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ABSTRACT

A key challenge of existing program synthesizers is ensuring that the synthesized
program generalizes well. This can be difficult to achieve as the specification
provided by the end user is often limited, containing as few as one or two input-
output examples. In this paper we address this challenge via an iterative approach
that finds ambiguities in the provided specification and learns to resolve these by
generating additional input-output examples. The main insight is to reduce the
problem of selecting which program generalizes well to the simpler task of decid-
ing which output is correct. As a result, to train our probabilistic models, we can
take advantage of the large amounts of data in the form of program outputs, which
are often much easier to obtain than the corresponding ground-truth programs.

1 INTRODUCTION

Over the years, program synthesis has been applied to a wide variety of different tasks including
string, number or date transformations (Gulwani, 2011; Singh & Gulwani, 2012; 2016; Ellis et al.,
2019; Menon et al., 2013; Ellis & Gulwani, 2017), layout and graphic program generation (Bielik
et al., 2018; Hempel & Chugh, 2016; Ellis et al., 2019; 2018), data extraction (Barowy et al., 2014;
Le & Gulwani, 2014; Iyer et al., 2019), superoptimization (Phothilimthana et al., 2016; Schkufza
et al., 2016), code repair (Singh et al., 2013; Nguyen et al., 2013; D’Antoni et al., 2016), language
modelling (Bielik et al., 2017), synthesis of data processing programs (Polosukhin & Skidanov,
2018; Nye et al., 2019) or semantic parsing Shin et al. (2019a). To capture user intent in an easy
and intuitive way, many program synthesizers let its users provide a set of input-output examples I
which the synthesized program should satisfy.

Generalization challenge A natural expectation of the end user in this setting is that the synthe-
sized program works well even when I is severely limited (e.g., to one or two examples). Because
of this small number of examples and the big search space of possible programs, there are often
millions of programs consistent with I. However, only a small number of them generalizes well to
unseen examples which makes the synthesis problem difficult.

Existing methods Several approaches have provided ways to address the above challenge, in-
cluding using an external model that learns to rank candidate programs returned by the synthesizer,
modifying the search procedure by learning to guide the synthesizer such that it returns more likely
programs directly, or neural program induction methods that replace the synthesizer with a neural
network to generate outputs directly using a latent program representation. However, regardless of
what other features these approaches use, such as conditioning on program traces (Shin et al., 2018;
Ellis & Gulwani, 2017; Chen et al., 2019) or pre-training on the input data (Singh, 2016), they are
limited by the fact that their models are conditioned on the initial, limited user specification.

This work We present a new approach for program synthesis from examples which addresses
the above challenge. The key idea is to resolve ambiguity by iteratively strengthening the initial
specification I with new examples. To achieve this, we start by using an existing synthesizer to find
a candidate program p1 that satisfies all examples in I. Instead of returning p1, we use it to find a
distinguishing input x∗ that leads to ambiguities, i.e., other programs pi that satisfy I but produce
different outputs p1(x∗) 6= pi(x

∗). To resolve this ambiguity, we first generate a set of candidate
outputs for x∗, then use a neural model (which we train beforehand) that acts as an oracle and selects
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Figure 1: An overview of our approach which introduces a refinement loop around a black-box
synthesizer that incrementally extends the input specification I = {(x1, y1)}, which in this case
contains a single example, with additional input-output examples until all ambiguities are resolved.

the most likely output, and finally, add x∗ and its predicted output to the input specification I. The
whole process is then repeated. These steps are similar to those used in Oracle Guided Inductive
Synthesis (Jha et al., 2010) with two main differences: (i) we automate the entire process by learning
the oracle from data instead of using a human oracle, and (ii) as we do not use a human oracle to
produce a correct output, we need to ensure that the set of candidate outputs contains the correct one.

Augmenting an existing Android layout synthesizer In this work we apply our approach to a
state-of-the-art synthesizer, called InferUI (Bielik et al., 2018), that creates an Android layout
program which represents the implementation of a user interface. Given an application design con-
sisting of a set of views (e.g., buttons, images, text fields, etc.) and their location on the device
screen, InferUI synthesizes a layout program that when rendered, places the views at that same
location. Concretely, each input-output example (x, y) consists of a device screen x ∈ R4 and a set
of n views y ∈ Rn×4, all of which are represented using their coordinates in a two dimensional
euclidean space. As an example, the input specification I shown in Figure 1 contains a single ex-
ample with absolute view positions for a Nexus 4 device and the InferUI synthesizer easily finds
multiple programs that satisfy it (dashed box). To apply our method and resolve the ambiguity, we
find a distinguishing input x∗, in this case a narrower P4 Pro device, on which some of the candidate
programs produce different outputs. Then, instead of asking the user to manually produce the cor-
rect output, we generate additional candidate outputs (to ensure that the correct one is included) and
our learned neural oracle automatically selects one of these outputs (the one it believes is correct)
and adds it to the input specification I. In this case, the oracle selects output p2(x∗) as both buttons
are correctly resized and the distance between them was reduced to match the smaller device width.
In contrast, p1(x∗) contains overlapping buttons while in pn(x∗), only the left button was resized.

Automatically obtaining real-world datasets An important advantage of our approach is that
we reduce the problem of selecting which program generalizes well to the simpler task of deciding
which output is correct. This is especially useful for domains, such as the Android layout synthesis,
for which the output correctness depends mostly on properties of the output and not on the program
used to generate it. As a result, obtaining a suitable training dataset can be easier as we do not
require the hard to obtain ground-truth programs, for which currently no large real-world datasets
exist (Shin et al., 2019b). In fact, it is possible to train the oracle using unsupervised learning only,
with a dataset consisting of correct input-output examples DU . For example, in layout synthesis an
autoencoder can be trained over a large number of views and their positions extracted from running
real-world applications. However, instead of training such an unsupervised model, in our work we
useDU to automatically construct a supervised datasetDS by labelling the samples inDU as positive
and generating a set of negative samples by adding suitable noise to the samples in DU . Finally, we
also obtain the dataset DS+ that additionally includes the input specification I. In the domain of
Android layouts, although it is more difficult, such a dataset can also be collected automatically by
running the same application on devices with different screen sizes.
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Our contributions We present a new approach to address the ambiguity in the existing Android
layout program synthesizer InferUI by iteratively extending the user provided specification with
new input-output examples. The key component of our method is a learned neural oracle used to
generate new examples trained with datasets that do not require human annotations or ground-truth
programs. To improve generalization, InferUI already contains a probabilistic model that scores
programs q(p | I) as well as handcrafted robustness properties, achieving 35% generalization accu-
racy on a dataset of Google Play Store applications. In contrast, our method significantly improves
the accuracy to 71% while using a dataset containing only correct and incorrect program outputs.
We make our implementation and datasets available online at:

https://github.com/eth-sri/guiding-synthesizers

2 RELATED WORK

In this section we discuss the work most closely related to ours.

Guiding program synthesis To improve scalability and generalization of program synthesizers
several techniques have been proposed that guide the synthesizer towards good programs. The
most widely used approach is to implement a statistical search procedure which explores candidate
programs based on some type of learned probabilistic model – log-linear models (Menon et al., 2013;
Long & Rinard, 2016), hierarchical Bayesian prior (Liang et al., 2010), probabilistic higher order
grammar (Lee et al., 2018) or neural network (Balog et al., 2017; Sun et al., 2018). Kalyan et al.
(2018) also takes advantage of probabilistic models but instead of implementing a custom search
procedure, they use the learned model to guide an existing symbolic search engine. In addition to
approaches that search for a good program directly (conditioned on the input specification), a number
of works guide the search by first selecting a high-level sketch of the program and then filling in the
holes using symbolic (Ellis et al., 2018; Murali et al., 2017; Nye et al., 2019), enumerative or neural
search (Bosnjak et al., 2017; Gaunt et al., 2016). A similar idea is also used by (Shin et al., 2018),
but instead of generating a program sketch the authors first infer execution traces (or condition on
partial traces obtained as the program is being generated (Chen et al., 2019)), which are then used
to guide the synthesis of the actual program.

In comparison to prior work, a key aspect of our approach is to guide the synthesis by generating
additional input-output examples that resolve the ambiguities in the input specification. Guiding the
synthesizer in this way has several advantages – (i) it is interpretable and the user can inspect the
generated examples, (ii) it can be used to extend any existing synthesizer by introducing a refinement
loop around it, (iii) the learned model is independent of the actual synthesizer (and its domain
specific language) and instead is focused only on learning the relation between likely and unlikely
input-output examples, and (iv) often it is easier to obtain a dataset containing program outputs
instead of a dataset consisting of the actual programs. Further, our approach is complementary to
prior works as it treats the synthesizer as a black-box that can generate candidate programs. We also
note that several prior works explore the design of sophisticated neural architectures that encode
input-output examples (Sun et al., 2018; Devlin et al., 2017; Parisotto et al., 2017) and incorporating
some of their ideas might lead to further improvements to our models presented in Section 4.

Learning to rank To choose among all programs that satisfy the input specification, existing pro-
gram synthesizers select the syntactically shortest program (Liang et al., 2010; Polozov & Gulwani,
2015; Raychev et al., 2016), the semantically closest program to a reference program (D’Antoni
et al., 2016) or a program based on a learned scoring function (Liang et al., 2010; Mandelin et al.,
2005; Singh & Gulwani, 2015; Ellis & Gulwani, 2017; Singh, 2016). Although the scoring function
usually extracts features only from the synthesized program, some approaches also take advantage of
additional information – Ellis & Gulwani (2017) trains a log-linear model using a set of handcrafted
features defined over program traces and program outputs while Singh (2016) leverages unlabelled
data by learning common substring expressions shared across the input data.

Similar to prior work, our work explores various representations over which the model is learned.
Because we applied our work to a domain where outputs can be represented as images (rather than
strings or numbers), to achieve good performance we explore different types of models (i.e., convo-
lutional neural networks). Further, we do not assume that the synthesizer can efficiently enumerate
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all programs that satisfy the input specification as in Ellis & Gulwani (2017); Singh (2016). For such
synthesizers, applying a ranking of the returned candidates will often fail since the correct program
is simply not included in the set of synthesized programs. Therefore, the neural oracle is defined
over program outputs instead of actual programs. This reduces the search space for the synthesizer
as well as the complexity of the machine learning models.

Neural program induction Devlin et al. (2017) and Parisotto et al. (2017), as well as related line
of work on neural machines (Graves et al., 2016; Reed & de Freitas, 2016; Bošnjak et al., 2017;
Chen et al., 2018), explore the design of end-to-end neural approaches that generate the program
output for a new input without the need for an explicit search. In this case the goal of the neural
network is not to find the correct program explicitly, but rather to generate the most likely output
for a given input based on the input specification. These approaches can be integrated in our work
as one technique for generating a set of candidate outputs for a given distinguishing input instead
of obtaining them using a symbolic synthesizer. However, the model requirements in our work are
much weaker – it is enough if the correct output is among the top n most likely candidates rather
than requiring 100% precision for all possible inputs as in program induction.

3 LEARNING TO GENERATE NEW INPUT-OUTPUT EXAMPLES

Let I={(xi, yi)}Ni=1 denote the input specification consisting of user provided input-output exam-
ples. Further, assume we are given an existing synthesizer which can find a program p satisfying all
examples in I, i.e., ∃p ∈ L,∀(xi, yi) ∈ I. p(xi)=yi, where p(xi) is the output obtained by running
program p on input xi and L is a hypothesis space of valid programs. To reduce clutter, we use the
notation p |= I to denote that p satisfies all examples in I. We extend the synthesizer such that
a program p not only satisfies all examples in I but also generalizes to unseen examples as follows:

1. Generate a candidate program p1 |= I that satisfies the input specification I.

2. Find a distinguishing input x∗, a set of programs p2, . . . , pn that satisfy the input specifica-
tion I but produce different outputs when evaluated on x∗, and define candidate outputs as
y={p1(x∗), p2(x∗), · · · , pn(x∗)}. If no distinguishing input x∗ exists, return program p1.

3. Query an oracle to determine the correct output y∗ ∈ y for the input x∗.

4. Extend the input specification with the distinguishing input and its corresponding output
I ← I ∪ {(x∗, y∗)} and continue with the first step.

Finding a distinguishing input To find the distinguishing input x∗ we take advantage of existing
symbolic synthesizers by asking the synthesizer to solve ∃x∗∈X , p2∈L. p2 |=I∧p2(x∗) 6= p1(x

∗),
where X denotes a set of valid inputs. The result is both a distinguishing input x∗ as well as
a program p2 that produces a different output than p1. Programs p1 and p2 form the initial sequence
of candidate outputs y=[p1(x

∗); p2(x
∗)] which is extended until the oracle is confident enough that

y contains the correct output (described later in this section).

To make our approach applicable to any existing synthesizer, including those that can not solve the
above satisfiability query directly (e.g., statistical synthesizers), we note that the following sampling
approach can also be applied: first, use the synthesizer to generate the top n most likely programs,
then randomly sample a valid input x∗ not in the input specification, and finally check if that input
leads to ambiguities by computing the output of all candidate programs.

Finding candidate outputs To extend y with additional candidate outputs once the distinguishing
input x∗ is found, three techniques can be applied: (i) querying the synthesizer for another program
with a different output: ∃p ∈ L. p |= I ∧∀yi∈yp(x∗) 6= yi, (ii) sampling a program induction model
P (y | x∗, I) and using the synthesizer to check whether each sampled output is valid, or (iii) simply
sampling more candidate programs, running them on x∗ and keeping the unique outputs. It is pos-
sible to use the second approach as we are only interested in the set of different outputs, rather than
the actual programs. The advantage of (i) is that it is simple to implement for symbolic synthesizers
and is guaranteed to find different outputs if they exist. In contrast, (ii) has the potential to be faster
as it avoids calling the synthesizer and works for both statistical and symbolic synthesizers. Finally,
(iii) is least effective, but it does not require pretraining and can be applied to any synthesizer.
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Neural oracle The key component of our approach is a neural oracle which selects the cor-
rect program output from a set of candidate outputs y. Formally, the neural oracle is defined
as argmaxy∗∈y fθ(3 | x∗, y∗, I), where f is a function with learnable parameters θ (in our
case a neural network) that returns the probability of the output y∗ being correct given the in-
put x∗ and the input specification I. We train the parameters θ using a supervised dataset
DS+ = {(3, xi, yi, Ii)}Ni=1 ∪ {(7, xj , yj , Ij)}Mj=1 which, for a given distinguishing input x∗ and
input specification I, contains both the correct (3) as well as the incorrect (7) outputs. Because it
might difficult to obtain such a dataset in practice, we also define a simpler model fθ(3 | x∗, y∗)
that is trained using a supervised dataset DS = {(3, xi, yi)}Ni=1 ∪ {(7, xj , yj)}Mj=1 which does not
include the input specification. In the extreme case, where the dataset contains only the correct input-
output examples DU = {(xi, yi)}Ni=1, we define the oracle as fθ(y∗ | x∗). Even though the dataset
does not contain any labels, we can still train f in an unsupervised manner. This can be achieved
for example by splitting the output into smaller parts yi = y1i · · · yti (such as splitting a word into
characters) and training f as an unsupervised language model. Alternatively, we could also train an
autoencoder that first compresses the output into a lower dimensional representation, with the loss
corresponding to how well it can be reconstructed. To achieve good performance, the architecture
used to represent f is tailored to the synthesis domain at hand, as discussed in the next section.

Dynamically controlling the number of generated candidate outputs Since generating a large
number of candidate outputs is time consuming, we allow our models to dynamically control the
number of sampled candidates for each distinguishing input x∗. That is, instead of generating all
candidate outputs y first and only then querying the neural oracle to select the most likely one,
we query the oracle after each generated candidate output and let the model decide whether more
candidates should be generated. Concretely, we define a threshold hyperparameter t ∈ R[0,1] which
is used to return the first candidate output y∗ for which the probability of the output being correct is
above this threshold. Then, only if there are no candidate outputs with probability higher that t, we
return argmax of all the candidates. Note for t= 1 this formulation is equivalent to returning the
argmax of all the candidates while for t = 0, it corresponds to always returning the first candidate,
regardless of its probability of being correct. We show the effect of different threshold values as well
as the number of generated candidate outputs in Section 5.

4 INSTANTIATION OF OUR APPROACH TO ANDROID LAYOUT SYNTHESIS

In this section we describe how to apply our approach to the existing Android layout program syn-
thesizer InferUI (Bielik et al., 2018). Here, the input x∈R4 defines the absolute positions of the
top left and bottom right coordinates of a given device screen while the output y∈Rn×4 consists of
n views and their absolute positions.

Finding a distinguishing input and candidate outputs Because InferUI uses symbolic search,
finding a distinguishing input and candidate outputs is encoded as a logical query solved by the syn-
thesizer as described in Section 3. However, instead of synthesizing the layout program containing
correct outputs of all the views at once (as done in InferUI), we run the synthesizer n times, each
time predicting the correct output for only a single view (starting from the largest view) which is then
added as an additional input-output example (we provide a concrete example in Appendix C.4). This
is necessary since there are exponentially many combinations of the view positions when consider-
ing all the views at once and the InferUI synthesizer is not powerful enough to include the correct
one in the set of candidate outputs (e.g., for samples with more than 10 views in less than 4%). The
advantage of allowing the position of only a single view to change, while fixing the position of all
prior views, is that the correct candidate output is much easier to include. The disadvantage is that
the neural oracle only has access to partial information (consisting of the prior view positions) and
therefore performs a sequence of greedy predictions rather than optimizing all view positions jointly.

Neural oracle Because the input x has the same dimensions as each view, we encode it as an addi-
tional view in all our network architectures. In Figure 2 we show three different neural architectures
that implement the oracle function f , each of which uses a different way to encode the input-output
example into a hidden representation followed by a fully-connected ReLU layer and a softmax that
computes the probability that the output is correct. In the following, we describe the architecture of
all the models. The formal feature definitions are included in Appendix A.
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Figure 2: Illustration of three different models used to implement the neural oracle – CNN, RNN and
MLP. All models include a fully-connected ReLU layer and a softmax layer (not shown in the image)
which computes the probability that the output y is correct. Note, that the features in the MLP model
are shown unnormalized, that is, centered = 3 denotes that three views are centered.

In (CNN), the output is converted to an image (each view is drawn as a rectangle with a 1px black
border on a white background) and used as an input to a convolutional neural network (CNN) with
3 convolutional layers with 5×5 filters of size 64, 32 and 16 and max pooling with kernel size 2 and
stride 2. To support outputs computed for different screen sizes, the image dimensions are slightly
larger than the largest device size. We regularize the network during training by positioning the
outputs with a random offset such that they are still fully inside the image, instead of placing them
in the center. This is possible as the image used as input to the CNN is larger than the device size.
We provide visualization of this regularization in Appendix C.2.

In (MLP), the output is transformed to a normalized feature vector and then fed into a feedforward
neural network with 3 hidden layers of size 512 with ReLU activations. To encode the properties of
a candidate output y, we use high-level handcrafted features adapted from InferUI such as the num-
ber of view intersections or whether the views are aligned or centered. By instantiating the features
for both horizontal and vertical orientation we obtain a vector of size 30, denoted as ϕMLP(x

∗, y∗),
which is used as input to the neural network. For the model f(3 | x∗, y∗, I) the network input
is a concatenation of output features (as before) ϕMLP(x

∗, y∗), features of each sample in the input
specification [ϕMLP(x, y)](x,y)∈I , and their difference [ϕMLP(x

∗, y∗)−ϕMLP(x, y)](x,y)∈I . This differ-
ence captures how the views have been resized or moved between the devices with different screen
dimensions. This allows the model to distinguish between outputs that are all likely when considered
in isolation but not when also compared to examples in I (as illustrated in Appendix C.3).

In (RNN), we use the fact that each output consists of a set of views y∗ = [v1; . . . ; vn] by using an en-
coder to first compute a hidden representation of each view. These are then combined with a LSTM
to compute the representation of the whole output. To encode a view vi, we extract pairwise feature
vectors with all other views (including the input) ϕRNN(vi, x

∗, y∗) = [φ(vi, vj)]vj∈{x∗}∪y∗\vi and
combine them using a LSTM. Here, φ : R4 × R4 → Rn is a function that extracts n real valued
features from a pair of views. For each pair of views, we apply 11 simple transformations of the
view coordinates, capturing their distance (4 vertical, 4 horizontal), the size difference (in width and
height) and the ratio of the aspect ratios. For the model f(3 | x∗, y∗) we additionally use 17 high-
level features computed for each view that are adapted from InferUI. When using f(3 | x∗, y∗, I),
these additional high-level features are not required and instead we only use the 11 simple transfor-
mations combined in the same way as for the MLP model. That is, by concatenating ϕRNN(vi, x

∗, y∗),
[ϕRNN(vi, x, y)](x,y)∈I and their difference [ϕRNN(vi, x

∗, y∗)− ϕRNN(vi, x, y)](x,y)∈I .

Datasets To train our models we obtained three datasets DU , DS and D+
S , each containing an

increasing amount of information at the expense of being harder to collect.

The unsupervisedDU = {(xi, yi)}Ni=1 is the simplest dataset and contains only positive input-output
samples obtained by sampling ≈ 22, 000 unique screenshots (including the associated metadata of
all the absolute view positions) of Google Play Store applications taken from the Rico dataset (Deka
et al., 2017). Since the screenshots always consist of multiple layout programs combined together,
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Table 1: Generalization accuracy of the existing InferUI synthesizer.

InferUI p |= I argmaxp|=I q(p | I) argmaxp|=I∧φ(p) q(p | I)
(Bielik et al., 2018) baseline + probabilistic model + probabilistic & robustness model

Accuracy 15.5% 24.7% 35.2%

we approximate the individual programs by sorting the views in decreasing order of their size and
taking a prefix of random length (of up to 30 views). For all of the datasets, we deduplicate the
views that have the same coordinates and filter out views with a negative width or height.

The supervisedDS = {(3, xi, yi)}(xi,yi)∈DU
∪
{⋃≤15

j=1{(7, xi, yi+ εij)}
}
(xi,yi)∈DU

contains both
correct and incorrect input-output examples. In our work this dataset is produced synthetically from
DU by extending it with incorrect samples. Concretely, the positive samples correspond to those
in the dataset DU and for each positive sample we generate up to 15 negative samples by applying
a transformation εij to the correct output. The transformations considered in our work are sampled
from the common mistakes the synthesizer can make – resizing a view, shifting a view horizontally,
shifting a view vertically or any combination of the above.

The supervised dataset isDS+ = {(3, xi, yi, Ii)}Ni=1∪{(7, xj , yj , Ij)}Mj=1, where each Ii contains
the same application rendered on multiple devices. We downloaded the same applications as used
in the Rico dataset from the Google Play Store and executed them on three Android emulators with
different device sizes. The number of valid samples is ≈ 600 since not all applications could be
downloaded, executed or produced the same set of views (or screen content) when executed on three
different devices. The negative examples are generated by running the synthesizer with the input
specification I containing a single sample and selecting up to 16 outputs that are inconsistent with
the ground-truth output for the other devices.

5 EVALUATION

We evaluate our approach by applying it to an existing Android layout synthesizer called
InferUI (Bielik et al., 2018) as described in Section 4. InferUI is a symbolic synthesizer which
encodes the synthesis problem as a set of logical constraints that are solved using the state-of-the-art
SMT solver Z3 (De Moura & Bjørner, 2008). To improve generalization, InferUI already im-
plements two techniques – a probabilistic model that selects the most likely program among those
that satisfy the input specification, and a set of handcrafted robustness constraints φ(p) that prevent
synthesizing layouts which violate good design practices. We show that even if we disable these
two optimizations and instead guide the synthesizer purely by extending the input specification with
additional input-output examples, we can still achieve an accuracy increase from 35% to 71%.

In all our experiments, we evaluate our models and InferUI on a test subset of the DS+ dataset
which contains 85 Google Play Store applications, each of which contains the ground truth of
the absolute view positions on three different screen dimensions – 1400×2520, 1440×2560 and
1480×2600. We use one screen dimension as the input specification I, the second as the distin-
guishing input and the third one only to compute the generalization accuracy. The generalization
accuracy of a synthesized program p |= I is defined as the percentage of views which the program
p renders at the correct position.

InferUI Baseline To establish a baseline, we run InferUI in three modes as shown in Table 1.
The baseline mode returns the first program that satisfies the input specification, denoted as p |= I,
and achieves only 15.5% generalization accuracy. In the second mode the synthesizer returns the
most likely program according to a probabilistic model q(p | I) which leads to an improved ac-
curacy of 24.7%. The third mode additionally defines a set of robustness properties φ(p) that the
synthesized program needs to satisfy, which together with the probabilistic model achieve 35.2%
accuracy. The generalization accuracy of all InferUI models is relatively low as we are using
a challenging dataset where each sample contains on average 12 views. Note however, that this is
expected since increasing the number of views leads to an exponentially larger hypothesis space.

7



Published as a conference paper at ICLR 2020

Table 2: Generalization accuracy of different models used as neural oracle in our approach.

Accuracy

Training Dataset Model MLP CNN RNN RNN + CNN

DS f(3 | x∗, y∗) 14.3% 14.2% 23.8% 32.1%
DS+ f(3 | x∗, y∗, I) 20.7% 33.2% 63.4% 71.0%

Table 3: Effect of the threshold t and the maximum number of generated candidate outputs |y| on
the accuracy and the average number of generated candidate outputs per view (shown in brackets).

t = 0.9 t = 1

Model |y| ≤ 4 |y| ≤ 9 |y| ≤ 16 |y| = 16

f(3 | x∗, y∗, I) RNN + CNN 40.8% (2.8) 68.3% (4.7) 71.3% (6.0) 71.0% (14.7)

Further, to establish an upper bound on how effective a candidate ranking approach can be, we
query the synthesizer for up to 100 different candidate programs (each producing a unique output)
and check how often the correct program is included. While for small samples (with up to 4 views)
the correct program is almost always included, for samples with 6 views it is among the synthesized
candidates in only 30% of the cases and for samples with more than 10 views in less than 4%.
Sampling more outputs will help only slightly as increasing the number of views would require
generating exponentially more candidates.

Our Work We apply our approach to the InferUI synthesizer by iteratively generating additional
input-output examples that strengthen the input specification. The specification initially contains
absolute positions of all the views for one device and we extend the specification by adding one view
at a time (rendered on a different device) as described in Section 4. In the experiments presented
here we focus on evaluating the overall improvement of the InferUI synthesizer extended with our
approach. We provide additional experiments that evaluate the effectiveness of the neural oracle as
well as an ablation study in Appendix B.

Generalization Accuracy The results of our approach instantiated with various neural oracle mod-
els are shown in Table 2. The best model trained on the dataset DS has almost the same accuracy as
InferUI with all its optimizations enabled. This means that it is possible to replace existing opti-
mizations and handcrafted robustness constraints by training on an easy to obtain dataset consisting
of correct outputs and their perturbations. More importantly, when training on the harder to obtain
dataset DS+, the generalization accuracy more than doubles to 71% since the model can also condi-
tion on the input specification I. However, the results also show that the design of the model using
the neural oracle is important for achieving good results. In particular, both MLP models achieve
poor accuracy since the high level handcrafted features adapted from the InferUI synthesizer are
not expressive enough to distinguish between correct and incorrect outputs. The CNN models achieve
better accuracy but are limited for the opposite reason, they try to learn all the relevant features from
the raw pixels which is challenging as many features require pixel level accuracy across large dis-
tances (e.g., whether two views in the opposite parts of the screen are aligned or centered). The
RNN model performs the best, especially when also having access to the input specification. Even
though it also processes low level information, such as distance or size difference between the views,
it uses a more structured representation that first computes individual view representations that are
combined to capture the whole output.

Number of Candidate Outputs We show the effect of different threshold values t used by the neural
oracle to dynamically control whether to search for more candidate outputs as well as the maximum
number of candidate outputs in Table 3. We can see that using the threshold both slightly improves
the accuracy (+0.3%) but more importantly, significantly reduces the average number of generated
candidate outputs from 14.7 to 6.0 using the same number of maximum generated outputs |y| = 16.
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Incorporating User Feedback Even though our approach significantly improves over the InferUI
synthesizer, it does not achieve perfect generalization accuracy. This is because for many synthesiz-
ers the perfect generalization is usually not achievable – the correct program and its outputs depends
on a user preference, which is only expressed as severely underspecified set of input-output exam-
ples. For example, for a given input specification there are often multiple good layout programs
that do not violate any design guidelines and which one is chosen depends on a particular user. To
achieve 100% in practice, we perform an experiment where the user can inspect the input-output
examples generated by our approach and correct them if needed. Then, we simply count how many
corrections were required. The applications in our dataset have on average 12 views and for our
best model, no user corrections are required in 30% of the cases and in 27%, 15%, 12%, 5% of
the cases the user needs to provide 1, 2, 3 or 4 corrections, respectively. In contrast, InferUI with
all optimizations enabled requires on average twice as many user corrections and achieves perfect
generalization (i.e., zero user corrections) in only 3.5% of the cases.

6 CONCLUSION

In this work we present a new approach to improve the generalization accuracy of existing program
synthesizers. The main components of our method are: (i) an existing program synthesizer, (ii)
a refinement loop around that synthesizer, which uses a neural oracle to iteratively extend the input
specification with new input-output examples, and (iii) a neural oracle trained using an easy to
obtain dataset consisting of program outputs. To show the practical usefulness of our approach we
apply it to an existing Android layout synthesizer called InferUI (Bielik et al., 2018) and improve
its generalization accuracy by 2×, from 35% to 71%, when evaluated on a challenging dataset of
real-world Google Play Store applications.
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APPENDIX

We provide three appendices. Appendix A contains an in-depth description of the feature transfor-
mations for the MLP and RNN models. Appendix B contains an additional ablation experiment as
well as results from the oracle evaluation. Appendix C provides visualizations of positive and nega-
tive candidate outputs, the CNN regularization as well as outputs from the end-to-end synthesis.

A FEATURE DEFINITIONS

In this section we describe in detail the feature transformations used in Section 4. As mentioned in
Section 4 each view consists of the 4 coordinates: xl (xleft), yt (ytop), xr (xright), yb (ybottom). We
use v.w for the width, v.h for the height and v.r for the aspect ratio (v.w/v.h) of view v.

A.1 MLP

In Table 4 we define the 7 feature types that lead to a vector of size 30 used in the MLP model. All
the features are normalized (divided) by the factor in the normalization column.

Table 4: Feature definitions for the MLP.

Size Name Description Normalization

1 Number of off-screen views - |V |
3 Number of views with a spe-

cific aspect ratio
Instantiated for the ratios 1,
[3/4, 4/3] and [9/16, 9/16]

|V |

1 Number of view intersections Pairwise comparison if two
views intersect (without
counting fully contained
views.)

|V |2

1 Number of views which have
the same dimension

The same dimension is defined
as: v1.w = v2.w ∧ v1.h =
v2.h

|V |2

1 vertical +
1 horizontal

Number of view alignments Pairwise comparison if two
views align (e.g. for verti-
cal alignment: v1.xl = v2.xl ∨
v1.xl = v2.xr∨v1.xr = v2.xl∨
v1.xr = v2.xr )

|V |2

9 vertical +
9 horizontal

Number of views with a spe-
cific margin to another view

Instantiated for the margins 0,
16, 28, 32, 40, 48, 60, 64 and
96.

|V |2

1 vertical +
1 horizontal

Number of centered views Pairwise comparison if one
view is centered within an-
other view.

|V |2

1 vertical +
1 horizontal

Number of centered views be-
tween two different views

Comparison if one view is
centered between 2 other
views.

|V |3

A.2 RNN

We formally define the 11 transformations used as the pairwise view feature vector φ : R4×R4→Rn
in the RNN model. These features capture properties like the view’s distance to the other view or the
size difference. The feature vectors extracted for each pair of views are combined to a fixed length
representation by passing them through the LSTM, in the decreasing order of view size. In Figure 3
all the properties are listed and visualized.
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View 1 View 2 View 1View 2

RatioDistance Size difference

View 1View 2

Name Description Formula

Distance Horizontal distance from one view to an-
other view

dll(v1, v2)
dlr(v1, v2)
drl(v1, v2)
drr(v1, v2)

=
=
=
=

v1.xl− v2.xl
v1.xl−v2.xr
v1.xr−v2.xl
v1.xr−v2.xr

Vertical distance from one view to another
view

dtt(v1, v2)
dtb(v1, v2)
dbt(v1, v2)
dbb(v1, v2)

=
=
=
=

v1.yt − v2.yt
v1.yt− v2.yb
v1.yb− v2.yt
v1.yb− v2.yb

Size difference Size difference of two views sw(v1, v2)
sh(v1, v2)

=
=

v1.w − v2.w
v1.h− v2.h

Ratio Relation of the aspect ratio r(v1, v2) = v1.r/v2.r

Figure 3: Definition of the pairwise view feature vector φ : R4×R4→Rn used in the RNN model
(bottom) and their visualization (top).

To guide the model for f(3 | x∗, y∗), we defined 17 more abstract features, adapted from InferUI,
which are defined using the simple transformations shown in Figure 3. Concretely, we define the
following 17 features:

• For alignments (8 features: 4 horizontal, 4 vertical): Compare if view v1 is aligned with v2,
such that one of the 4 distance functions is 0, e.g. dll(v1, v2) = 0

• For centering (2 features: 1 horizontal, 1 vertical): Compare if view v1 is centered in v2,
such that dll(v1, v2) = −drr(v1, v2).

• For overlaps (4 features: 2 horizontal, 2 vertical): Check if the v1 and v2 can possibly
intersect, i.e. have overlapping x-coordinates in the horizontal case: v1.xl ≥ v2.xl and
v1.xl ≤ v2.xr.

• For the same size (2 features): Compare if the height or width difference of v1 and v2 is
equal to 0, such that sw(v1, v2) = 0 and sh(v1, v2) = 0.

• For the same ratio (1 feature): Compare if the ratio v1 and v2’s aspect ratios is 1, such that
r(v1, v2) = 1.
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Table 5: Accuracy of different models (used as neural oracle) evaluated on the test dataset of DS+.
For the pairwise accuracy we count as correct if the score of the positive sample is smaller than the
score of the negative sample. In square brackets, we report the model performance if we additionally
consider equal scores of the positive and the negative sample as correct (in case it differs).

Pairwise Accuracy

Training Dataset Model MLP CNN RNN RNN + CNN

DS f(3 | x∗, y∗) 84.4 [91.6]% 80.0% 78.5 [80.0]% 83.5%
DS+ f(3 | x∗, y∗, I) 90.5 [97.6]% 84.3% 95.6% 96.8%

Accuracy One vs. Many

DS f(3 | x∗, y∗) 44.5 [73.0]% 36.7% 36.3 [38.3]% 55.8%
DS+ f(3 | x∗, y∗, I) 54.6 [87.3]% 51.2% 80.6 [81.0]% 85.9%

B EXPERIMENTS

In this appendix, we evaluate the oracle performance and include an ablation study of our models.

B.1 ORACLE EVALUATION

We evaluate the oracle’s performance (shown in Table 5) using two metrics: The pairwise accuracy
and one vs. many accuracy. The pairwise accuracy is the binary ranking problem – for each pair
consisting of a positive and negative candidate, it is considered to be correct, if the score of the
positive example is higher than of the negative example (the pair was ranked correctly). To capture if
the network can’t distinguish between the samples, we also report a second value in square brackets
in which we count as correct if the score of the positive example is higher or equal to the score of
the negative example. In addition, we measure the one vs. many accuracy, in which the oracle is
correct if the score of the correct candidate was higher than the scores of all incorrect candidates
(since selecting the correct candidate out of many candidates represents what we are interested in
during the end-to-end synthesis experiment).

Usually, models with a higher pairwise accuracy also have a higher one vs. many accuracy since
more pairs are ranked correctly. The one vs. many accuracy might be lower than expected if the
mistakes of the pairwise accuracy spread over a wide number of different samples (instead of having
many mistakes in a small set of samples).

In general, the results of the one vs. many accuracy correlate with the results of the end-to-end
synthesis. For example, RNN+CNN and RNN trained on DS+ achieve the highest scores in both of
the experiments. One exception is the MLP model trained onDS+ dataset which performs worse on
the end-to-end synthesis experiment even though the oracle performs better. A reason for this is that
the MLP often makes mistakes when predicting the early views which then affect the positioning of
the subsequent views. For the same reason, the accuracies of the oracle experiment are in general
higher than the accuracy we observe in the synthesis experiment. Another interesting insight is
that the MLP often scores the positive and the negative examples the same since there is a large
difference in the pairwise accuracy depending on if we count the same score as correct or not. This
shows that the MLP’s feature functions are not expressive enough.

B.2 ABLATION STUDY

To investigate which high-level properties are learned by our models, we generate an ablation dataset
from the test dataset of DS+. The results of the study are collected in Table 6 and Table 7.

Recall from Section 4 that ϕMLP(x, y) computes a vector of size 30 with the handcrafted functions
which are described in detail in Appendix A.1. For each pair of positive (x∗, ypos) and negative
examples (x∗, yneg) and their corresponding sample in the input specification (x, y) we compute
the difference of their handcrafted feature functions d = [ϕMLP(x

∗, ypos) − ϕMLP(x, y)](x,y)∈I −
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Table 6: Ablation study based on different subsets of the DS+ test dataset to check which general
properties the model has learned. The f(3 | x∗, y∗, I) models are trained on DS+.

Pairwise Accuracy

Dataset MLP CNN RNN RNN + CNN samples

Test 90.5 [97.6] 84.3 95.6 96.8 all
Aspect ratio 1.0 96.9 63.5 92.7 99.0 96
Horiz. centering-view 100.0 89.0 96.6 98.2 5262
Horiz. centering-views 99.7 89.0 96.5 98.0 6360
Vert. centering-view 98.5 83.1 97.4 96.8 852
Vert. centering-views 98.2 89.3 97.1 97.7 6710
Inside screen 100.0 98.0 98.8 99.0 3292
Intersections 99.5 93.3 97.3 98.2 2792
Horizontal alignment 99.6 85.5 95.7 96.9 1658
Vertical alignment 99.7 95.0 98.0 98.6 3804
Horizontal margins 98.5 91.1 97.2 98.2 5642
Vertical margins 97.1 88.0 97.6 98.0 4547
Specific aspect ratio 100.0 61.1 100.0 100.0 18
Same dimensions 100.0 85.8 97.0 96.6 471

[ϕMLP(x
∗, yneg)− ϕMLP(x, y)](x,y)∈I . We add a pair to the ablation dataset for the violated property

if d 6= 0, that is, if the property on the positive sample is different from the negative sample. For
example, if the number of view intersections of the positive sample and input specification are the
same, but different for the negative sample, we add this pair of positive and negative samples to the
intersections-ablation dataset.

The MLP models perform very well on all the ablation properties. The reason is that MLP’s features
are the handcrafted features which are designed to capture the properties in the ablation dataset. The
MLP’s performance on the whole test dataset is worse, which indicates that some properties in the
dataset are not captured by the handcrafted features.

The CNN fails at preserving the aspect ratios due to the pooling and the downsampling operations.
Alignments and intersection properties can be learned with local filters detecting overlapping views.
Off-screen views can be detected by checking the downsampled representation after the convolu-
tional layers. On these three properties, the CNN performs best. The RNN performs better on the
ablation dataset than the CNN since it processes the exact numeric values of the view coordinates.

The overall performance on the ablation dataset is better than the one on the whole test dataset
for all models, indicating that there are some features not expressed in the handcrafted functions.
Furthermore, the results of the ablation study should be considered carefully: the ablation study
shows tendencies, but features could be correlated or have common hidden features.
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Table 7: Ablation study based on different subsets of the DS+ test dataset to check which general
properties the model has learned. The f(3 | x∗, y∗) models are trained on DS .

Pairwise Accuracy

Dataset MLP CNN RNN RNN + CNN samples

Test 84.4 [91.6] 80.0 78.5 [80.0] 83.5 all
Aspect ratio 1.0 85.4 54.2 65.6 70.8 96
Horiz. centering-view 97.5 86.7 88.0 89.5 5262
Horiz. centering-views 96.3 86.6 87.8 89.4 6360
Vert. centering-view 91.4 76.0 85.9 78.6 852
Vert. centering-views 93.0 86.6 84.9 89.6 6710
Inside screen 100.0 97.7 96.2 99.5 3292
Intersections 97.0 90.6 93.3 96.7 2792
Horizontal alignment 91.0 83.1 87.7 88.1 1658
Vertical alignment 96.4 90.7 85.6 97.3 3804
Horizontal margins 92.6 89.3 89.1 91.1 5642
Vertical margins 91.4 83.1 83.0 88.0 4547
Specific aspect ratio 100.0 100.0 61.1 44.4 18
Same dimensions 95.3 86.4 94.9 90.2 471

C VISUALIZATION

In this section, we provide visualizations of two concepts introduced in Section 4 – the rendered
output candidates and how the CNN input is shifted for regularization. Further, we visualize the
steps of the end-to-end synthesis and render outputs of synthesized programs.

C.1 POSITIVE AND NEGATIVE OUTPUT CANDIDATES

Figure 4 shows four different rendered output candidates. The correct candidate is on the left and the
three incorrect ones are on the right. The candidates differ in their 6th view which is moved around
and overlaps in all of the three incorrect candidates. The three negative examples are generated by
the synthesizer as described in Section 4 (for dataset DS+) or applying perturbations sampled from
the synthesizer mistakes (for dataset DS).

v6 v6 v6 v6

Correct Incorrect Incorrect Incorrect

Figure 4: One positive example (left) and 3 negative examples (right).
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C.2 CNN REGULARIZATION

Figure 5 visualizes how the robustness of the CNN is increased by placing the input randomly within
the input image as described in Section 4.

392

656

392

Figure 5: Illustration of three possible shifts (denoted by different colors) of the CNN input used
during training.

C.3 ADVANTAGE OF HAVING THE ADDITIONAL INPUT SPECIFICATION IN THE DS+ DATASET

Figure 6 visualizes the absolute view positions in the input specification on the left and the four
candidates (differing in the red view) on the distinguishing device x∗ on the right. Looking at the
four candidates, the first candidate is incorrect, since the red view is not centered. The third candidate
is not the correct one either, since the red view intersects with the view below. It is hard to decide
between the second and fourth candidate since the red view is centered in both cases. When taking
the input specification into consideration, the second candidate is the correct one, since there is no
space between the red view and the view below in candidate 4 (unlike in second candidate and the
input specification).

||Larissa Laich 10.07.2019 63

MODELS - INPUT/OUTPUT
Output Candidates

Candidate 1
Not centered

Candidate 2 Candidate 3
Intersects

Candidate 4Input specification

Figure 6: The input specification provides an important indication that candidate 2 is the correct one
(unlike candidate 4).
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C.4 END-TO-END SYNTHESIS PROCEDURE

In Figure 7 we present an example of the end-to-end synthesis described in Section 3 and Section 4.
The input of the synthesizer is on the top left of the Figure 7 and consists of an input specification I
with a single input-output pair (x, y). The synthesis loop starts by the synthesizer generating a can-
didate program p1 |= I (not shown) and checking whether ambiguities exists. To do this, it finds
a distinguishing input x∗, in our example a smaller device x∗ = [0, 0, 1400, 2520] and a set of pro-
grams p2, . . . , pn that satisfy the input specification I but produce different outputs when evaluated
on x∗. Three possible candidate outputs p1(x∗), p2(x∗), p3(x∗) are visualized in Figure 7 (column
Iteration 1). Note that as described in Section 4, the synthesis proceeds by synthesizing the views
iteratively therefore, the first iteration contains only the first view v1. The oracle (in this example the
CNN+RNN model trained on DS+) selects the second candidate (the oracle prediction is indicated
by the dashed rectangle) since its score is the largest with 0.88. The position of v1 on the device
x∗ is added to the specification and the iterative synthesis proceeds by selecting the correct output
for the second view. In the second iteration we perform the same steps, except now we synthesize
different candidate outputs for the second view v2 on the device x∗, given that the position of the
first view v1 is fixed from the previous iteration. The same process is repeated until the absolute
positions of all the views are predicted for the distinguishing input x∗. The new input specification,
shown at the bottom in Figure 7, contains the absolute view positions for both the original input x
as well as the distinguishing input x∗. After that, the whole process repeats by querying for another
distinguishing device and extending the input specification even further.

Note that in our evaluation we restrict the distinguishing input to be among those device sizes for
which we trained a model. Since our datasets consist of three different screen sizes the choice
is small and all the experiments in Section 5 are evaluated with a single distinguishing input x∗.
However, we could generate more than three dimensions for the training dataset and use them to
train additional models. This was however not needed as three different devices are typically enough
to resolve majority of ambiguities (as long as the oracle does not make mistakes).

C.4.1 LIMITATIONS OF THE MLP FEATURES

Figure 8 visualizes eight candidate outputs in the first synthesis iteration for the same application as
in Figure 7. The MLP oracle assigns a score of 0 to all the output candidates in which view v1 is
off-screen. However, the handcrafted features are not expressive enough to distinguish between the
candidate outputs in the bottom row which all have a score of 0.76. In general, the MLP performs bad
in selecting the first views (earlier iterations) since there are only few views from which properties
e.g. margins can be extracted. On the bottom right, the synthesis result is compared to the correct
output. Since the first view was not selected correctly in the synthesis, all the subsequent inner views
are also slightly off in comparison to the correct output.

C.5 EXAMPLES OF SYNTHESIS OUTPUTS

Figure 9 visualizes the rendered output of the synthesizer for the distinguishing device x∗. The
correct output is on the left while the synthesis output of the different oracles is on the right. At
first glance, the outputs of the MLP look visually appealing since the handcrafted features contain
properties like intersections or off-screen and the model learns to avoid them. However, it is often
not expressive enough, since the view sizes or positions are often different to the correct output. This
happens in particular if there are only few views which is why the second view is often misplaced
which leads to consecutive errors. This also explains the bad performance in the synthesis experi-
ment in Table 1 in comparison to the oracle experiment in Table 5. The CNN outputs look much
worse and often contain views which are misaligned or not centered. The RNN performs quite well
one the first and third application but fails on the second application. The RNN+CNN predicts the
correct output for the first application but fails on five views (out of 22) in the second and on seven
(out of 17) views in the third application.
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Score: 0.001
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Iteration 1 Iteration 2 Iteration 5
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[80,600,1360,1864] 
[144,856,1296,1544] 
[144,1608,1296,1800] 
[144,664,1296,776]

[0,0,1440,2560] 

(x, y) rendered

Distinguishing input 
x* = [0,0,1400,2520]

v1:[0,500,1400,1924]

v1:[0,480,1400,1904]

x = 

y = 
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v5:[144,644,1296,756]
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Update I
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v1

v1

v1

v2

v2

v2

v2:[80,580,1320,1844]

v5

v5

v5

v5:[144,644,1256,756]

v5:[124,664,1276,776]

Candidate 1 
Incorrect 
Score: 0.03

Candidate 1 
Incorrect 
Score: 0.01

Candidate 1 
Incorrect 
Score: 0.1

Candidate 2 
Correct 
Score: 0.88

Candidate 2 
Incorrect 
Score: 0.0

Candidate 2 
Correct 
Score: 0.99

Candidate 3 
Correct 
Score: 0.99

Candidate 3 
Incorrect 
Score: 0.01

…

…

… …

I1 = ∪ (x*, [0,500,1400,1924]) …2 = 1 ∪ (x*,[80,580,1320,1844]) 5 = I I4 ∪ (x*,[144,644,1256,756])

IFinal = (x,y) ∪ (x*, y*) [0,520,1440,1944] 
[80,600,1360,1864] 
[144,856,1296,1544] 
[144,1608,1296,1800] 
[144,664,1296,776]

[0,0,1440,2560] 

[0,500,1400,1924] 
[80,580,1320,1844] 
[144,836,1256,1524] 
[144,1588,1256,1780] 
[144,644,1256,756]

[0,0,1400,2520]x = 

y = 

x* = 

y* = 

I I I

Figure 7: The synthesis procedure step-by-step.
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v1 :[-40,500,1400,1924]

v1

v1 :[-40,480,1400,1904]
Incorrect 
Score: 0.0

v1

Incorrect 
Score: 0.0

v1 :[-40,520,1400,1944]
Incorrect 
Score: 0.0

v1 :[0,500,1440,1924]
Incorrect 
Score: 0.0

v1 v1 v1

v1 :[0,480,1440,1904]
Incorrect 
Score: 0.0

v1 :[0,480,1400,1904] v1 :[0,500,1400,1924]
Incorrect 

Score: 0.76
Correct 

Score: 0.76

v1 :[0,520,1400,1904]
Incorrect 

Score: 0.76

Synthesized with 
 MLP

Correct Output

v1 v1 v1

Figure 8: Eight output candidates in the first synthesis iteration. The oracle for the synthesizer was
an MLP trained on DS+.
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Correct Output MLP CNN RNN CNN+RNN

Correct Output MLP CNN RNN CNN+RNN

Correct Output MLP CNN RNN CNN+RNN

Figure 9: Rendered outputs on device x∗ of the synthesizer for different oracles which were trained
on DS+.
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