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ABSTRACT

Negative transfer – a special type of transfer learning – refers to the interference
of the previous knowledge with new learning. In this research, through an em-
pirical study, we demonstrate the futile defence to the negative transfer via con-
ventional neural network based transfer techniques, i.e., mid-level feature extrac-
tion and knowledge distillation. Under a finer specification of transfer learning,
we speculate the real culprits of negative transfer are the incongruence on task
and model complexity and the ordering of learning. Based on this speculation,
we propose a tentative transfer learning technique, i.e., cross generative initial-
isation, to sidestep the negative transfer. The effectiveness of cross generative
initialisation was evaluated empirically.

1 UNAVAILING KNOWLEDGE TRANSFER IN NEGATIVE TRANSFER

In inductive transfer learning (Pan & Yang, 2010), learning a target task is benefited by the trans-
ferred knowledge from a previous learned task, i.e., a source task. In neural network based transfer
learning, the extracted mid-level features are served as the knowledge to transfer. The production of
these transferable features is accomplished by running forward propagation of a trained neural net-
work (Oquab et al., 2014). To optimise the usage of extracted features in transfer learning, Hinton
et al (Hinton et al., 2015) proposed a knowledge distillation technique to allow the compression of
a cumbersome model to a compact one. The distilled knowledge, i.e., the cross entropy loss of a
learned neural network, is augmented to fine-tune a to-be-learned neural network.

However, both techniques are futile in a special case of transfer learning: negative transfer. Neg-
ative transfer – a term borrowed from cognitive science – occurs in a situation where the prior
learning of a source task interferes with the later learning of a target task (Pan & Yang, 2010). To
formalise our discussion on negative transfer, considering two sequentially to-be-learned tasks with
varying degrees of complexity; e.g., T1 (a complex task) and T2 (a simple task), we then assign
two corresponding models, e.g., M1 (a cumbersome model) and M2 (a compact model) to learn the
foregoing tasks. Dependent upon the congruence on task and model complexity and the learning
sequence, there are four distinctive transfer learning cases, i.e., T1D1 → T2M2; T1M2 → T2M1;
T2M1 → T1M2; T2M2 → T1M1. 1

As demonstrated in Table 1, negative transfer can only be circumvented in which the congruence
on model and task complexity is high, and the ordering of learning is followed as complex to sim-
ple, i.e., T1M1 → T2M2. In other three cases, both mid-level feature extraction and knowledge
distillation techniques failed to sidestep the negative transfer.

1→ denotes the direction of knowledge transfer, e.g., T1D1 → T2M2 means the knowledge is extracted
from a prior learning of a complex task through a cumbersome model, then transferred to assist the learning of
a simple task through a compact model.
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Table 1: Failed transfer learning techniques in negative transfer

Transfer From. T1M1 T2M1 T1M2 T2M2
Transfer To. T2M2 T1M2 T2M1 T1M1
Transfer Means Testing Accuracy (%)

Mid-level Feature Extraction 94.00±0.56 68.15±1.10 95.76±0.14 33.60±3.31
Knowledge Distillation 98.25±0.09 95.13±0.07 98.19±0.01 94.97±0.23
Without Transfer Benchmark 97.03±0.02 95.06±0.01 98.68±0.02 97.65±0.03

In Experiment 1, T1: a multiclass classification task (MNIST 0-7); T2: a binary classification task (MNIST
8-9); M1: a relative deep neural network (five hidden layers); M2: a relative shallow neural network (one
hidden layer). We ran each technique 10 times on above-mentioned four cases. The negative transfer is
defined as the attenuated performance on the transferred target task compare to the benchmark, i.e., the
learning without transfer.

2 CROSS GENERATIVE INITIALISATION TO SIDESTEP NEGATIVE TRANSFER

2.1 CROSS GENERATIVE INITIALISATION

Different to early researches on negative transfer, which focused on the task relatedness (Lee et al.,
2016) (Mahmud & Ray, 2008), based on our observations in Experiment 1, we propose a Bayesian
neural network (BNN) based transfer learning technique, i.e., cross generative initialisation, to al-
low the transferred knowledge to be tuned with the congruence between task and model complexity.

①

②

Figure 1: Thumbnail sketch of cross generative initialisation.

In Figure 1, two BNNs, e.g., a compact and a cumbersome BNN, are
distinguished by different colours (amber and cyan). For the illustrative
purposes, this sketch only depicts the case in T1D1 → T2M2. The
employed GMM in the generative initialisation stage (cf. 2©) receives
two inputs. One is the copy of bootstrapped weights from a target BNN,
the other is the posterior weights from a trained source BNN.

In a nutshell, the proposed cross generative initialisation is a two-stage initialisation process, i.e.,
cross and generative initialisation. As demonstrated in Figure 1, the initial cross initialisation (cf.
1© in Figure 1) ensures a source BNN is initialised by the non-parametric bootstrapping (Rubin,

1981) on a target BNN. In the sequential generative initialisation stage (cf. 2© in Figure 1), it treats
the variational inferred (Wainwright et al., 2008) posterior weights of a source BNN as an input to
a generative model, e.g., a Gaussian mixture model (GMM). The employed GMM is then trained to
generate the final transferrable weights in fine-tuning the target BNN. In practice, two GMMs are
used separately in generating different transferrable weights for middle and classification layers of
the target BNN. The pseudo-code for cross generative initialisation is delineated in Algorithm 1.
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Algorithm 1 Cross Generative Initialisation
INPUT: Ds: the training dataset for the source task, M : the number of bootstrapping points
OUTPUT: θt: the parameters in the target model

1: procedure CROSS GENERATIVE INIT(Ds; M )
2: function Generative Init(Ds)
3: for ds ∈ Ds do
4: Initialise: θinits : initialise the parameters in the source model
5: function Cross Init(M )
6: for m ∈M do
7: θbbt : non-parametric bootstrapped on the target model
8: θinits ← θbbt
9: end for

10: return θinits ; θbbt
11: end function
12: θs ← (θs|θinits , ds) : inferred parameters in the source model based on training

samples and bootstrapped parameters in the target model
13: end for
14: function GMM(X)
15: X ← concatenate(θbbt ; θs)
16: for x ∈ X do
17: θt ← GMM(x): generate the transferrable parameters in a trained GMM
18: end for
19: return θt
20: end function
21: return θt
22: end function
23: end procedure

2.2 PRELIMINARY EMPIRICAL VALIDATION

To validate our proposed cross generative initialisation, we pitted it against the benchmark, i.e.,
the without transfer learning case. The experimental set-ups inherited straightforwardly from the
Experiment 1. From the results depicted in Table 2, our proposed cross generative initialisation is
proved to circumvent the negative transfer.

Table 2: Cross generative initialisation in negative transfer

Transform From. T1M1 T2M1 T1M2 T2M2
Transform To. T2M2 T1M2 T2M1 T1M1
Transfer Means Testing Accuracy (%)

Cross Generative Initialisation 98.48±0.08 94.70±0.20 97.52±0.09 93.03±0.11
Without Transfer Benchmark 97.68± 0.02 94.69± 0.01 97.32±0.01 88.97± 0.02

In Experiment 2, T1: a multiclass classification task (MNIST 0-7); T2: a binary classification task (MNIST
8-9); M1: a five layer Bayesian neural network with normal prior; M2: a three layer Bayesian neural network
with normal prior

3 CONCLUSIONS

As a special case of transfer learning, negative transfer has been rarely studied. In this short article,
we show the failed conventional transfer learning techniques in defending the negative transfer.
Based on the observations in Experiment 1, we propose a tentative approach – cross generative
initialisation – to sidestep the negative transfer. In future research, the theoretical aspects of this
proposed cross generative initialisation will be fully explored.
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