Wg =[[

w1
g

]
, ...,

[
wQ

g

]]
, bh is now a Q × 1 bias vector and Ph = {Mh, H} = {µh,Σh, {w}Qq=1} con-

tains multiple weight channels defined in the same RKHS. An example of the output produced by a
convolutional Hilbert Layer, for a simple 1D classification problem, is depicted in Figure 2, along-
side the corresponding discrete convolution results. As expected, areas in the input that are similar
to the filter have higher activation values, and these vary continuously throughout the input space,
being able to capture small variations and partial matches to a higher detail than discrete convolution.

Lastly, note that pooling (Krizhevsky et al., 2012) can be naturally incorporated into the convolu-
tional Hilbert layer simply by decreasing the density of clusters in the output RKHS. This process
has two effects: 1) decrease computational cost, which allows for larger filter sizes and number of
channels while combating over-fitting; and 2) decrease the resolution of the approximated contin-
uous function, thus aggregating statistics of spatially close regions to capture patterns in a larger
scale. An un-pooling effect is similarly straightforward, generated by increasing the density of clus-
ters in the output RKHS, thus increasing the resolution of the approximated continuous function at
the expense of a larger number of parameters.

3.3 CLASSIFICATION TOPOLOGY

A diagram depicting how the proposed convolutional Hilbert layer can be applied to an image clas-
sification task, to create a Continuous Convolutional Neural Network (CCNN), is shown in Figure
3. The original image, composed of discrete data Dn = {x, yn}, with x ∈ R2 being the pixel coor-
dinates and yn = [0, 1]C0 their corresponding intensity values (C0 is the number of input channels,
i.e. 1 for grayscale and 3 for color images), is first modeled as a continuous function via projection
to a RKHS. Note that the same RKHS is used to model all input images, defined by the cluster set
Mf0, and within this projection each image is represented with a different set of model weights
Wn

f0. The resulting parameter set Pn
f is convolved with the filters contained in Pg1 to produce the

hidden feature maps Pf1, that also share the same RKHS for all input images, defined byMf1, but
with individual model weights Wn

f1. This process is repeated for each convolutional Hilbert layer,
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with the final model weights being flattened to serve as input for a standard fully connected neural
network, that performs the classification between different categories.

The convolutional trainable parameters to be optimized in this topology are the various clus-
ter sets Mf = {µ,Σ}, that define the RKHS for each feature map, and the various filter sets
Pg = {µ,Σ,W}, that perform the transformation between feature maps in each layer. Note that
each of these parameters represents a different property of the convolution process: µ defines lo-
cation, Σ defines length-scale and W defines weight, and therefore should be treated accordingly
during optimization. To guarantee positive-definitiveness in variance values, we are in fact learning
a lower triangular matrix V , such that Σ = V TV , which is assumed to be invertible (i.e. its de-
terminant is not zero, or none of its main diagonal values are zero). While this property cannot be
strictly guaranteed during the optimization process, in practice the noisy nature of stochastic gra-
dient descent naturally avoids exact values of zero for trainable parameters, and at no point during
experiments this assumption was broken.

To improve parameter initialization, we employ a continuous fully-convolutional auto-encoder
(CCAE), that first encodes data into a lower-dimensional latent feature vector representation and
then decodes it back to produce a reconstruction of the original input. Particularly, the encoding
pipeline is composed by the convolutional Hilbert layers from the classification topology, and the
decoding pipeline has these same layers in reverse order (without parameter sharing), as depicted
in Figure 4. A lower-dimensional representation is achieved by decreasing the number of clusters
used for feature map projection in deeper layers, thus simulating a pooling effect. Similarly, the
number of clusters used for filter projection can also be modified, emulating different kernel sizes in
standard discrete convolution, however since the location of these clusters is a trainable parameter
their support is inherently adaptive, only changing in complexity as more clusters are added. In all
experiments, inducing points were initialized with mean values equally spaced in the 2D space and
with the same variance value, so that the distance between mean values is equal to two standard
deviations (weight values were initialized randomly, using a truncated Gaussian distribution with
mean 0 and variance 0.1).

4 EXPERIMENTAL RESULTS

Here we present and discuss experimental results performed to validate the proposed convolutional
Hilbert layer in an image classification scenario1. Four different standard benchmarks were consid-
ered: the MNIST dataset, composed of 60000 training and 10000 test images with dimensionality
28× 28× 1; the CIFAR-10 dataset, composed of 50000 training and 10000 test images with dimen-
sionality 32 × 32 × 3; the STL-10 dataset, composed of 5000 training and 8000 tests images with
dimensionality 96 × 96 × 3 plus 100000 unlabeled images; and the SVHN dataset, composed of
604388 training and 26032 test images with dimensionality 32× 32× 3. No preprocessing or data
augmentation of any kind was performed in these datasets during training or test phases.

1A Tensorflow demo is available at [link removed to ensure anonymity].

Figure 3: Diagram of a 2-layer CCNN for image classification.
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Figure 4: Diagram of a 2-layer CCAE for image reconstruction and unsupervised parameter initial-
ization.

Examples of reconstruction results for the MNIST and CIFAR-10 datasets, using the proposed HL
framework, are depicted in Figure 5. These results were obtained by projecting all images from each
dataset into the same input RKHS, defined by the cluster setMf0, and producing the weight parame-
ters Wn

f0 individual to each image (for RGB images, each channel was treated independently). Both
the cluster set parameters and individual model weights were optimized using the proposed joint
learning methodology from Section 2.3, to minimize the squared reconstruction error. Once train-
ing was complete, these parameters served as input for a continuous convolutional neural network
(CCNN) for image classification, in which each projected image is mapped to its corresponding label
via cross-entropy minimization and a softmax activation function in the output layer (see Figure 3).
To initialize the convolutional parameters of this network, a continuous convolutional auto-encoder
(CCAE) was used, mirroring convolutional layers to produce a final reconstruction of the original
input, via direct squared error minimization over the discretized output (see Figure 4).

To test the expressiveness of the proposed continuous feature maps, we compared CCNN image
classification results against the standard DCNN (Discrete Convolutional Neural Network) architec-
ture, in the special case when very few filters are used (here, ranging from 1 to 20, with size 3 × 3
for discrete and 9 clusters for continuous). A single convolutional layer was used, followed by a
fully-connected layer with 200 nodes and the output layer (no dropout or regularization of any sort
was used). Classification results for the MNIST dataset are depicted in Figure 6, where we can see
that a single continuous filter is able to achieve better overall results than all twenty discrete filters,
both in training and test accuracy. Interestingly, while a single discrete filter actually achieves worst
loss function training values than a straightforward fully connected neural network (FCNN) with-
out convolutional layers, a single continuous filter continues to improve the loss function over time,
which was still decreasing after the alloted number of iterations. We also noticed less over-fitting,

(a) MNIST dataset

(b) CIFAR-10 dataset

Figure 5: Examples of data used during experiments. The top row shows the original images, and
the bottom row shows their corresponding reconstructions using the proposed HL framework.
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(a) Loss Function (Training) (b) Accuracy (Training)

(c) Loss Function (Testing) (d) Accuracy (Testing)

Figure 6: Comparison between classification results for the MNIST dataset, using different tech-
niques. Lines indicate average values from 20 independent runs, and shades indicate min-max values
between all runs.

as it can be shown by loss function values for testing data, that started to consistently increase for
DCNN after a certain number of training iterations, while CCNN was able to maintain lower values
throughout the entire training process. Furthermore, we can see that CCNN produces much larger
ranges of loss function values both for training and testing data, indicating that the choice of ini-
tial parameter values play a more significant role during the optimization process, especially when
fewer filters are considered (which is to be expected, since they are able to capture a larger range
of patterns to use during the convolution process). Examples of convolutional filters obtained in
these experiments are depicted in Figure 7, where we can see their variability and ability to model
different patterns that will be useful during the classification process.

Classification results, in terms of percentual test accuracy error, for the three datasets considered
here are presented in Tables 1-4, in relation to other image classification techniques found in the lit-
erature. The same CCNN architecture was used in all cases, composed of three convolutional layers
with 20-40-60 filters of sizes 25-16-9 and pooling ratios of 2-3-4 in relation to input data dimen-

Figure 7: Examples of CCNN filters for the MNIST dataset.
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Method Acc.
Frac. Max-Pooling (Graham, 2015) 99.68

CCNN (CCAE init.) 99.63
Conv. Kernel Net. (Mairal et al., 2014) 99.61

Maxout Net. (Goodfellow et al., 2013) 99.55

CCNN (random init.) 99.51
PCANet (Chan et al., 2014) 99.38

Table 1: MNIST results.

Method Acc.
Frac. Max-Pooling (Graham, 2015) 96.53

Maxout Net. (Goodfellow et al., 2013) 90.65

CCNN (CCAE init.) 87.48
Conv. Kernel Net. (Mairal et al., 2014) 82.18

CCNN (random init.) 81.95
PCANet (Chan et al., 2014) 78.67

Table 2: CIFAR-10 results.

Method Acc.
Multi-Task Bayes (Swersky et al., 2013) 70.10

C-SVDDNet (Wang et al., 2014) 68.23

CCNN (CCAE init.) 63.81
Conv. Kernel Net. (Mairal et al., 2014) 62.32

Disc. Learning (Gens et al., 2012) 62.30

Pooling Invariant (Jia et al., 2012) 58.28

Table 3: STL-10 results.

Method Acc.
ReNet (Visin et al., 2015) 97.62

Maxout Net. (Goodfellow et al., 2013) 97.53

Stoch. Pooling (Zeiler et al., 2013) 97.02

CCNN (CCAE init.) 96.27
Shallow CNN (McDonnell et al., 2015) 96.02

CCNN (random init.) 93.48

Table 4: SVHN results.

sionality, followed by two fully-connected layers with 512-1024 nodes and 0.5 dropout (Srivastava
et al., 2014). Note that this architecture is much simpler than the ones presented by networks capa-
ble of achieving state-of-the-art classification results in these datasets, possessing a total of 144596
convolutional parameters, 588 + 261 + 147 = 996 of which define the intermediary RKHS for
feature maps representation and the remaining 6000 + 51200 + 86400 = 143600 representing the
filters within these RKHS. Nevertheless, we can see that the proposed convolutional Hilbert layer is
able to achieve competitive results in all three datasets, even with such shallow and narrow architec-
ture, which further exemplifies the descriptive power of a continuous representation when applied
in conjunction with the convolution operation. Particularly, the introduction of unsupervised pre-
training, using the proposed CCAE architecture to generate initial parameter estimates, significantly
improves accuracy results.

5 CONCLUSION

This paper introduced a novel technique for data representation that takes place in a high-
dimensional Reproducing Kernel Hilbert Space (RKHS), where arbitrarily complex functions can be
approximated in a continuous fashion using a series of simple kernels. We show how these kernels
can be efficiently convolved to produce approximations of convolution results between two functions
in different RKHS, and how this can be applied in an image classification scenario, via the intro-
duction of a novel deep learning architecture entitled Continuous Convolutional Neural Networks
(CCNN). Experimental tests using standard benchmark datasets show that this proposed architecture
is able to achieve competitive results with much smaller network sizes, by focusing instead on more
descriptive individual filters that are used to extract more complex patterns. Although promising,
there are still several potential improvements that are left for future work, such as: RKHS sparsi-
fication, so only a subset of clusters are used for feature vector calculation, which would greatly
improve computational speed and memory requirements; different learning rates and optimization
strategies for each class of parameter (cluster location, length-scale and weight), to improve conver-
gence rates; and the use of different kernels for feature vector representation, as a way to encode
different properties in the resulting feature maps.
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