
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

Do LSTMs Learn Compositionally?
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Abstract

LSTM-based language models exhibit compo-
sitionality in their representations, but how this
behavior emerges over the course of training
has not been explored. Analyzing synthetic
data experiments with contextual decomposi-
tion, we find that LSTMs learn long-range de-
pendencies compositionally by building them
from shorter constituents during training.

1 Introduction

Consider the process of backpropagation through
time for a language model. As an example, the
language model should learn that an occurrence of
“either” increases the later likelihood of “or”. To
do so, it must backpropagate information from the
occurrence of “or” through some intervening con-
stituent, which we will refer to as a conduit be-
cause the association of either/or is carried through
it to affect the representation of “either”. Perhaps
it encounters a training example that uses a conduit
that is predictable by being structured in familiar
ways, here italicized: “Either Socrates is mortal or
not all men are mortal.” However, what if the con-
duit is unpredictable and the structure cannot be
interpreted by the model, for example, if the con-
duit includes unknown tokens, as in: “Either slithy
toves gyre or mome raths outgrabe”? Which con-
duit will carry the gradient from “or” to “either”
easily?

Formally, as the gradient of the error et at
timestep t is backpropagated k timesteps through
the hidden state h:

∂et
∂ht−k

=
∂et
∂ht

k∏
i=1

∂ht−i+1

∂ht−i

The backpropagated message is multiplied repeat-
edly by the gradients associated with each item in
the conduit. If the recurrence derivatives ∂hi+1

∂hi

are large at some parameter, the correspondingly
larger backpropagated gradient ∂et

∂ht−k
will accel-

erate descent in that direction.
When we ask which conduit will carry the gra-

dient message to learn a long-range dependency
faster, the answer will depend on the magnitude
and distribution of the recurrence gradients. If the
language model relies on linguistic structure in the
conduit in order to pass the message effectively,
then the more predictable conduit will facilitate
learning a long-range pattern.

In order to investigate whether long-range de-
pendencies are built from short constituents, we
train models on synthetic data which varies the
predictability of short sequences. We find that
memorizing local patterns allows a language
model to learn a long-range dependency faster but
ultimately inhibits its ability to fully acquire long-
range rules.

2 Related Work

How do neural language models learn? The key
to answering this question is to understand the
compositionality of LSTM training. To this end,
we connect the hierarchical structure of language
model representations with the incremental nature
of neural learning dynamics.

We have extensive evidence that hierarchical
structure is integral to the high performance of
fully trained neural language models. LSTMs
learn more effectively from natural language data
than from similarly distributed random data, im-
plying that they take advantage of linguistic struc-
ture (Liu et al., 2018). The representations they
produce seem to be hierarchical in nature (Hewitt
and Manning, 2019; Blevins et al., 2018; Hup-
kes et al., 2017). They implicitly exhibit a num-
ber of compositionality assumptions linguists tend
to make by encoding information about part of
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speech (Belinkov et al., 2017), morphology (Vania
and Lopez, 2017), and verb agreement (Lakretz
et al., 2019). But the compositional nature of these
representations tells us little about the process by
which they are learned.

Humans learn by memorizing short rote phrases
and later mastering the ability to construct deep
syntactic trees from them (Lieven and Tomasello,
2008). LSTM models, meanwhile, learn by back-
propagation through time, leading to different in-
ductive priors compared to a human. We may
not therefore expect an LSTM to exhibit similarly
compositional learning behavior. However, lan-
guage models are known to encode hierarchical
syntax, so we must consider whether they learn
hierarchically as well, by building longer con-
stituents out of shorter ones during training.

Recognizing the role of inductive priors in train-
ing is critical. LSTMs have the theoretical capac-
ity to encode a wide range of context-sensitive lan-
guages, but in practice their ability to learn such
rules from data is limited, implicating the impor-
tance of the training process (Weiss et al., 2018).
However, we may find that the hierarchical na-
ture of the representation is entirely a result of the
data, rather than induced by the biases of the train-
ing process. LSTMs by default learn associations
from the most recent items in a sequence, but they
are still capable of learning to encode grammatical
inflection from the first word in a sequence rather
than the most recent (Ravfogel et al., 2019). In-
ductive priors play a critical role in the ability of
an LSTM to learn effectively, but they are neither
necessary nor sufficient in determining what the
model can learn.

We therefore investigate further into LSTM
learning dynamics. In general, work in deep learn-
ing has supported the assumption that easy exam-
ples are learned before hard examples (Arpit et al.,
2017). A controversial proposal by Shwartz-Ziv
and Tishby (2017) held that learning begins with
a memorization phase followed by a compression
phase which makes the model more general, a
claim that has been extensively debated with evi-
dence for (Noshad and Hero III, 2018) and against
(Saxe et al., 2018) it. If the hypothesis holds
generally, the transition from memorized to com-
pressed rules is another example of, or potential
explanation for, easy-first learning.

In the case of an LSTM, dependency range is
one aspect of difficulty that might affect the or-

der of learning. For example, an either/or match-
ing over a short distance can be memorized, but
over a long distance requires an encoding of con-
cepts like constituency in order to be applied gen-
erally. The learning dynamics of an LSTM cause
lower layers to converge faster than higher lay-
ers when there are many layers (Raghu et al.,
2017), which combined with findings of hierarchy
(Blevins et al., 2018; Belinkov et al., 2018) im-
ply that the local connections encoded by lower
layers are learned before the more distant connec-
tions encoded by higher layers. Even within a sin-
gle layer, Saphra and Lopez (2019) found that lo-
cal properties, such as syntactic tags, were learned
earlier than the less local property of topic. The
transition from local dependencies to more global
dependencies is yet another example of how sim-
ple patterns are required before complex ones.

However, even if simple local rules are learned
first, they might not be used compositionally in
constructing longer rules. In fact, simple rules
learned early on might inhibit the learning of more
complex rules through the phenomenon of gra-
dient starvation (Combes et al., 2018), in which
more frequent features reduce the gradient di-
rected at rarer features. Simple local rules could
slow down the training process by affecting the re-
currence from timestep to timestep to degrade the
gradient, or by trapping the model in a local mini-
mum which makes the long-distance rule harder to
reach. The compositional view of training is not a
given and must be verified.

3 Methods

All experiments use a one layer LSTM, with in-
puts taken from an embedding layer and outputs
processed by a softmax layer. All hidden dimen-
sions are 200. We train with a learning rate set
at 1 throughout and gradients clipped at 0.25. We
found momentum and weight decay to slow rule
learning in this setting, so they are not used.

3.1 Contextual Decomposition

In our running example, we need to determine
when our language model has learned that “ei-
ther” implies an appearance of “or” later in the
sequence. It is difficult to directly measure the in-
fluence of “either” on the later occurrence of “or”,
so in order to dissect the sequence and understand
the impact of individual elements in the sequence,
we employ contextual decomposition (CD).
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First introduced by Murdoch et al. (2018), CD
is a method of looking at the individual influences
of words and phrases in a sequence on the out-
put of a recurrent model. CD converts the output
vector from an LSTM layer into a sum of relevant
(contributed only by the input word or phrase of
interest xγ ; represented as vγ) and irrelevant (con-
tributed by, or involving interactions with, other
words in the sequence; represented as vβ) parts,
v = vγ + vβ . Because the individual contribu-
tions of the items in a sequence interact in nonlin-
ear ways, it is difficult to disentangle the impact of
a specific word or phrase on the label distribution
predicted. However, the dynamics of LSTMs are
approximately linear in natural settings, as found
by Morcos et al. (2018), who used canonical corre-
lation analysis to find close linear projections be-
tween the activations at each timestep in a repeat-
ing sequence and the activations at the end of the
sequence. It is therefore unsurprising that approx-
imation error is low for the CD approach of lin-
earizing the output of a LSTM layer so it can be
viewed as the sum of a relevant component and
the contributions of the rest of the sequence.

While Murdoch et al. (2018) were primarily
interested in analyzing the importance and clas-
sification tendencies of the phrases and words
that formed a sequence, we are interested in un-
derstanding whether a dependency between two
words has been learned at all. Because the decom-
posed logits can be used as inputs for a softmax,
we convert the decomposed elements into prob-
ability distributions by P (x|xγ) = softmax(vγ).
This allows us to analyze the effect of xγ on a later
element x while controlling for the influence of
the rest of the sequence. We consider the running
either-or example dependency to have been effec-
tively learned when the contribution of the open-
ing token (‘either’) places a high probability on its
mate (‘or’) at the appropriate timestep when ‘or’
occurs in the data.

4 Experiments

We use synthetic data to test the ability of an
LSTM to learn a consistent rule with a long-
distance dependency. This controls for the irreg-
ularity of natural language as well as for the con-
founding factor of rule frequency. While LSTMs
in natural language model settings learn short-
range dependencies first, we must consider the
possibility that this pattern is unrelated to any in-

ductive prior. It could be that longer-range de-
pendencies are simply rarer and therefore learned
later. Our synthetic data sets instead have a fixed
number of occurrences of the long distance rela-
tionship, regardless of the conduit length.

We generate data uniformly at random from a
vocabulary Σ. However, we insert n instances of
the long-distance rule αΣkω (with conduit length
k), where we consider an open symbol α and
a close symbol ω, with α, ω 6∈ Σ. Relating to
our running example, α stands for “either” and ω
stands for “or”. We use a corpus of 1m tokens with
|Σ| = 1k types, which leaves a low probability that
any conduit sequence longer than 1 token appears
elsewhere by chance.

For all analyses, CD yielded an approximation
error ‖(vγ+vβ)−v‖‖v‖ < 10−5, when running the true
LSTM model to generate v for comparison.

Limitations While we hope to isolate the role of
long range dependencies through synthetic data,
we must consider the possibility that the natu-
ral predictability of language data differs in rele-
vant ways from the synthetic data, in which the
conduits are predictable only through pure mem-
orization. Because LSTM models take advan-
tage of linguistic structure, we cannot be confident
that predictable natural language exhibits the same
cell state dynamics that make a memorized uni-
formly sampled conduit promote or inhibit long-
range rule learning.

4.1 The Effect of Rule Frequency

First, we investigate how the frequency of a rule
affects the ability of the model to learn the rule.
We vary the conduit length k while keeping n
constant. The results in Figure 1 illustrate how a
longer conduit length requires more examples be-
fore the model can learn the corresponding rule.
We consider the probability assigned to the close
symbol according to the contributions of the open
symbol, excluding interaction from any other to-
ken in the sequence. For contrast, we also show
the extremely low probability assigned to the close
symbol according to the contributions of the con-
duit taken as an entire phrase. In particular, note
the pattern when the rule is extremely rare: The
probability of the close symbol as determined by
the open symbol is low but steady regardless of
the conduit length, while the probability as deter-
mined by the conduit declines with conduit length
due to the accumulated low probabilities from
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Figure 1: The predicted probability P (xt = ω), according to the contributions of open symbol xt−k = α and of
the conduit sequence xt−k+1 . . . xt−1, for various rule occurrence counts n. Shown at 40 epochs.

Figure 2: The predicted P (xt = ω|xt−k . . . xt−k+i)
according to CD, varying i as the x-axis and with
xt−k = α and k = 8. Shown at 50 epochs.

each element in the sequence.
To understand the impact of the open symbol

in context, see Figure 2, which illustrates that the
conduit interacts with the open symbol to increase
the probability slightly, a sign that the model is
counting the intervening symbols rather than reg-
istering only the effect of the open symbol.

4.2 The Effect of Conduit Predictability

To understand the effect of conduit predictabil-
ity, we modify the synthetic data such that the se-
quence in the conduit appears frequently outside
of the long-distance rule. In this experiment, the
conduits are actually taken from a randomly gen-
erated vocabulary of 100, so that each unique con-
duit q appears in the training corpus 10 times in
the context αqω. This repetition is necessary in
order to fit n = 1000 occurrences of the rule in
all settings. In the unpredictable-conduit set-
ting, q appears only in this context as a conduit,
so the conduit remains random and unpredictable.
In the predictable-conduit setting, we randomly
distribute m = 1000 occurrences of each conduit
q throughout the corpus outside of the rule pat-
terns. In the predictable-conduit setting, each con-

Figure 3: The predicted P (xt = ω|xt−k = α), accord-
ing to CD. Solid lines are in the unpredictable conduit
setting, while dashed lines are in the predictable con-
duit setting.

duit is seen often enough to be memorized.
As we see in Figure 3, copying each conduit

100 times throughout the corpus inhibits learning
of the symbol-matching rule over the long run of
training, but promotes early learning of the rule.
This result implies that long-range dependencies
are learned from the structure of their constituents.
Therefore the model is delayed during training
in representing longer dependencies in part be-
cause it depends on constituents being effectively
learned first.

5 Conclusions

We confirm that the longer the span of a rule,
the more examples are required for an LSTM
model to effectively learn the rule. We then find1
that a more predictable conduit between the rule
symbols promotes the early learning of the rule,
implying that the process by which an LSTM
learns long-range rules is compositional. How-
ever, the representation learned through the pre-
dictable conduit ultimately prevents the model
from confidently learning these long-range con-
nections.
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