SURPRISING NEGATIVE RESULTS FOR GENERATIVE ADVERSARIAL TREE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in deep reinforcement learning are based mostly on model-free methods, and model-based approaches remain an alluring prospect owing to their potential to exploit unsupervised data to learn environment dynamics. AlphaGo combined Monte-Carlo Tree search (MCTS), a model based method, with deep-Q networks, a model-free method. MCTS requires generating roll-outs of the environment which is expensive. In this paper, we instead simulate the roll-outs using latest breakthroughs on image-to-image transduction such as Pix2Pix GANs to predict the dynamics of the environments. We propose generative adversarial tree search (GATS) which simulates roll-outs with a learned GAN-based dynamics model and reward predictor up to a certain depth. It deploys the MCTS method for planning over the simulated samples and uses the DQN algorithm to estimate the Q-function as a value for the leaf states. We theoretically prove some favorable properties of GATS vis-a-vis the bias-variance trade-off. Empirically, on 5 popular Atari games, the dynamics and reward predictors converges quickly to accurate solutions. Despite this, GATS fails to outperform DQNs in 4 of the games, when MCTS has only short roll-outs (up to tree depth 4). Previous successes of MCTS have involved tree depth in the hundreds, and we present a hypothesis for why tree search with short roll-outs can fail even given perfect modeling.

1 INTRODUCTION

The earliest and best-publicized applications of deep reinforcement learning (DRL) involve Atari games [Mnih et al., 2015] and the board game of Go [Silver et al., 2016], where experience is inexpensive since the environments are simulated. In such scenarios, DRL can be combined with Monte-Carlo tree search (MCTS) methods [Kearns et al., 2002; Kocsis & Szepesvári, 2006] for planning, where the agent executes roll-outs on the simulated environment (as far as computationally feasible) to finds suitable policies. However, for episodic problems where the length of each episode is large, e.g. Go, MCTS can be very computationally expensive. In order to speed up MCTS for Go and learn an effective policy, Alpha Go [Silver et al., 2016] employs a depth-limited MCTS with the depth of few hundreds on the Go emulator, where a learned Q-function is used to query the value of leaf nodes.

In real-world applications, such as robotics [Levine et al., 2016] and dialogue systems [Lipton et al., 2016], collecting samples often takes considerable time and effort. In such scenarios, the agent typically cannot access either the environment model or a corresponding simulator. In this work, we propose a DRL algorithm which utilizes environment samples to learn a Q function as well as a models of the environment’s dynamics (state transitions) and reward function. Together, the dynamics model and reward predictor constitute a learned simulator on which MCTS can be performed. We draw loose inspiration from intuitions about human planning processes—it’s accepted that humans often make decisions by imagining the potential consequences of actions while deliberating their decisions [Schacter et al., 2012].

Recently, generative adversarial networks (GANs) [Goodfellow et al., 2014] have emerged as a popular tool for synthesizing realistic-looking data, especially for high-dimensional data such as images. Unlike previous approaches in image generation, which typically produced blurry images due to optimizing an L_1 or L_2 objective, GANs produces crisp, realistic images. GANs have since been extended for conditional generation, for instance, generating an image conditioned on a label [Mirza...
We documented and open-sourced this wrapper on the latest ALE as well as the code for GDM (Mathieu & Osindero, 2014; Odena et al., 2016) or the next frame in a video given some context (Mathieu et al., 2015). Recently, the pix2pix architecture has demonstrated impressive results on a range of image-to-image transduction tasks (Isola et al., 2017).

Generative Adversarial Tree Search Our approach, which we call GATS, leverages pix2pix GANs to learn a generative dynamics model (GDM) that efficiently learns the dynamics of the environment, producing images that agree closely with the actual observed transactions and are also visually crisp. We made an extensive study of generative models and developed a GDM which converges with relatively few samples (compared to the time for a DQN to converge), and appears from our evaluation to be reasonably robust to subtle distribution shifts that destroy a DQN policy. We also train a reward predictor that converges quickly, achieving negligible error (over 99% accuracy). GATS bridges model-based and model-free reinforcement learning, using the learned dynamics and reward predictors to simulate roll-outs in combination with a DQN. Specifically, GATS deploys the MCTS method for planning over a bounded tree depth and uses the DQN algorithm to estimate the \(Q \)-function as a value for the leaf states (Mnih et al., 2015; Van Hasselt et al., 2016).

Theoretical contribution We analyze the components of error in the estimation of the expected return used by GATS, and further study the trade-offs in its bias and variance. Since GATS utilizes the learned \(Q \) function of DQN/DDQN in the leaf nodes of the MCTS tree, the existing errors in the \(Q \)-estimation decays exponentially as the depth of MCTS grows. We further study the bias in the \(Q \) estimate of DQN and DDQN, where we empirically find out that GATS with even one step look-ahead or roll-out (depth one), can help to reduce the negative effects of these biases. This leads to a reduction of the the number of samples (sample complexity) of DQN and DDQN by a factor of 2 on the game Pong. Furthermore, we develop a novel heuristic optimism-based strategy for GATS using the GDM. The low computation cost of Pong allows us to do an extensive study of the bias-variance of \(Q \) for different model-based planning and exploration strategies.

Experimental results For this work, we also developed a new OpenAI gym (Brockman et al., 2016)-like interface for the latest Atari Learning Environment (ALE) (Machado et al., 2017), which supports different modes and difficulties for Atari games. We study the sample complexity required by GDM and RP to adapt and transfer from one domain of the game (a mode and difficulty) to another domain (another mode and difficulty). We show that GDM and RP adapt quickly to the new mode in a few numbers of samples, while the learned \(Q \) model can take significantly more samples to adapt. We documented and open-sourced this wrapper on the latest ALE as well as the code for GDM, RP, and the GATS algorithm.

Surprising negative results Despite learning environmental models (GDM and RP) that converge efficiently and achieve accuracy exceeding our expectations, we are unable to realize improvements in the learned policy using short roll-outs (at most depth 5) on any other game besides Pong. The negative result persisted across an extensive and costly study with many different hyper-parameter settings and learning strategies, including several different strategies to use the generated frames to train the \(Q \)-model inspired by Sutton (1990). We hypothesize why GATS, despite the good performance of its constituent models, and its theoretical advantages, might fail in short roll-out depths: under this training regime, the problem may be that the \(Q \)-learner does not observe the outcomes of its mistakes. We also explain why in order to test our hypothesis, one might need to experiment with significantly longer roll-outs, which may be prohibitively expensive (computationally) in this domain. The detailed explanation of hypothesis is transferred to the discussing section.

In retrospect, this result is not so surprising considering the fact that all success of MCTS have involved tree depth in the hundreds. For example, (Guo et al., 2014) shows for Atari games, when a plain MCTS is deployed, a depth of 300 with 1000 trajectories is required to learn a reasonable policy. This depth of MCTS on GDM requires massive amount of computation power which is well beyond academic scale research and the scope of this paper. Considering the broader enthusiasm for both model-based RL and generative adversarial networks, we believe that this study, despite its failure to advance the leader-board, illuminates several important considerations for future work to develop

One can adapt GATS by choosing another DRL algorithm as well as various planning methods (e.g. UCT, MCTS, Policy Gradient)
2 Preliminaries

An infinite horizon \(\gamma\)-discounted MDP is a tuple \((\mathcal{X}, \mathcal{A}, T, R, P_0, \gamma)\), with state space \(\mathcal{X}\), action space \(\mathcal{A}\), and \(P_0\), the distribution over the initial states. The transition kernel \(T: x, a \rightarrow \Delta_x\), drives the model dynamics accompanied with \([0, 1]\)-bounded reward of \(R: x, a \rightarrow \Delta_r\), where \(0 \leq \gamma < 1\). The agent’s objective is to find a policy \(\pi: \mathcal{X} \rightarrow \mathcal{A}\) that maximizes the overall expected discounted reward \(\eta^* := \eta(\pi^*) = \max_\pi \lim_{N \rightarrow \infty} \mathbb{E}_\pi \left[\sum_{t=0}^{N} \gamma^t r_t | x_0 \sim P_0 \right]\). Let \(Q_\pi(x, a) := \lim_{N \rightarrow \infty} \mathbb{E}_\pi \left[\sum_{t=0}^{N} \gamma^t r_t | x_0 = x, a_0 = a \right]\) denote the average discounted reward under policy \(\pi\) starting from state-action \((x, a)\). In value based RL, we aim to learn the \(Q\)-function in order to derive the optimal policy. In order to learn the \(Q\) function, we might aim to minimize square loss for any given pair of state and action \((x, a)\),

\[
(Q(x, a) - \mathbb{E}_\pi [r + \gamma Q(x', a')] | x, a)^2
\]

In order to minimize the expression in Eq. (1) a double sampling is required to estimate the inner expectation. To avoid the cost of the double sampling, a common approach is to instead minimize the Bellman residual (Lagoudakis & Parr 2003; Antos et al. 2008):

\[
\mathbb{E}_\pi \left[(Q(x, a) - (r + \gamma Q(x', a')))^2 | x, a \right] = \mathbb{E}_\pi \left[(Q(x, a) - \mathbb{E}_\pi [r + \gamma Q(x', a')] | x, a \right] + \text{Var}_\pi (r + \gamma Q(x', a') | x, a)
\]

The Bellman residual is the sum of the expression in Eq. (1) and an additional variance term. DQN partially addresses this bias\(^2\) by computing the target value with a separate function approximator, typically updated less frequently than the policy.

\[
\mathcal{L}(Q, Q_{\text{target}}) = \mathbb{E}_\pi \left[(Q(x, a) - r - \gamma Q_{\text{target}}(x', a'))^2 \right]
\]

Generally, in addition to this bias, there are additional statistical biases due to limited capacity of network, optimization algorithm, model mismatch, as well as bias induced by the max operator or choice of \(a'\). In the next section, we theoretically and empirically study this bias and show how GATS can address this undesirable effect. For the generative dynamic model, we propose a generic GDM which consists of a generator \(G\) and a discriminator \(D\), trained adversarially w.r.t. the extended conditional Wasserstein metric between two probability measures \(\mathbb{P}_\pi, \mathbb{P}_G\) conditioned on a third probability measure \(\mathbb{P}\); \n
\[
W(\mathbb{P}_\pi, \mathbb{P}_G | \mathbb{P}) := \sup_{D \in \mathcal{L}} \mathbb{E}_{\mathbb{P}_{\pi, z \sim \mathcal{N}(0, I)}}[D(\varpi | \varphi)] - \mathbb{E}_{\mathbb{P}_{\pi, z \sim \mathcal{N}(0, I)}}[D(\varpi | \varphi)]
\]

Here, \(z\) is a mean-zero unit-variance Gaussian vector random variable and \(\| \cdot \|_L\) indicates the space of all 1-Lipschitz functions. In GDM, \(D\) solves the interior sup, while \(G\)’s objective is to minimize this distance and learn the \(\mathbb{P}_\pi | \varphi\) for all \(\varphi\). We deploy our proposed GDM in GATS where \(\mathbb{P}\) is the distribution over pairs of \(\varphi: (x, a)\) in the replay buffer, and \(\mathbb{P}_\pi | \varphi\) is the distribution over the successor states \(\varpi: x'\), which is the transition kernel \(T(x' | x, a)\).

3 Bias-Variance Trade-Off

In the previous section, we discussed the DQN objective function, Eq. (4), an inherently biased estimator. In the next section, we demonstrate how big these biases can be in practice. Let \(\bar{Q}\) denote estimated version of any quantity and \(e_Q\) be the upper bound on estimation error in \(Q\) function (bias+variance); \n
\[
|Q(x, a) - \bar{Q}(x, a)| \leq e_Q, \quad \forall x, a.
\]

For any given roll-out policy \(\pi_r\), using GDM, RP, and estimated \(Q\), the expected return \(\xi_p(\pi_r, x)\)

\[
\xi_p(\pi_r, x) := \mathbb{E}_{\pi_r, \text{GDM RP}} \left[\sum_{h=0}^{H-1} \gamma^h r_h + \gamma^H \max_a \hat{Q}(x_H, a) | x \right]
\]

\footnote{This bias vanishes in deterministic domains}
Since this expectation is not under the real environment, given GDM, RP and Q estimate, GATS efficiently estimates this expected return without any interaction with the real environment. Let $\xi(\pi_r, x)$ denote the same quantity under the ground truth model

$$\xi(\pi_r, x) := \mathbb{E}_{\pi_r} \left[\left(\sum_{h=0}^{H-1} \gamma^h r_h \right) + \gamma^H \max_a Q(x_H, a) \right]$$

Moreover, for the RP and GDM, where \hat{T} and \hat{r} are the estimated transition kernel and reward function, let assume $\forall x, x', a \in \mathcal{X}, \mathcal{A}$

$$\sum_a \left| \left(r(x, a) - \hat{r}(x, a) \right) \right| \leq e_R, \quad \text{and}, \quad \sum_{x'} \left| \left(T(x' | x, a) - \hat{T}(x' | x, a) \right) \right| \leq e_T$$

Proposition 1 [Model-based Model-free trade-off] If GATS is run to estimate the Q function using DQN procedure with the estimated model of the environment, GDM and RP, the deviation in estimating $\xi_p(\pi_r, x) \forall x$ and π_r is bounded as;

$$|\xi_p(\pi_r, x) - \xi(\pi_r, x)| \leq \gamma^H e_Q + \frac{\gamma^H}{1 - \gamma} H e_T + \frac{1 - \gamma^H}{1 - \gamma} \left(\frac{\gamma^H}{1 - \gamma} e_T + e_R \right) \quad (5)$$

Proof in the Apx [D]

Proposition 1 provides an insight to the contribution of each term in the error into the GATS predicted expected return $\xi_p(\pi_r, x)$. The exponential vanishing error in Q estimation comes at the cost of variances in the model estimation. Therefore, the agent can choose H, the depth of roll-out, in such a way to minimize the estimation error through approximating the upper bound on error terms.

4 **Generative Adversarial Tree Search**

We provide a more detailed description of generative adversarial tree search (Alg. 1). Generative Adversarial Tree Search (GATS) Alg. 1 is built upon DQN/DDQN and by re-using the experiences in the replay buffer it learns a reward model RP, model dynamics GDM and Q-function. For planning, GATS deploys bounded-depth MCTS on the learned model (GDM and RP), instead of the real environment. It then uses the learned Q-function to estimate the maximum expected return at the leaf nodes Fig. 8. In order to learn the model dynamics, we propose a novel deep neural network, GDM, parametrized by θ_{GDM} which we show its sample efficiency and prediction performance on pixel space. The input to the GDM is the state (four consecutive frames) and a sequence of actions, from which GDM generates the successor frames. We train GDM by sampling mini-batches of experiences from the replay buffer. Simultaneously, we train RP, parameterized with θ_{RP}, the same way.

In our basic experiments, our exploration strategy for GATS, as with DQN, consists of the ϵ-greedy approach. We also propose a new optimism-based method of exploration for GATS. Through out our experimental study, we observed that the approximated Wasserstein distance, the output of the discriminator, decreases for frequently visited state-action experiences and stays high for rare experiences. Intuitively, for unfamiliar experiences, the generator is unable to fool the discriminator, so the Wasserstein distance between real and generated frames is high. We compute the exponent of this distance and use its inverse to construct a notion of pseudo-count (Ostrovski et al. 2017) a notion of count for continuous state and action $\hat{N}(x, a)$. In the optimism-in-the-face of uncertainty principle (Jaksch et al. 2010) an optimistic Q-function, \hat{Q}, is learned for the exploration. We deploy this notion of optimism and use the pseudo-count to compute the optimistic Q

$$\hat{Q}_\pi(x, a) = \hat{r}(x, a) + c \sqrt{1 / \hat{N}(x, a)} + \gamma \sum_{x'} \hat{T}(x' | x, a) \hat{Q}_\pi(x', \pi(x')) \quad (6)$$

where c is the confidence scale constant. We can decouple Eq. 6 into the Q-function and confidence part, i.e. $\hat{Q}_\pi(x, a) = Q_\pi(x, a) + C_\pi(x, a)$ where

$$C_\pi(x, a) := c \sqrt{1 / \hat{N}(x, a)} + \gamma \sum_{x'} \hat{T}(x' | x, a) C_\pi(x', \pi(x')) \quad (7)$$

In the latter sections, we emphatically study e_R and e_T, Fig. 1, and observe that they are surprisingly small in practice, e.g. RP, on average, makes less than two mistakes per entire episode in Pong.
We train GDM

We study the performance of GATS with the ACVP (Oh et al., 2015) architecture for the generator trained on L2 loss using the same

we build upon the U-Net model image-to-image generator originally used in PIX

Algorithm 1

Therefore, we learn C the same way as we learn Q by using DDQN. We add the learned C to \(\hat{\xi}(\pi, x) \) for our GATS planning, i.e. \(\max_{\pi} \{\hat{\xi}(\pi, x) + C(\pi, x)\} \). This heuristic approach encourages the agent to explore the parts of state space where the GDM is not expert at. Since those parts of the state space correspond to less frequently visited parts of the state space, this approach can help with better exploration compared to \(\varepsilon \)-greedy approach.

5 Experiments

We study the performance of GATS on 5 Atari games, namely Pong, Asterix, Breakout, Crazy Climber and Freeway, using the OpenAI Gym (Brockman et al., 2016). We adopt the common DQN architecture and game settings popularized by Minh et al. (2015). For the GDM architecture (Fig. 10), we build upon the U-Net model image-to-image generator originally used in PIX2PIX (Isola et al., 2017). The GDM receives a state, sequence of actions, a Gaussian noise vector, and generates a predicted next state. The RP is a simple model with 3 outputs, it receives the current state, action, and the successor state as input then outputs a class, one for each possible clipped reward \(\{-1, 0, 1\} \). We train GDM and RP using prioritized weighted mini-batches of size 128 (more weight on recent samples), and update the two networks every 16 decision steps of GATS (4 times less frequently than the Q update). We deploy GATS as a bounded-depth MCTS on the learned model and use the learned Q values at the leaves.

Our experiments show that with significantly fewer number of samples, compared to DQN, the GDM model learns the model dynamics on the area of training and generalize to the test set. We also show it adapts significantly fast if we change the policy or even the difficulty or the mode of the domain. In order to develop the current GDM, we experimented many different model architectures for the generator-discriminator, as well as different loss functions. We compare performance visually on test samples, since the L1 and L2 losses are not good metrics for learning game dynamics as demonstrated in detail in Apx. We experiment with the PatchGAN discriminator (patch sizes 1, 16, and 70) and L1 loss used in PIX2PIX (Isola et al., 2017). We find this architecture takes approximately 10× more training iterations to learn game dynamics for Pong than the current GDM. This is likely since the learning game dynamics such as ball position requires the entire frame for the discriminator, more than the patch-based texture loss given by PatchGAN. We also experiment with the ACVP (Oh et al., 2015) architecture for the generator trained on L2 loss using the same hyper-parameters as specified in the original paper, and we find it also takes an order of magnitude more training iterations to learn game dynamics. We hypothesize this is because ACVP is a much larger network optimized for long term predictions, and does not take advantage of skip-connections and the discriminator loss as in GDM.

\footnote{We set the noise to zero for deterministic environments.}

\footnote{See Apx for detailed explanation on the architecture and optimization procedure.}

\footnote{For short loggerhead in deterministic environment, we expand the whole tree.}
For the choice of the GAN loss, we first tried the original GAN-loss ([Goodfellow et al., 2014]) which is based on Jensen–Shannon distance. With this criterion, not only is it difficult to find the right parameters but also not stable enough for non-stationary domains. We did the experiments using this loss and trained for Pong while the reuslting model was not stable enough for RL tasks. The training loss is sometimes unstable even for a given fixed data set. Since, Wasserstein metric provides Wasserstein distance criterion and is a more general loss in GANs, we deployed W-GAN ([Arjovsky et al., 2017]) for our GDM. As W-GAN requires the discriminator to be bounded Lipschitz function, the authors propose the gradient clipping to make the W-GAN training stable and effective. Using W-GAN provided improvement but still not sufficient for RL where fast and stable convergence is required. In order to improve the learning stability, parameter robustness, and quality of frames, we also tried the follow-up work on improved-W-GAN ([Gulrajani et al., 2017]) which adds a gradient penalty into the loss of discriminator in order to satisfy the bounded Lipschitzness. Even though it made the GDM more stable than before, it was still not sufficient due to the huge instability in the loss curve. Finally, we deployed a new technique, called spectral normalization ([Miyato et al., 2018]), which not only provides high quality frames, but also converges quickly while the loss function stays smooth. Because of the stability, robustness to hyper parameters, and fast learning characteristics of spectral normalization combined with W-GAN, GDM is able to handle the change in the state distribution in RL and still preserve the frame quality. More detailed study is left to Appendix.

Fig. 1 shows the efficiency of GDM and how accurate it can generate next 9 frames just conditioning on the previous 4 frames and the trajectory of actions. We train the GDM on a replay buffer of 100,000 frames using a 3-step loss, and evaluate its performance on 8-step roll-outs on unseen 10,000 frames. We also tried the learned Q function on both generated and real consecutive frames and observed that the relative deviation is significantly small ($O(10^{-2})$). Therefore as DRL methods are data hungry, we can re-use the data generated by GDM to train the Q-function even more. In later we study the ways we can incorporate the generated samples by GDM and RP in order to train the Q-function, as it is done in Dyna-Q. It worth noting that, since the GDM and RP modes adapt fast to the samples, it is critical to come up with replay buffer sampling distribution. Our analysis suggests sampling fresher experience with higher probability than the old samples Fig. 6.

Shift in Domain Moreover, we extend our study to the case where we change the model dynamics by changing the game mode. In this case, by going from default mode to alternate mode in pong, the opponent paddle gets halved in size. We expected that in this case, where the game became easier, the DDQN agent would preserve its performance but surprisingly it gave us the most negative score possible, i.e -21 and broke. Therefore, we start fine-tuning DDQN and took 3M time step (12M frame) to master the game again. It is worth noting that it takes DDQN 5M time step (20M frame) to master from scratch. While DDQN shows a vulnerable and undeniably breakable behavior to this scenario, GDM and RP thanks to their detailed design, adapt to the new model dynamics in 3k samples, which is amazingly smaller (see detail in Fig). For this study, we made a Gym style wrapper for new version of ALE which supports different modes of difficulty levels.
6 Related Work

The exploration-exploitation trade-off is extensively studied in RL literature (Kearns & Singh, 2002; Brafman & Tennenholtz, 2003; Asmuth et al., 2009). The regret analysis of MDPs (Jaksch et al., 2010; Bartlett & Tewari, 2009) is investigated, where the Optimism in the Face of Uncertainty (OFU) principle is applied to guarantee a high probability regret upper bound. For Partially Observable MDPs, OFU is shown to provide high probability regret upper bound (Azizzadenesheli et al., 2016a). Furthermore, more general settings like partial monitoring games are theoretically tackled (Barto et al., 2014) and minmax regret guarantees are provided.

While theoretical RL addresses variety of the trade-offs in the exploration-exploitation, this problem is still prominent in practical reinforcement learning research (Mnih et al., 2015; Abel et al., 2016; Azizzadenesheli et al., 2016b). On the empirical side, recent successes in video games has sparked a flurry of research interest. For example (Cuayáhuitl, 2016; Fatemi et al., 2016; Wen et al., 2016) investigate DRL for dialogue policy learning, with (Lipton et al., 2018) addressing the efficiency of exploration. To combat the sample complexity shortcoming, designing an efficient exploration strategy in DRL has emerged as an active research topic, e.g. optimism (Ostrovski et al., 2017) and Thompson Sampling (Osband et al., 2016; Lipton et al., 2018; Azizzadenesheli et al., 2018).

Minimizing the Bellman residual using Bootstraps of the Q-function has been the core of value based DRL methods (Mnih et al., 2015; Van Hasselt et al., 2016). Moreover, it has been extensively studied that minimizing the Bellman residual provides a biased estimator of the value function (Antos et al., 2008; Thrun & Schwartz, 1993). In order to mitigate this bias, along with other reasons, DQN proposes to update the target value less frequently than the rest of the model in order to mimic the Fitted-Q update. This tweak might reduce the bias in the value estimator but significantly increases the sample complexity. On the other hand, Monte Carlo sampling strategies (Kearns et al., 2002; Kocsis & Szepesvári, 2006) have been proposed as efficient methods for planning, but suffer from high sample complexity in real world applications.

Recently, there have been studies of conditional video prediction for video games (Oh et al., 2015), where large models are trained with an L2 loss in order to predict long future trajectories of frames given actions. The quality of the generated frames is measured by training DQN on them. Since these models use L2 loss, they are not capable of producing meaningful frames in stochastic environments or when the frames contain high frequency details. We implemented this work and compared it against GDM. We observe that GDM requires significantly fewer iteration to converge to perceptually unidentifiable frames for human with much smaller network. While we also applied a learned Q on generated frames from both models and observed GDM significantly lower error compare to the corresponding real value.

Learned environment models are leveraged in Weber et al. (2017), where an encoder model is used to encode the generated trajectories into an abstract representation, which is used as an additional input to the policy model. They validate their methods on a small puzzle world, Sokoban, and, further, show the capability of their model on multi-task learning in their miniPacman environment. Weber et al. (2017) does not use explicit planning and roll-out strategies. A similar approach is also concurrently developed where experimental study on Car Racing and VizDoom are provided (David Ha, 2018). Further work employs transition models in order to perform roll-outs in the encoded state representation (Oh et al., 2017), and demonstrate not much beyond the modest gains on Atari games (compared to DQN). A similar approach also has been studied in robotics (Wahlström et al., 2015). In contrary, in this work, we are able to learn model dynamics in the original state/pixel space which can be used to speed up the learning even further.

Despite GANs’ capabilities in recovering the input data manifold and generating perceptually good images, they are difficult to train and often unstable, especially for non-stationary tasks like RL. In recent years, there has been significant progress in developing stable learning procedures. The Wassestien GAN (W-GAN) (Arjovsky et al., 2017) uses the Wasserstein metric as a notion of distance between two distributions, while requires the discriminator to be from the set of bounded Lipschitz functions. In order to satisfied this boundedness, improved W-GAN (Gulrajam et al., 2017) is proposed which penalizes the discriminator’s gradient while found still hard to train. Spectral normalization of discriminators (Miyato et al., 2018) has been studied recently, where a smooth convergence is empirically observed. We leverage these advances in creating a stable learning procedure for the GDM.
One notable aspect of the GATS algorithm is its flexibility. GATS consists of a few building blocks:
(i) Value learning; we deployed DQN and DDQN, (ii) Planning; we use pure Monte Carlo sampling,
(iii) Reward predictor; we used a simple 3-class classifier; (iv) Dynamics model, we propose the GDM architecture. Practically, one can easily deploy any other methods for each of these blocks. For instance, for value learning (i), one can use Count-based methods (Bellemare et al., 2016). For planning (ii), one can use upper confidence bound tree search (UCT) (Kocsis & Szepesvári, 2006) or policy gradient methods (Kakade, 2002; Schulman et al., 2015). For the reward model (iii), if the reward has a continuous distribution, one can learn the mean reward using any regression model. Lastly, for model dynamics (iv), one can extend GDM or choose any other image generating model. Interestingly, this work can be extended to the λ-return setting, where a mix of n steps are acquired. (iv) Dynamics model, we propose the GDM architecture. Practically, one can easily deploy any other methods for each of these blocks. For instance, for value learning (i), one can use Count-based methods (Bellemare et al., 2016). For planning (ii), one can use upper confidence bound tree search (UCT) (Kocsis & Szepesvári, 2006) or policy gradient methods (Kakade, 2002; Schulman et al., 2015). For the reward model (iii), if the reward has a continuous distribution, one can learn the mean reward using any regression model. Lastly, for model dynamics (iv), one can extend GDM or choose any other image generating model. Practically, one can easily deploy any other methods for each of these blocks. For instance, for value learning (i), one can use Count-based methods (Bellemare et al., 2016). For planning (ii), one can use upper confidence bound tree search (UCT) (Kocsis & Szepesvári, 2006) or policy gradient methods (Kakade, 2002; Schulman et al., 2015). For the reward model (iii), if the reward has a continuous distribution, one can learn the mean reward using any regression model. Lastly, for model dynamics (iv), one can extend GDM or choose any other image generating model.

Table 1: Set of approaches we used to improve GATS performance

<table>
<thead>
<tr>
<th>Replay Buffer</th>
<th>Optimizer</th>
<th>Sampling strategies</th>
<th>Optimism</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Plain DQN</td>
<td>(i) Learning rate</td>
<td>(i) Leaf nodes</td>
<td>(i)W-loss</td>
</tr>
<tr>
<td>(ii) Dyna-Q</td>
<td>(ii) Mini-batch size</td>
<td>(ii) Random samples from the tree</td>
<td>(ii) exp(W-loss)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(iii) Samples by following greedy Q</td>
<td>(iii) L1+L2+W-distance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(iv) Samples by following ε-greedy Q</td>
<td>(iv) exp(L1+L2+W-distance)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(v) Geometric distribution</td>
<td></td>
</tr>
</tbody>
</table>

Discussion of negative results In this section, we enumerate several hypotheses for why GATS under-performs DQN despite near-perfect modeling, and discuss several attempts to improve GATS based on these hypotheses.

Replay Buffer: The agent’s decision under GATS sometimes differs from that of the learned Q model. Therefore, it’s important that we allow Q-learner to observe the outcome of important outcomes in the generated MCTS states. To address this problem, we tried storing the samples generated in tree search and use them to further train the Q-model. We studied two scenarios: (i) using plain DQN with no generated samples and (ii) using Dyna-Q to train the Q function on the generated samples in MCTS. However, these techniques did not improve the performance of GATS.

Optimizer: Since the problem is slightly different from DQN, especially in the Dyna-Q setting with generated frames, we tried a variety of different learning rates and minibatch sizes to tune the Q learner.

Sampling strategy: We considered variety of different way to use the samples generated in tree search for learning in Dyna-Q. (i) Since we use the Q-function on the leaf nodes, we tried using the generated experience at the leaf nodes in the replay buffer. (ii) We randomly sampled additional generated experience from the tree to update the Q-learner. (iii) We choose the generated experience corresponding to the greedy action from the Q-learner on the generated tree by MCTS, which represents the trajectory we would have received following the greedy Q algorithm. We hypothesized...
that if we trained Q on its own decision it would improve the learned Q function. (iv) We also considered the case of following the ϵ-greedy policy induced by Q, rather than the greedy Q itself. (v) Finally, since following GATS or Q results in a bigger shift in the later part of tree, we used generated trajectories from the greedy and ϵ-greedy policies and stored experience which happened in the later part of tree with higher probability. Specifically, we tried a variety of different geometric distributions to see which one was most helpful.

Optimism: Optimism-based exploration strategy with the GDM. We observed that areas that of the state space that are novel to the GDM are often explored less, so the GDM has a higher absolute value of the Wasserstein distance for rarely visited state action pairs and a lower value of the Wasserstein distance for frequently seen state-action pairs. We added (i) the W-loss and also (ii) its exponent as a notion of extrinsic reward to encourage exploration. In (iii) and (iv) We did the same with a summation of different losses.

Despite this extensive and costly study on GATS, we were not able to show that GATS benefits besides a limited improvement in training speed on Pong.

Hypothesis on negative results. From these negative results, we propose a hypothesis for why tree search with short roll-outs, such as the GATS algorithm, might not boost performance even with perfect modeling with GDM and RP, despite reducing local bias. Consider the hypothetical situation described in Fig. 2(a) where a fish starts with an initialization of the Q function such that the greedy action is represented by yellow arrows. If the fish follows DQN, it reaches the shark quickly and receives a negative reward. The agent learns the down action is not a good action. Now consider the GATS algorithm with the same Q function and 2 step look-ahead, even with a true model simulator. In this case, when the agent reaches the step above the sharks, the MCTS roll-out informs the agent that there is a negative reward of going down. Thus, the agent chooses action right, following the GATS action (red action). This holds for all following states with the red arrow in them. GATS locally avoid bad states, but does this information globally propagate? In this case, with ϵ-greedy exploration, the agent finally dies and gets a negative reward. This negative reward happens much later than for a DQN agent. Therefore, many more updates are required for the agent to learn that action down at the beginning of the game is not a good action. Moreover, this negative signal may even vanish due to the long update lengths. This shows how GATS roll-outs can locally help to avoid (or reach) catastrophic (or good) events, but it can also slow down global understanding.

As we suggested in our negative results, this problem can be solved by putting the generated experience of MCTS in the replay buffer and deploying Dyna-Q. However, Fig. 2(b) illustrates the situation where the GATS action in the third row before the sharks is "right". In this case, two-step roll-outs do not see the sharks, and thus Dyna-Q does not speed learning, all while requiring significantly more computation. In practice, especially with limited memory of the replay buffer and limited capacity of the function classes, it can be difficult to tune GATS to work.

For many complex applications, like hard Atari games, GATS may require significantly longer roll-out depths with sophisticated Dyna-Q in order to perform well, which was computationally in-feasible for this study. However, the insights in designing near-perfect modeling algorithms and the extensive study of GATS, highlight several key considerations and provide an important framework to effectively design algorithms combining model-based and model-free reinforcement learning.

REFERENCES

APPENDIX

A BIAS-VARIANCE OF Q_θ

To observe the existing bias and variance in Q_θ, we run solely DQN on the game Pong, for $20M$ frame steps. Fig. 3 shows 4 consecutive frames where the agent receives a negative score and Table 3 shows the estimated Q values by DQN for these steps. As we observe in Fig. 3 and Table 3 at the time step t, the estimated Q value of all the actions are almost the same. The agent takes the down action and the environment goes to the next state $t+1$. The second row of Table 3 expresses the Q value of the actions at this new state. Since this transition does not carry any reward and the discount factor is close to 1, ($\gamma = 0.99$) we expect the max Q values at time step $t+1$ to be close the Q values of action down, but it is very different. Moreover, in Fig. 4 and Table 4 we investigate the case that the agent catches the ball. The ball is going to the right and agent needs to catch it. At time step t, the paddle is not on the direction of ball velocity, and as shown in Table 4 the optimal action is down. But a closer look at the estimated Q value of action up reveals that the Q value for both action up is unreasonably close, when it could lead to losing the point. Lastly, we studied the existing errors in the estimation of the Q function using DQN. In Table 5 if the agent could roll-out even one step before making a decision, it could observe negative consequence of action down. The positive effect of the roll-out is more significant in earlier stages of Q learning, where the Q estimation is more off.

B GATS ON PONG

We run GATS with 1, 2, 3, and 4 steps lookahead ($GATS1, GATS2, GATS3, GATS4$) and show its performance improvement over DQN in Fig. 5 (left). Fig. 5 (right) shows the RP prediction accuracy. We observe that when the transition phase occurs at decision step 1M, the RP model misclassifies the positive rewards. But the RP rapidly adapts to this shift and reduces the classification error to less than 2 errors per episode.

As DRL methods are data hungry, we can re-use the data to efficiently learn the model dynamics. Fig. 1 shows how accurate the GDM can generate next 9 frames just conditioning on the first frame and the trajectory of actions. This trajectory is generated at decision step $100k$. Moreover, we extend our study to the case where we change the model dynamics by changing the game mode. In this case, by going from default mode to alternate mode in pong, the opponent paddle gets halved in size. We expected that in this case, where the game became easier, the DDQN agent would preserve its performance but surprisingly it gave us the most negative score possible, i.e -21 and broke. Therefore, we start fine tuning DDQN and took 3M time step (12M frame) to master the game again. It is worth noting that it takes DDQN 5M time step (20M frame) to master from scratch. While DDQN shows a vulnerable and undesirably breakable behaviour to this scenario, GDM and RP thanks to their detailed design, adapt to the new model dynamics in 3k samples, which is amazingly smaller (see detail in F).
Figure 5: *left:* GATS learns a better policy faster than plain DQN (2 times faster). GATS k denotes GATS of depth k. *right:* Accuracy of RP. The Y axis shows the number of mistakes per episode and each episode has average length of $2k$, so the acc is almost always around 99.8%. This accuracy is consistent among runs and different lookahead lengths.

In addition to GATS on DQN, we also study two other set of experiments on DDQN. Since Fig. 5 shows that the deeper roll-outs beyond one step do not provide much additional benefit for Pong, we focus on one-step roll-outs for the next two experiments. In the first experiment, we equip GATS + DDQN with the mentioned Wasserstein-optimism approach, and compare it with DDQN and plain GATS + DDQN, which both use ε-greedy based approaches for exploration. In Fig. 6 left, we observe that this optimism heuristic is helpful for better exploration.

In the second experiment, we investigate the effect of prioritizing training samples for the GDM, fresher samples are more probable to be chosen, which we do in all experiments reported in Fig. 6 left. We study the case where the input samples to GDM are instead chosen uniformly at random from the replay buffer in Fig. 6 right. In this case the GATS learns a better policy faster at the beginning of the game, but the performance stays behind DDQN, due to the shift in the state distribution. It is worth mentioning that for optimism based exploration, there is no ε-greedy, which is why it gets close to the maximum score of 21. We tested DDQN and GATS-DDQN with $\varepsilon = 0$, and they also perform close to 21. We further extend the study of GDM to more games and observed same robust behaviour as Pong. We also tried to apply GATS to more games, but were not able to extend it due to mainly its high computation cost. We tried different strategies of storing samples generated by MCTS, e.g. random generated experience, trajectory followed by Q on the tree, storing just leaf nodes, max leaf, also variety of different distributions, e.g. geometric distributing, but again due the height cost of hyper parameter tuning we were not successful to come up with a setting that GATS works for other games.

Figure 6: *left:* The optimism approach for GATS improves the sample complexity and learns a better policy faster. *right:* Sampling the replay buffer uniformly at random to train GDM, makes GDM slow to adapt to novel parts of state space.

C Asterix Negative Results

We include the results for GATS with 1 step look-ahead (GATS-1) and compare its performance to DDQN as an example for the negative results we obtained with short roll-outs with the GATS algorithm. While apply the same hyper parameters we tuned for pong, for Asterix results in performance slightly above random policy, we re-do the hyper-parameter tuning specifically for this game again and Fig. 7 is the best performance we achieved.
This illustrates the challenges of learning strong global policies with short roll-outs even with near-perfect modeling.

Figure 7: The GATS algorithm on Asterix with 1 step look-ahead, compared to the DDQN baseline.

While our experiments on other games shows GATS performance is not much beyond the random policy, post-submission we decided to at least add the clean plot to the appendix. While each runs takes a long time to complete and also the time span of each run varies by the depth and the number of available actions (size of the tree) we are still waiting to finalize the plots.

D Proof of Proposition 1

Proof 1 of the Proposition 1. In order to prove the Proposition 1, we first restate the Eq. 4 and right two contributing parts of the expected value separately;

\[\xi_p(\pi, x) := \mathbb{E}_{x'} \mathbb{GDM,RP} \left[\left(\sum_{h=0}^{H-1} \gamma^h \hat{r}_h \right) | x \right] + \mathbb{E}_{x', \mathbb{GDM,RP}} \left[\gamma^H \max_a \hat{Q}(x_H, a) | x \right] \] (8)

The error in estimating the first term in the RHS of Eq. 8 carries an error in modeling of the environment and depends on the deficiency in the perfectness of RP and GDM models. While the error in estimation of the second part is mostly due to the bias and variance in DQN estimate of Q-function \(Q \) as well as the GDM due to the distribution shift in \(\mathbb{E}_H \).
In the following, first we bound the second term and then the first time. For the error in the second term, by adding and subtracting this term,

$$
|\mathbb{E}_{x, \Gamma, \Delta, \Phi} \left[\gamma^H \max_a Q(x_H, a) \right] - \mathbb{E}_{\pi_r} \left[\gamma^H \max_a Q(x_H, a) \right] |
$$

$$
= \gamma^H \sum_{x_H} \hat{P}(x_H | x, \pi_r) Q(x_H, a) - P(x_H | x, \pi_r) Q(x_H, a)
$$

$$
= \gamma^H \sum_{x_H} \hat{P}(x_H | x, \pi_r) Q(x_H, a) - P(x_H | x, \pi_r) Q(x_H, a)
+ P(x_H | x, \pi_r) Q(x_H, a) - P(x_H | x, \pi_r) Q(x_H, a)
$$

$$
= \gamma^H \sum_{x_H} \left(\hat{P}(x_H | x, \pi_r) - P(x_H | x, \pi_r) \right) Q(x_H, a)
+ P(x_H | x, \pi_r) \left(Q(x_H, a) - Q(x_H, a) \right)
$$

$$
\leq \frac{\gamma^H}{1 - \gamma} \sum_{x_H} \left| \hat{P}(x_H | x, \pi_r) - P(x_H | x, \pi_r) \right|
+ \gamma^H \sum_{x_H} \left| \hat{Q}(x_H, a) - Q(x_H, a) \right|
$$

$$
\leq \frac{\gamma^H}{1 - \gamma} \sum_{x_H} \left| P(x_H | x, \pi_r) - \hat{P}(x_H | x, \pi_r) \right| + \gamma^H \epsilon_Q
$$

(9)

where the term $1 - \gamma$ in the first inequality appears since the maximum possible Q is not greater than $\frac{1}{\gamma}$. In order to bound $|\hat{P}(x_H | x, \pi_r) - P(x_H | x, \pi_r)|$, we need to expand each term to their pieces. For instance, for $P(x_H | x, \pi_r)$, we have

$$
P(x_H | x, \pi_r) := \sum_{x_i, a_i, \forall i \in [1, H-1]} T(x_1 | x, a_1) \pi_r(a_1 | x)
\prod_{i=2}^{H-1} T(x_i | x_{i-1}, a_i) \pi_r(a_i | x_{i-1}) T(x_H | x_{H-1}, a_H) \pi_r(a_H | x_{H-1})
$$

while the similar expression also holds for the \hat{P}

$$
\hat{P}(x_H | x, \pi_r) := \sum_{x_i, a_i, \forall i \in [1, H-1]} \hat{T}(x_1 | x, a_1) \pi_r(a_1 | x)
\prod_{i=2}^{H-1} \hat{T}(x_i | x_{i-1}, a_i) \pi_r(a_i | x_{i-1}) \hat{T}(x_H | x_{H-1}, a_H) \pi_r(a_H | x_{H-1})
$$

With adding and subtracting trick, the difference can be written as follows:

$$
\sum_{x_H} \left| P(x_H | x, \pi_r) - \hat{P}(x_H | x, \pi_r) \right|
$$

$$
= \sum_{x_i, a_i, \forall i \in [H]} \left| T(x_1 | x, a_1) - \hat{T}(x_1 | x, a_1) \right| \pi_r(a_1 | x)
\prod_{i=2}^{H} T(x_i | x_{i-1}, a_i) \pi_r(a_i | x_{i-1})
$$

$$
+ \sum_{j=2}^{H} \sum_{x_h, a_h, \forall i \in [H]} \hat{T}(x_1 | x, a_1) \pi_r(a_1 | x)
\prod_{h=2}^{j-1} \hat{T}(x_h | x_{h-1}, a_h) \pi_r(a_h | x_{h-1})
\prod_{h=j+1}^{H} T(x_h | x_{h-1}, a_h) \pi_r(a_h | x_{h-1})
$$
Since e_T is the bound on the transition kernel estimation:

$$\sum_{x_H} \left| P(x_H|x, \pi_r) - \hat{P}(x_H|x, \pi_r) \right| \leq H e_T$$

therefore:

$$\left| E_{\pi_r, GDM, RP} \left[\gamma^H \max_a \hat{Q}(x_H, a) \bigg| x \right] - E_{\pi_r} \left[\gamma^H \max_a Q(x_H, a) \bigg| x \right] \right| \leq \frac{H \gamma^H}{1 - \gamma e_T} + \gamma H e_Q$$

This derivation enable us to interpret the bound such that GATS significantly (exponentially in depth) reduces the bias and variance in the estimation of Q, since e_Q contributes in the bound as $\gamma H e_Q$. Now, we express the way to bound the first term in $\xi_r(\pi_r, x)$ directly due to deficiency in the RP and GDM models.

$$\left| E_{\pi_r, GDM, RP} \left[\sum_{h=0}^{H-1} \gamma^h r_h \bigg| x \right] - E_{\pi_r} \left[\sum_{h=0}^{H-1} \gamma^h r_h \bigg| x \right] \right|$$

In order to bound this quantity, we use the same decomposition procedure as we did for the second part, since:

$$E_{\pi_r} \left[\sum_{h=0}^{H-1} \gamma^h r_h \bigg| x \right] := \sum_{x_1, a_1, \forall i \in [1, \ldots, H-1]} T(x_1|x, a_1) \pi_r(a_1|x) \left(r(x, a_1) + \sum_{i=2}^{H-1} r(x_{i-1}, a_i) \right) \prod_{i=2}^{H-1} T(x_i|x_{i-1}, a_i) \pi_r(a_i|x_{i-1})$$

and same of the generated one

$$E_{\pi_r, GDM, RP} \left[\sum_{h=0}^{H-1} \gamma^h r_h \bigg| x \right] := \sum_{x_1, a_1, \forall i \in [1, \ldots, H-1]} \hat{T}(x_1|x, a_1) \pi_r(a_1|x) \left(\hat{r}(x, a_1) + \sum_{i=2}^{H-1} \hat{r}(x_{i-1}, a_i) \right) \prod_{i=2}^{H-1} \hat{T}(x_i|x_{i-1}, a_i) \pi_r(a_i|x_{i-1})$$
As a result, the proposition follows.

\[\left| E_{\pi_r, \text{GDM-} \text{RP}} \left[\sum_{h=0}^{H-1} \gamma^h r_h \right] - E_{\pi_r} \left[\sum_{h=0}^{H-1} \gamma^h r_h \right] \right| \leq \frac{1 - \gamma^{H+1}}{1 - \gamma} \sum_{i=1}^{H-1} \gamma^i \epsilon_T + \sum_{i=1}^{H-1} \gamma^i \epsilon_R = \frac{1 - \gamma^H}{1 - \gamma} \left(\frac{1 - \gamma^H}{1 - \gamma} \epsilon_T + \epsilon_R \right) \]
We train the generator using Adam optimizer with weight decay, and use the discriminator to estimate the Wasserstein distance. The discriminator update is given by:

\[
\frac{\partial}{\partial \theta} \mathbb{E}_{x \sim p_{data}} [\log D(x)] + \frac{\partial}{\partial \theta} \mathbb{E}_{z \sim p_z} [\log (1 - D(G(z)))]
\]

where \(\theta\) denotes the parameters of the discriminator, \(D\) is the discriminator function, \(x\) is a sample from the data distribution, \(z\) is a random Gaussian vector, and \(G\) is the generator function.

Figure 8: Roll-out of depth two starting from state \(x_t\). Here \(\hat{x}\)'s are the generated states by GDM. \(Q(x, a(x))\) denotes the predicted value of state \(x\) choosing the greedy action \(a_Q(x) := \arg \max_{a' \in A} Q(x, a')\).

Figure 9: Training GAN and \(Q_{\theta'}\) using the longer trajectory of experiences.

We train the generator using Adam optimizer with weight decay of 0.001, learning rate of 0.0001 and also \(\beta_1, \beta_2 = 0.5, 0.999\). For the discriminator, we use SGD optimizer with smaller learning rate of 0.00001, momentum of 0.9, and weight decay of 0.1. Given the fact that we use Wasserstein metric for GDM training, the followings are the generator and discriminator gradient updates: for a given set of 5 frames and a action, sampled from the replay buffer, \((f_1, f_2, f_3, f_4, a_4, f_5)\) and a random Gaussian vector \(z\):
We evaluate the GDM max we can use \[\text{worth noting twh these losses are defined on the frames with pixel values in } [10^\theta] \]
where \(\theta \) where \(GDM \) allows us to roll out for longer horizon of more than 10 and still preserve the game dynamics. We also collect 10,000 additional frames for testing the GDM.

Training the GDM difficulty settings in the latest Arcade Learning Environment (Machado et al., 2017). We first fully ran GATS \(Q \) these optimizations degrade the performance of the network. We tracked the difference between \(\beta \)-parameterized with \(\theta \) \(Q \) over the course of training of \(\theta \) and preserve the accuracy.

Discriminator update:
\[
\nabla_{\theta_D} \left[\frac{1}{m} \sum_{i=1}^{m} D_{\theta_D}(f_5, f_4, f_3, f_2, a_4) - \frac{1}{m} \sum_{i=1}^{m} D_{\theta_D}(G_{\theta_G}(f_4, f_3, f_2, f_1, a_4), f_4, f_3, f_2, a_4, z) \right]
\]

Generator update:
\[
\nabla_{\theta_G} \left[-\frac{1}{m} \sum_{i=1}^{m} D_{\theta_D}(G_{\theta_G}(f_4, f_3, f_2, f_1, a_4, z), f_4, f_3, f_2, a_4) \right]
\]

where \(\theta^{GDM} = \{ \theta_G, \theta_D \} \) are the generator parameters and discriminator parameters. In order to improve the quality of the generated frames, it is common to also add a class of multiple losses and capture different frequency aspects of the frames [Isola et al. (2017); Oh et al. (2015)]. Therefore, we also add \(10 \times L1 + 90 \times L2 \) loss to the GAN loss in order to improve the training process. It is worth noting twh these losses are defined on the frames with pixel values in \([-1, 1]\), therefore they are small but still able to help speed up the the learning. In order to be able to roll-out for a longer and preserve the GDM quality, we also train the generator using self generated samples, i.e. given the sequence \((f_1, f_2, f_3, f_4, a_4, f_5, a_5, f_6, a_6, f_7, a_7, f_8) \), we also train the generator and discriminator on the generated samples of generator condition on its own generated samples for depth of three. This allows us to roll out for longer horizon of more than 10 and still preserve the GDM accuracy.

![Figure 10: The GDM generator is an encoder-decoder architecture with skip-connections between mirrored layers, with action and Gaussian noise concatenated in the bottleneck and decoder layers.](image)

Q function on generated frames Ideally, if the GDM model is perfect at generating frames i.e. the space generated frames is, pixel by pixel, the same as the real frames, for the leaf nodes \(x_H \), we can use \(\max_a Q(x_H, a; \theta) \), learned by the DQN model on real frames, in order to assign values to the leaf nodes. But in practice, instead of \(x_H \), we have access to \(\hat{x}_H \), a generated state perceptually is similar to \(x_H \) (Fig. [1]), but from the perspective of \(Q_{\theta} \), they might not be similar over the course of training of \(Q_{\theta} \). In order to compensate for this error, we train another \(Q \)-network, parameterized with \(\theta' \), in order to provide the similar Q-value as \(Q_{\theta} \) for generated frames. To train \(Q_{\theta'} \), we minimize the \(L2 \) norm between \(Q_{\theta'} \) and \(Q_{\theta} \) for a given GAN sample state and trajectory Fig. [2]. For this minimization, we use Adam with learning rate of 0.0001, no weight decay, and \(\text{beta1, beta2} = 0.5, 0.999 \). We experimented with weight decay and adding \(L1 \) loss, but we find these optimizations degrade the performance of the network. We tracked the difference between \(Q_{\theta}(\hat{x}) - Q_{\theta}(x) \) and \(Q_{\theta'}(\hat{x}) - Q_{\theta'}(x) \) and observed twh both of these quantities are negligible. We ran GATS without the \(Q_{\theta'} \), with just \(Q_{\theta} \), and observed only slightly worse performance.

F GDM Domain Adaptation.

We evaluate the GDM’s ability to perform domain adaptation using the environment mode and difficulty settings in the latest Arcade Learning Environment [Machado et al. (2017)]. We first fully train GDM and DDQN on Pong with Difficulty 0 and Mode 0. We then sample 10,000 frames for training the GDM on Pong with Difficulty 1 and Mode 1, which has a smaller paddle and different game dynamics. We also collect 10,000 additional frames for testing the GDM. We train GDM using
transferred weights and reinitialized weights on the new environment samples and observe the L1 and L2 loss on training and test samples over approximately 3,000 training iterations, and we observe that they decrease together without significant over-fitting in Fig. 11. To qualitatively evaluate these frames, we plot the next frame predictions of four test images in Fig. 11. We observe that training GDM from scratch converges to a similarly low L1 and L2 loss quickly, but it fails to capture the game dynamics of the ball. This indicates the L1 and L2 loss are bad measurements of a model’s ability to capture game dynamics. GDM is very efficient at transfer. It quickly learns the new model dynamics and is able to generalize to new test states with an order of magnitude fewer samples than the Q-learner.

GDM TREE ROLLOUTS

Finally, we evaluate the ability of the GDM to generate different future trajectories from an initial state. We sample an initial test state and random action sequences of length 5. We then unroll the GDM for 5 steps from the initial state. We visualize the different rollout trajectories in Fig. 12.
Figure 12: Eight 5-step roll-outs of the GDM on the Pong and Asterix domains. Generated by sampling an initial state with 8 different 5-action sequences.