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ABSTRACT

Imitation learning aims to learn an optimal policy from expert demonstrations
and its recent combination with deep learning has shown impressive performance.
However, collecting a large number of expert demonstrations for deep learning
is time-consuming and requires much expert effort. In this paper, we propose a
method to improve generative adversarial imitation learning by using additional
information from non-expert demonstrations which are easier to obtain. The key
idea of our method is to perform multiclass classification to learn discriminator
functions where non-expert demonstrations are regarded as being drawn from an
extra class. Experiments in continuous control tasks demonstrate that our method
learns better policies than the generative adversarial imitation learning baseline
when the number of expert demonstrations is small.

1 INTRODUCTION

The goal of sequential decision making problems is to learn an optimal policy that exhibits task-
solving behavior. Reinforcement learning (RL) is a powerful approach to find such a policy by
maximizing rewards computed by a reward function (Puterman, 1994; Sutton & Barto, 1998). While
RL has achieved great success in solving challenging tasks (Mnih et al., 2015; Silver et al., 2017),
its performance depends heavily on a good reward function which well captures the concept of task-
solving behavior. Unfortunately, designing such a good reward function is a difficult trial-and-error
process and often time-consuming. This difficulty is one of the major limitations of RL for many
real-world applications.

Imitation learning (IL) (Schaal, 1999) is an alternative approach to learn an optimal policy. In
contrast to RL, IL has access to expert demonstrations, which are task-solving trajectories collected
from experts who have mastered the task, and IL finds a policy that generates trajectories similar
to these expert demonstrations. IL has been a long-studied problem and is attracting more attention
recently, particularly in robotics (Duan et al., 2017; Stadie et al., 2017) and games (Ross et al.,
2011). However, traditional IL methods rely on extensive feature engineering which makes their
applicability quite limited.

Many approaches were proposed to overcome the difficulty of feature engineering in IL. Among
them, the most successful approach is to use deep neural networks to learn representative features
in an end-to-end manner (Wulfmeier et al., 2015; Finn et al., 2016a; Ho & Ermon, 2016; Fu et al.,
2018). In particular, generative adversarial imitation learning (GAIL) (Ho & Ermon, 2016) is a
state-of-the-art method that uses generative adversarial training to perform IL with deep neural net-
works. While the combination of IL and deep learning led to impressive performance improvement,
it has introduced a new limitation regarding sample efficiency as training a deep neural network gen-
erally requires a large amount of data. This is a severe limitation in IL since collecting a large num-
ber of expert demonstrations can be expensive and time-consuming, and requires much expert effort.
Moreover, the generative adversarial training procedure is known to be highly unstable (Mescheder
et al., 2018), and this issue becomes more severe when only a small amount of data is available.

While expert demonstrations may be expensive, non-expert demonstrations collected from non-
experts who have not mastered the task are often much cheaper to obtain. For instance, demon-
strations from amateur-level players in the game of Go are much cheaper to obtain than those from
master-level players. Leveraging additional information from a large number of non-expert demon-
strations to improve IL is the key idea of semi-supervised inverse RL (SSIRL) (Valko et al., 2012)
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and IRL from failure (IRLF) (Shiarlis et al., 2016). Both SSIRL and IRLF have shown to perform
well for low-dimensional problems with proper feature engineering. However, they are extensions
of traditional IL methods and are not capable of efficiently training deep neural networks which are
needed for handling high-dimensional problems. Moreover, both of them rely on rather restrictive
assumptions about data generating processes of non-expert demonstrations which we cannot control
in practice.

In this paper, we propose a novel method to leverage non-expert demonstrations without the afore-
mentioned weaknesses of SSIRL and IRLF. Our method is built upon the generative adversarial
training procedure where we perform multiclass classification to learn discriminator functions with
non-expert demonstrations regarded as being drawn from an extra class. Our method uses both
expert and non-expert demonstrations in the discriminator learning objective, and this leads to a
better feature representation of discriminator functions. We show that the minimax formulation
commonly used in generative adversarial training does not guarantee the optimality of policies for
our method, and we alternatively propose a modified optimization procedure which provides such
a guarantee. We also show that naive extensions of GAIL that mix non-expert demonstrations with
expert demonstrations or agent’s trajectories only learn a mixture policy and does not learn the ex-
pert policy. Experiments on benchmark continuous control tasks show that our method performs
better than GAIL especially when only a small number of expert demonstrations is available.

2 RELATED WORK

IL has been a long-studied problem and there are many approaches to solve this problem, including
behavior cloning (Pomerleau, 1988), occupancy measure matching (Syed et al., 2008) and IRL (Rus-
sell, 1998; Ng & Russell, 2000). Recently, IL methods that use a generative adversarial training
procedure (Goodfellow et al., 2016) have gained a great deal of interest thanks to its effectiveness
at training deep neural networks (Ho & Ermon, 2016; Finn et al., 2016a; Fu et al., 2018). Despite
such success, deep neural networks are well-known to have poor data efficiency and require a large
amount of data to train. For this reason, these methods may not perform well when only a small
number of expert demonstrations are available.

Semi-supervised learning (SSL) (Chapelle et al., 2010) improves sample efficiency by utilizing a
large amount of unlabeled data and it has shown promising results in deep learning (Ranzato &
Szummer, 2008; Weston et al., 2012). While mainly developed for supervised learning, SSL can
be applied to improve some IL methods as well. In particular, semi-supervised IRL (SSIRL) (Valko
et al., 2012) improves the IRL method of Abbeel & Ng (2004) by using semi-supervised support
vector machines to classify between expert demonstrations and trajectories generated by the agent.
However, this approach is not suitable due to the difference in data generating processes between
SSL and IRL. More specifically, SSL methods generally assume that an unlabeled dataset is a mix-
ture of positive and negative samples. For SSIRL, this implies that an unlabeled demonstration
dataset is a mixture of expert demonstrations and the agent’s trajectories. However, collecting such
an unlabeled dataset is quite difficult in practice since we do not know the agent’s policies before-
hand. This issue has been remedied to some extent by Audiffren et al. (2015) where the authors
proposed using a manifold regularization technique which relies on a milder assumption on the
unlabeled dataset. However, manifold regularization requires an appropriate similarity function to
perform well. Moreover, both methods are unsuitable in high-dimensional problems due to its de-
pendence on the linearity of reward functions and good feature engineering.

IRL from failure (IRLF) (Shiarlis et al., 2016) also utilizes an additional demonstration dataset which
is assumed to consist of demonstrations collected by non-expert who failed to solve the task. Us-
ing this dataset, the authors proposed an IRL method that encourages the agent to be dissimilar to
non-expert while learning an expert policy. While IRLF is technically sounded, collecting strictly
failure demonstrations can be expensive on tasks such as autonomous driving where failures are
catastrophic. Moreover, this method is still restricted by the linear reward assumption and is not
applicable to train deep neural networks.

Using additional datasets to improve generative adversarial training was explored in the context
of semi-supervised generative modeling (Salimans et al., 2016; Li et al., 2017a) and multi-modal
generative modeling (Liu & Tuzel, 2016). However, if we want to apply these methods to our IL
setting, then we are required to generate trajectories to imitate non-experts. This is inefficient since
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generating trajectories requires interactions with environment and we would like to keep the number
of such interactions as small as possible. In contrast, our method only learns the expert policy and
only generate trajectories to imitate the expert.

Our proposal of using an additional dataset as an extra class in multiclass classification resembles the
idea of universum learning (Vapnik, 1998; 2006; Zhang & LeCun, 2017). So far, universum learning
has been applied only to supervised learning problems, especially for discriminative learning with
support vector machines. Thus, our contribution may be regarded as the first attempt to apply the
idea of universum learning to IL and also to generative adversarial learning.

3 BACKGROUND

In this section, we provide backgrounds of RL, IL, and GAIL.

3.1 REINFORCEMENT LEARNING (RL)

An RL problem is formulated as a discrete-time Markov decision process (MDP) which is defined
by a tuple M “ pS,A, pps1|s,aq, p0psq, rps,aq, γq, where S Ď Rds is the (continuous) state space,
s P S is a state, A Ď Rda is the (continuous) action space, a P A is an action, pps1|s,aq is
the transition probability density from s to s1 when a is taken, p0psq is the initial state probability
density, rps,aq is the reward function, and 0 ă γ ď 1 is the discount factor1. In each discrete
time-step t ě 0, an agent in a state st chooses an action at according to a policy πpa|stq, which
is a conditional probability density. Then, the agent transits to a next state st`1 „ pps1|st,atq and
receives a reward rpst,atq. We call a sequence of states and actions a trajectory τ . The goal of RL
is to find an optimal policy that maximizes the expected discounted cumulative rewards (also called
return) defined as

Ep0ps0q,πpat|stqtě0,ppst`1|st,atqtě0

«

8
ÿ

t“0

γtrpst,atq

ff

“ Eπ rrps,aqs , (1)

where the expectation is taken over the probability densities for all time steps and we use the notation
Eπ for brevity. When the policy is a parameterized function with parameter θ, a locally optimal
policy can be found by optimization methods such as policy gradients (Williams, 1992).

We also use an equivalent formulation in terms of occupancy measures (Puterman, 1994; Alt-
man, 1999; Syed et al., 2008). A state-action occupancy measure defines the expected dis-
counted (unnormalized) visitation density of each state-action pair and is denoted by ρπps,aq “
Ep0ps0q,πpat|stqtě0,ppst`1|st,atqtě0

r
řT
t“0 γ

tδpst ´ s,at ´ aqs, where δ is the Dirac delta function2.
An important property of the occupancy measure is that if it satisfies the Bellman flow con-
straints,

ş

ρπps
1,a1qda1 “ p0ps

1q ` γ
ť

pps1|s,aqρπps,aqdsda, then there is one-to-one correspon-
dence between the occupancy measure and a policy given as πpa|sq “ ρπps,aq{ρπpsq, where
ρπpsq “

ş

ρπps,aqda is a state occupancy measure. This property allows us to rewrite the RL
objective to be maximized as Eπ rrps,aqs “

ť

ρπps,aqrps,aqdsda.

The optimal policy of the above MDP is deterministic (Puterman, 1994) and a stochastic policy
should be reduced to a deterministic policy at an optimum. However, a deterministic policy suffers
from an exploration issue. In many tasks, it is beneficial to consider maximum entropy RL (Ziebart
et al., 2008; 2010) whose optimal policy is a stochastic policy maximizing

Eπ rrps,aqs ` βHpπq, (2)
where β ě 0 and Hpπq “ ´Eπ rlog πpa|sqs is a discounted causal entropy (Ziebart et al., 2010).
The advantage of maximum entropy RL is that it encourages exploration and allows the agent to
find a better policy when compared to the standard RL formulation (Haarnoja et al., 2017).

3.2 IMITATION LEARNING (IL)

The goal of IL, or apprenticeship learning, is to learn a parameterized policy πθ, with policy parame-
ter θ, such that πθ exhibits the same behavior as an expert policy πE. We assume that πE is unknown.

1γ “ 1 is only allowed for finite horizon setting.
2For discrete S and A, δ is replaced by the indicator function.
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We instead have access to expert demonstrations DE “ tpsi,aiqu
N
i“1 which are trajectories gener-

ated by executing the expert policy under an MDP. IL methods can be categorized into interactive
methods and non-interactive methods. Interactive methods such as structured prediction (Ross et al.,
2011) allow the agent to query for expert demonstrations during learning. Despite their strong theo-
retical guarantees and great empirical performances, these methods require the expert to be available
during learning which is not always possible in reality. On the other hand, non-interactive methods,
such as occupancy measure matching (Syed et al., 2008) and IRL (Ng & Russell, 2000; Abbeel &
Ng, 2004), only require a pre-collected demonstration dataset for learning. In this paper, we focus
on the non-interactive IL setting due to its high practicality.

3.3 GENERATIVE ADVERSARIAL IMITATION LEARNING (GAIL)

GAIL (Ho & Ermon, 2016) is a state-of-the-art non-interactive IL method that performs occupancy
measure matching to learn the parameterized policy. In occupancy measure matching (Syed et al.,
2008), the policy parameter is learned to minimize a distance measure ` between occupancy mea-
sures of πE and πθ. More formally, occupancy measure matching methods solve an optimization
problem minθ `pρπE

, ρπθ
q ´ βHpπθq, where H is the causal entropy regularizer with β ě 0.

The key idea of GAIL is to use generative adversarial training to estimate the distance and to mini-
mize the estimated distance. Briefly speaking, the distance measure is the Jensen-Shannon (JS) di-
vergence defined as JSpρπE

, ρπθ
q “ 1

2 pgKLpρπE
||pρπE

` ρπθ
q{2q ` gKLpρπθ

||pρπE
` ρπθ

q{2qq ,

where gKLpρ||qq “
ť

ρps,aq log ρps,aq
qps,aqdsda ´

ť

ρps,aqdsda `
ť

qps,aqdsda is the gener-
alized Kullback-Leibler (gKL) divergence defined for unnormalized densities3 (Dikmen et al.,
2015). Since both occupancy measures are unknown, the divergence is approximated via a bi-
nary classification problem: maxφ Eπθ

rlogDφps,aqs ` EπE
rlogp1 ´ Dφps,aqqs. The function

Dφ : S ˆAÑ p0, 1q is called a discriminator and is often parameterized by a deep neural network
as Dφps,aq “ exppdφps,aqq{pexppdφps,aqq ` 1q where dφ is an output of a deep neural network.
It can be shown that if the discriminator has infinite capacity, the global maximum of this binary
classification problem corresponds to the JS divergence up to a constant. Based on this fact, GAIL
minimizes an approximated JS divergence by solving the following minimax optimization problem:

min
θ

max
φ

Eπθ
rlogDφps,aqs ` EπE

rlogp1´Dφps,aqqs ´ βHpπθq. (3)

In practice, this optimization problem is solved by alternately performing gradient ascent for φ and
gradient descent for θ. Notice that the gradient descent step for θ is equivalent to performing policy
gradient ascent with reward function rps,aq “ ´ logpDφps,aqq and a causal entropy.

4 IMITATION LEARNING WITH NON-EXPERT DEMONSTRATIONS

GAIL is an effective method that achieves state-of-the-art performance for high-dimensional IL
problems. However, the generative adversarial training procedure described above is known to be
highly unstable (Mescheder et al., 2018). This instability issue becomes more apparent when only a
small amount of data is available. One of the reasons is due to inaccuracy of estimating the diver-
gence via a discriminator learned by using a small number of demonstrations. A classical approach
to improve binary classification is to use an unlabeled dataset in the context of SSL. However, as
discussed previously, SSL is not suitable for IL due to its assumption of unlabeled data.

Note that the discriminator in GAIL is learned using two sets of data samples; expert demonstrations
and trajectories collected by agent. For this reason, even when the number of expert demonstrations
is small, GAIL may still learn well after observing a sufficiently large number of agent’s trajectories.
However, this is not desirable since in practice we often prefer data efficient methods that can learn
well even with a small number of agent’s trajectories.

To improve discriminator learning with a milder assumption on an additional demonstration dataset,
we propose to perform multiclass classification using the additional dataset as a new class. In the
following, we first formally describe our problem setting, and then present our IL method that learns
a multiclass classifier for generative adversarial training.

3An occupancy measure is not a density since it is not summed to one. Therefore, gKL is used instead.
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4.1 PROBLEM SETTING

We consider an IL problem with an additional non-expert demonstration dataset as follows. We
assume that expert demonstrations DE “ tpsi,aiqu

N
i“1 are trajectories collected by executing

expert policy πE in an MDP with reward function rEps,aq. We assume that πE is an optimal
policy, i.e., πE “ argmaxπ Eπ rrEps,aqs. In addition, we also have non-expert demonstrations
DN “ tpsj ,ajqu

M
j“1 collected by executing non-expert policy πN in the same MDP. The non-

expert is assumed to be sub-optimal and gives worse expected rewards than the expert policy, i.e.,
EπN

rrEps,aqs ă EπE
rrEps,aqs. We assume that DN is easier to obtain than DE and thus M " N .

Our goal is to learn parameterized policy πθ that generates trajectories similar to those from πE
using both DE and DN.

The main challenge for solving this problem is to efficiently leverage information brought by
non-expert demonstrations to learn the expert policy. Under a very weak assumption that
EπN

rrEps,aqs ă EπE
rrEps,aqs, the non-expert policy can be totally unrelated to the expert policy

and contains little to none of useful information that can improve learning. In the worst case, the
non-expert policy could just be a random policy that randomly generates trajectories.

Therefore, to make efficient learning possible, we need a stronger but not too restrictive assump-
tion on the non-expert demonstrations. Recall that both expert and non-expert demonstrations are
collected under the same MDP, and this makes it intuitive to assume that state-action pairs of both
the expert and non-expert lie on similar low-dimensional manifolds. To make this statement more
explicit, we assume that there exists a feature map ψ : S ˆ A ÞÑ Rb such that state-action pairs
from the expert and non-expert are linearly separable in this feature space. While this assumption
itself still does not allow us to always escape from the random policy case, it allows us to utilize
reasonably generated non-expert demonstrations to improve representation learning when training
a discriminator. Furthermore, this assumption also naturally implies that the quality of learned fea-
tures is improved as the non-expert policy becomes more related to the expert policy since their
low-dimensional manifolds becomes more similar to each other. This is the opposite to IRLF where
the failure demonstrations should make performance as worse as possible.

4.2 MULTICLASS CLASSIFICATION FOR DISCRIMINATOR LEARNING

Our generative adversarial method alternates between the discriminator learning step and policy
learning step. In the discriminator learning step, our goal is to learn a multiclass probabilistic clas-
sifier that classifies state-action pairs into three classes; the expert class with label y “ E, the
non-expert class with label y “ N, and the agent class with label y “ A. Let the following softmax
models be estimates of the class posterior of the three classes:

Fφps,aq “
exppfφps,aqq

Zφps,aq
, Gφps,aq “

λ exppgφps,aqq

Zφps,aq
, Hφps,aq “

expphφps,aqq

Zφps,aq
, (4)

where Fφps,aq estimates the expert class posterior ppy“E|s,aq, Gφps,aq estimates the non-
expert class posterior ppy“N|s,aq, Hφps,aq estimates the agent class posterior ppy“A|s,aq, and
Zφps,aq “ exppfφps,aqq ` λ exppgφps,aqq ` expphφps,aqq is the normalization factor. φ is the
parameter to be learned and λ ą 0 is a weight parameter specified by the user to control the influence
of non-expert demonstrations. To learn parameter φ for given policy parameter θ, we maximize the
following objective

Lλpφ,θq “ EπE
rlogFφps,aqs ` λEπN

rlogGφps,aqs ` Eπθ
rlogHφps,aqs . (5)

Notice that the same λ is used for bothGφps,aq and Lλpφ,θq, and this choice is particularly impor-
tant for our analyses in the following sections. We call the functions fφ, gφ, and hφ discriminators.
For smooth and differentiable discriminators, this objective can be maximized by stochastic gradient
ascent or its adaptive step-size variants. The expectations over πE and πN are approximated using
mini-batch samples from DE and DN, respectively, while the expectation over πθ is approximated
using trajectories tpsk,akquKk“1 collected by executing policy πθ.

We explicitly assume that the discriminators are represented by deep neural networks with shared
hidden layers and three outputs where each output represents fφ, gφ, and hφ. This parameterization
allows us to explicitly make use of our assumption of using common feature map ψ. That is, the
shared hidden layers learns a feature map which allows the three classes to be linearly separable, or

5



Under review as a conference paper at ICLR 2019

closed to be linearly separable. A large number of non-expert demonstrations allow us to accurately
learn such a feature map which leads to more reliable discriminators and a better classification
accuracy, as experimentally demonstrated in Section 6.

4.3 OCCUPANCY MEASURE MATCHING WITH MULTICLASS CLASSIFIER

Our remaining task is to learn the parametrized policy in the policy learning step. Here, we present
our occupancy measure matching method where a divergence is approximated from discriminators.
First, we show that the discriminator learning objective approximates a JS divergence among three
occupancy measures. This actually also implies that a commonly used minimax formulation is
unsuitable since we do not recover the expert policy even in an infinite capacity setting. To cope
with this problem, we propose a modified objective which allows us to recover the expert policy.

Let ρπE
ps,aq, ρπN

ps,aq, and ρπθ
ps,aq be occupancy measures of the expert, non-expert, and agent,

respectively. A JS divergence among the three occupancy measures with corresponding weights
´

1
2`λ ,

λ
2`λ ,

1
2`λ

¯

is defined as

JSλpρπE
, ρπN

, ρπθ
q “

1

2` λ
pgKLpρπE

||q̄q ` λgKLpρπN
||q̄q ` gKLpρπθ

||q̄qq , (6)

where q̄ps,aq “ pρπE
ps,aq ` λρπN

ps,aq ` ρπθ
ps,aqq{p2 ` λq and gKLpρ||q̄q is the generalized

KL divergence. Note that Eq.(6) may be defined by either KL or gKL since the extra terms in gKL
cancel out. Then, under the assumption that the discriminators have infinite capacity, the optimal
parameter φ‹ which maximizes Lλpφ,θq satisfies

Lλpφ‹,θq “ p2` λqJSλpρπE
, ρπN

, ρπθ
q ` log

´

λλp2` λq´p2`λq
¯

. (7)

The proof is given in Appendix A. This implies that minimizing Lλpφ‹,θq is equivalent to min-
imizing JSλpρπE

, ρπN
, ρπθ

q up to a constant. This relation is similar to the one between binary
classification and the JS divergence in GAIL, where a minimax formulation in Eq.(3) is used for
occupancy measure matching.

However, solving the minimax problem, minθ maxφ Lλpφ,θq, is inappropriate in our method
since the JS divergence in Eq.(6) is minimized by ρπθ

“ pρπE
` λρπN

q{p1` λq in-
stead by ρπθ

“ ρπE
. This minimizer corresponds to a policy mixture, πθpa|sq “

pπEpa|sqρπE
psq ` λπNpa|sqρπN

psqq { pρπE
psq ` λρπN

psqq, which has a positive probability de-
pending on λ to select non-expert actions instead of expert actions. Therefore, the above minimax
formulation does not lead to occupancy measure matching in our method.

Here, we propose to perform occupancy measure matching by directly minimizing an approxima-
tion of JSpρπE

, ρπθ
q. We can approximate this divergence based on the fact that with λ “ 0,

we have JS0pρπE
, ρπN

, ρπθ
q “ JSpρπE

, ρπθ
q. Since minimizing Lλpφ‹,θq is equivalent to min-

imizing JSλpρπE
, ρπN

, ρπθ
q for any λ, we can perform occupancy measure matching by solving

minθ L0pφ
‹,θq with λ “ 0. In practice, we instead minimize an approximation of the divergence

based on an intermediate solution φ since the discriminators do not have infinite capacity and find-
ing a global optimum φ‹ is not possible in practice. By ignoring constant terms in minθ L0pφ,θq
and including a causal entropy regularization with β ě 0, we obtain the following minimization
problem for learning θ:

min
θ

Eπθ

„

log
expphφps,aqq

exppfφps,aqq ` expphφps,aqq



´ βHpπθq. (8)

This minimization problem is equivalent to solving a maximum entropy RL problem with reward
function rps,aq “ ´ logHφps,aq. Eq.(8) also resembles the minimization problem of GAIL in
Eq.(3). The main difference between them is that we learn discriminator Hφps,aq by solving a
multiclass classification problem, while GAIL learns discriminator Dφps,aq by solving a binary
classification problem. Due to this similarity, we name our method multiclass GAIL (M-GAIL).

The algorithmic summary of our method is given in Appendix C. Our method alternates between
updating φ for maximization using an estimated gradient of Lλpφ,θq with λ ą 0, and updating θ
for minimization using an estimated gradient of Eπθ

rlogHφps,aqs ´ βHpπθq. The computation
complexity of our method is similar to GAIL, with a small additional cost of computing gradients
of Gφps,aq in the discriminator learning step.
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4.4 LEARNING MIXTURE POLICY WITH MULTICLASS CLASSIFIER

As we have shown, we ensure that M-GAIL learns the expert policy and not a mixture policy by
setting λ to zero during policy learning. However, learning a mixture policy may be beneficial when
selecting non-expert actions with a small probability is not catastrophic. This is because a mixture
policy can be learned quickly and accurately thanks to a large number of non-expert demonstrations.

To learn a mixture policy in M-GAIL, we may simply minimize Lλpφ,θq. However, it is unnec-
essary to use the same λ to determine the mixing coefficient of a mixture policy. In particular, we
consider mixture M-GAIL (MM-GAIL) which learns a multiclass classifier by maximizing Lλpφ,θq
w.r.t. φ and learns a parameterized policy by solving

min
θ

Eπθ

„

log
expphφps,aqq

exppfφps,aqq ` ω exppgφps,aqq ` expphφps,aqq



´ βHpπθq. (9)

Here, the weight λ control the influence of non-expert demonstrations during discriminator learning
while the weight 0 ă ω ă 1 controls that during policy learning. Using different weights allows us
to flexibly control the influence of non-expert demonstrations. For example, by using a large λ and
a small ω, non-expert demonstrations have high influence during discriminator learning while there
is only a small probability of choosing non-expert actions. Note that MM-GAIL does not exactly
solve IL problem since it does not learn the expert policy. However, it may have better empirical
performance than M-GAIL in tasks where non-expert policy can perform the task moderately well.

5 DISCUSSION ON BINARY CLASSIFICATION WITH NON-EXPERT DATA

Our key idea in this paper is to perform multiclass classification where non-expert demonstrations
are regarded as belong to an extra class. A natural question that follows is, can we utilize non-
expert demonstrations without considering an extra class? To answer this question, we consider
two extensions of GAIL that perform binary classification where non-expert demonstrations are
regarded as belong to either expert or agent classes. As shown below, these methods utilize non-
expert demonstrations but they do not directly perform IL since they learn a mixture policy.

5.1 NON-EXPERT TRAJECTORIES AS EXPERT TRAJECTORIES

Firstly, we consider an extension of GAIL where we treat non-expert trajectories as expert trajecto-
ries and weight their influence by 0 ă λ ă 1. This can be formalized by an objective function

Uλpφ,θq “ EπE
rlogFφps,aqs ` λEπN

rlogFφps,aqs ` Eπθ
rlogHφps,aqs

“ EπE`λπN
rlogFφps,aqs ` Eπθ

rlogHφps,aqs , (10)

where Fφps,aq “ exppfφps,aqq{Zφps,aq andHφps,aq “ expphφps,aqq{Zφps,aq are discrimina-
tors with a normalization factor Zφps,aq “ exppfφps,aqq ` expphφps,aqq. Maximizing Uλpφ,θq
w.r.t. φ is equivalent to learning a binary classifier that classifies between agent’s trajectories and
a mixture of expert and non-expert trajectories with a mixture coefficient of 1 and λ, respectively.
We call a method that solves a minimax problem, minθ maxφ Uλpφ,θq, U-GAIL. Notice that, by
using the equivalence between binary classification in GAIL and maximum entropy IRL of Fu et al.
(2018), learning a binary classification here can be regarded as learning a reward function which is
maximized by a mixture of trajectories using maximum entropy IRL.

The auxiliary loss term, λEπN
rlogFφps,aqs, allows U-GAIL to leverage non-expert demonstra-

tions to improve discriminator learning. However, one important issue of U-GAIL is that it learns a
mixture policy instead of the expert policy. To verify this, notice that the optimal discriminator that
maximizes Uλpφ,θq yields a JS divergence: Uλpφ‹,θq “ 2JSpρπE

` λρπN
, ρπθ

q ´ log 4, which is
minimized by ρπθ

ps,aq “ ρπEps,aq ` λρπNps,aq. As shown previously, this occupancy measure
corresponds to a policy mixture that may select non-expert actions instead of expert actions with a
probability monotonically depends on λ. For this reason, solving minθ maxφ Uλpφ,θq leads to a
mixture policy and does not perform IL.

Recall that minimizing Lλpφ,θq also leads to the same issue. In M-GAIL, we avoid learning a mix-
ture policy by setting λ to zero during policy learning to directly obtain an estimate of JSpρπE

, ρπθ
q

from an estimate of JSλpρπE
, ρπN

, ρπθ
q. We cannot do this for U-GAIL since the policy learning

7
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objective does not contain λ and we cannot change the influence of non-expert demonstrations after
the discriminator is learned. Instead, to obtain an estimate of JSpρπE

, ρπθ
q, it is necessary to find

a maximizer of U0pφ,θq which implies ignoring non-expert demonstrations during discriminator
learning. While we may gradually anneal the value of λ to zero to ensure that U-GAIL learns the
expert policy in a limit, this may lead to more instability during learning since the optimal discrimi-
nator depends on λ and πθ which change during learning.

Another issue of U-GAIL is that, it treats non-expert and expert demonstrations as the same class
which implies that the discriminator learns a feature map such that the two datasets are close to each
other in the feature space. However, the learned feature map would be less informative when expert
and non-expert policies behave too differently and expert and non-expert demonstrations lie far apart
in the state-action space.

5.2 NON-EXPERT TRAJECTORIES AS AGENT’S TRAJECTORIES

Alternatively, we may treat non-expert trajectories as trajectories collected by the agent and weight
them by 0 ă λ ă 1. This approach can be formalized via the following objective function:

Vλpφ,θq “ EπE
rlogFφps,aqs ` λEπN

rlogHφps,aqs ` Eπθ
rlogHφps,aqs

“ EπE
rlogFφps,aqs ` Eπθ`λπN

rlogHφps,aqs , (11)

where Fφps,aq and Hφps,aq are defined identically to those in Eq.(10). Solving a maximization
problem, maxφ Vλpφ,θq is equivalent to learning a binary classifier that classifies between expert
trajectories and a mixture of agent’s and non-expert trajectories with a mixture coefficient of 1 and
λ, respectively. We call a method that solves the minimax problem, minθ maxφ Vλpφ,θq, V-GAIL.

Similarly to U-GAIL, this method learns a mixture policy and does not perform IL. Moreover, it
requires an additional constraint to ensure validity of the resulting occupancy measure. To verify
these, notice that the optimal discriminator yields Vλpφ‹,θq “ 2JSpρπE , ρπθ

` λρπNq ´ log 4,
which is minimized by ρπθ

ps,aq “ ρπEps,aq ´ λρπNps,aq. Since λ ą 0, this optimal occupancy
measure may be negative for some λ and is not a valid occupancy measure. Thus, V-GAIL requires
an additional constraint to ensure non-negativity of the occupancy measure which is not trivial in
deep RL. However, in our experiments, V-GAIL can learn good policies without such an explicit
constraint. This is likely because non-negativity is implicitly constrained during policy learning by
our choice of a Gaussian parameterized policy. However, a relationship between this non-negativity
constraint for policy and that for occupancy measure is currently unclear.

6 EXPERIMENTS

We evaluate learning performance of M-GAIL against that of GAIL, U-GAIL and V-GAIL on four
continuous control tasks from OpenAI gym (Brockman et al., 2016) with the PyBullet physics sim-
ulator (Coumans & Bai, 2018). The discriminator and policy are neural networks with the same
architecture used by Ho & Ermon (2016). We use Adam (Kingma & Ba, 2014) with mini-batch size
64 to optimize the discriminator, and we use TRPO (Schulman et al., 2016) to optimize the policy
where in each iteration the agent collects K transition samples. For each task, an expert dataset of
sizeN are collected by executing a pre-trained TRPO expert agent. Then, we collect two non-expert
datasets by executing two policies which achieve approximately 50% and 70% average returns of the
expert agent. The two non-expert datasets consist of M “ 100000 transition samples and we denote
them by D50%

N and D70%
N . We consider λ P t0.01, 0.1, 0.5u for M-GAIL, U-GAIL and V-GAIL.

More details on hyper-parameter settings and dataset collection are provided in Appendix D.

Small number of samples scenario: Firstly, we demonstrate the usefulness of using non-expert
demonstrations when the number of expert demonstrations and transition sample collected by the
agent are small; N P t100, 300, 500u and K “ 1000. We also include MM-GAIL which learns a
mixture policy in this evaluation. Figure 1 shows the learning curves forN “ 100 where λ is chosen
for each method based on the best overall value across tasks4. Learning curves for other values of
λ and N are presented in Appendix E. The result shows that M-GAIL, MM-GAIL and U-GAIL

4Based on the total return provided in Table 1, we choose λ “ 0.01 for U-GAIL and V-GAIL and λ “ 0.5
for M-GAIL. The values λ “ 0.5 and ω “ 0.01 for MM-GAIL are chosen based on M-GAIL and U-GAIL.
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Figure 1: The mean and standard error of average return over 5 trials for N “ 100 and K “ 1000
with D50%

N (top row) and D70%
N (bottom row). The agent collects a total of 10 million samples.

0 2500 5000
Update iteration

1

0

1

2

Av
er

ag
e 

re
tu

rn

1e3

0 2500 5000
Update iteration

0.5

1.0

1.5

2.0

Av
er

ag
e 

re
tu

rn

1e3

0 2500 5000
Update iteration

0.5

1.0

1.5

2.0

Av
er

ag
e 

re
tu

rn
1e3

0 2500 5000
Update iteration

0.2
0.4
0.6
0.8
1.0
1.2

Av
er

ag
e 

re
tu

rn

1e3

0 2500 5000
Update iteration

1

0

1

2

Av
er

ag
e 

re
tu

rn

1e3

(a) Cheetah

0 2500 5000
Update iteration

0.5

1.0

1.5

2.0

Av
er

ag
e 

re
tu

rn

1e3

(b) Ant

0 2500 5000
Update iteration

0.5

1.0

1.5

2.0

Av
er

ag
e 

re
tu

rn

1e3

(c) Hopper

0 2500 5000
Update iteration

0.2
0.4
0.6
0.8
1.0
1.2

Av
er

ag
e 

re
tu

rn

1e3

(d) Walker

Figure 2: The mean and standard error of average return over 5 trials for N “ 1000 and K “ 2000
with D50%

N (top row) and D70%
N (bottom row). The agent collects a total of 10 million samples.

learn faster and achieve better final returns than that of GAIL, except on Hopper where GAIL also
performs quite well. The improvement is significantly large on Cheetah and Ant where GAIL only
learns a sub-optimal policy with a relatively large standard error. This instability in GAIL is likely
due to learning from a small number of samples.

The result on Ant also shows that U-GAIL tends to outperform M-GAIL. Our conjecture is that non-
expert policies in Ant can perform the task moderately well and learning a mixture policy greatly
accelerates learning. This is evidenced by good performance of MM-GAIL which also learns a
mixture policy. Learning a mixture policy in U-GAIL and MM-GAIL becomes an issue on Walker
with D50%

N . We found that there is a big difference between expert and non-expert actions in this
task since the expert agent moves forward while the non-expert agent moves backwards slightly5.
By learning a mixture of such different policies (moving forward and backward), both U-GAIL and
MM-GAIL learn much slower and achieve worse final performance when compared to M-GAIL.

On the other hand, there is no clear difference between V-GAIL and GAIL. This is likely because
the expectation for Fφ in V-GAIL is still approximated by a small number of expert demonstrations

5 The non-expert agent still obtains a moderate average return of 655 since it receives rewards by not falling.
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in Eq.(11), and there is also not much benefit in using non-expert demonstrations for Hφ since the
total number of agent trajectories increases as learning progresses.

We also consider the total returns, computed as an averaged area under learning curves, as an evalu-
ation metric for comparing the overall performance given the same number of update iteration. The
total return in Table 1 in appendix shows that the overall performance across different values of λ
of M-GAIL, MM-GAIL and U-GAIL are comparable and they significantly outperform GAIL. The
final return in Table 2, computed as average returns over the last 500 iterations, further confirms that
using non-expert demonstrations leads to a better final policy when compared to that of GAIL.

Large number of samples scenario: Next, we consider a scenario with relatively larger numbers
of expert demonstrations and collected transition samples; N P t1000, 10000u and K “ 2000.
Figure 2 shows the learning curves for N “ 1000 for the same λ as the previous scenario. The
result shows that using non-expert demonstrations improve the performance in the early stage of
learning when the agent have not yet collected many samples. However, the improvement is smaller
when compared to the previous scenario as expected since a large number of expert demonstrations
already provide sufficient information to learn an accurate binary classifier in GAIL.

We can also see that U-GAIL performs rather poorly when compared to M-GAIL, especially on
Hopper with D50%

N . Our conjecture is that U-GAIL improves learning by biasing a binary classifier
using the non-expert auxiliary loss term. However, when the binary classifier can be learned suf-
ficiently accurately by expert demonstrations alone, the bias introduced would instead degrade the
classifier and not improve it. In contrast, M-GAIL always classifies between the three classes and
does not use bias to improve learning. This result further shows that our multiclass classification
approach is more robust to the choice of non-expert policy when compared to approaches based on
binary classification.

The total return in Table 3 shows that M-GAIL overall performs better across different values of
λ and tasks when compared to other methods, except on Ant where U-GAIL performs the best
overall. However, we can also see in Table 4 that differences in the final returns are quite small and
all methods achieve similar final performance. Nonetheless, performance improvement in the early
stage of learning still confirms that non-expert demonstrations improves discriminator learning in
GAIL.

7 CONCLUSION

We presented M-GAIL, a method that improves GAIL by using non-expert demonstration as an extra
class in discriminator learning. Compared to related methods that use an additional dataset for IL,
M-GAIL relies on a less restrictive assumption on the dataset and can efficiently train deep neural
networks. Using an extra class also avoids learning a mixture policy which is an issue of GAIL
extensions that directly include non-expert demonstrations into existing datasets. On the other hand,
when learning a mixture policy is beneficial, our mixture M-GAIL can also learn a mixture policy
with a benefit of more flexibility in choosing a mixture coefficient.

The recent result of Fu et al. (2018) shows that binary classification in GAIL and reward learning
in maximum entropy IRL are equivalent. This suggests that there is such equivalence for multiclass
classification. However, as we show in Appendix B, this is not the case and our method does not
learn a reward function. Since IRL is also a promising approach to learn an expert policy, developing
a deep IRL method that utilizes non-expert demonstrations is a promising research direction.

Our method can also be extended to use trajectories collected by the agent’s previous policies as an
extra class. This approach allows us to reuse trajectories collected in the previous iterations without
relying on importance weight which has high variance. However, having two changing classes may
greatly destabilize learning and a stabilization method would be required.

We developed M-GAIL based on JS-divergence. However, recent research suggests that other dis-
tances such as Wasserstein distance are more suitable when learning from image data (Arjovsky
et al., 2017). Extending our method to use such distances is an important future work for apply-
ing our idea to solve image-based tasks such as Atari games (Mnih et al., 2015) and autonomous
driving (Li et al., 2017b).
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A MAXIMUM OF WEIGHT LOG-LIKELIHOOD OBJECTIVE APPROXIMATES
JENSEN-SHANNON DIVERGENCE

If we assume that the functions Fφ, Gφ, and Hφ are non-parametric and have infinite capacity, we
can rewrite the multiclass classification objective as

LλpF,G,Hq “ EπE
rlogF ps,aqs ` λEπN

rlogGps,aqs ` Eπθ
rlogHps,aqs . (12)

Recall that Eπ rrps,aqs “
ť

ρπps,aqrps,aqdsda where ρπ is the occupancy measure of π. This
objective is a concave function and we can find its global maximizer under constraints F ps,aq ě 0,
Gps,aq ě 0, Hps,aq ě 0 and F ps,aq ` Gps,aq ` Hps,aq “ 1,@s@a, by using the method of
Lagrange multipliers. The global maximizer corresponds to

F ‹ps,aq “
ρπEps,aq

qps,aq
, G‹ps,aq “

λρπNps,aq

qps,aq
, H‹ps,aq “

ρπθ
ps,aq

qps,aq
, (13)

where qps,aq “ ρπE
ps,aq ` λρπN

ps,aq ` ρπθ
ps,aq. Let q̄ps,aq “ qps,aq

2`λ , by substituting these
quantities back to Lλ, we obtain the maximum objective value as

LλpF ‹, G‹, H‹q “ EπE

„

log
ρπE
ps,aq

qps,aq



` λEπN

„

log
λρπN

ps,aq

qps,aq



` Eπθ

„

log
ρπθ
ps,aq

qps,aq



“ EπE

„

log
ρπE
ps,aq

q̄ps,aq



` λEπN

„

log
ρπN

ps,aq

q̄ps,aq



` Eπθ

„

log
ρπθ
ps,aq

q̄ps,aq



` λ log λ´ p2` λq logp2` λq. (14)

Notice that the first, second, and third terms look similar to Kullback-Leibler (KL) divergences
which are defined as KLpp1||p2q “

ť

p1ps,aq log p1ps,aq
p1ps,aq

dsda, for probability densities p1 and
p2. However, the occupancy measures are unnormalized densities and theoretically we cannot use
KL divergences to rewrite Eq.(14). For unnormalized densities ρps,aq and q̄ps,aq, we consider a
generalized KL divergence defined as

gKLpρ||q̄q “

ĳ

ρps,aq log
ρps,aq

q̄ps,aq
dsda´

ĳ

ρps,aqdsda`

ĳ

q̄ps,aqdsda

“ KLpρ||q̄q ´

ĳ

ρps,aqdsda`

ĳ

q̄ps,aqdsda. (15)

We can show that for Eq.(14), gKL and KL are equivalent since the extra terms cancel out:

gKLpρπE
||q̄q`λgKLpρπN

||q̄q ` gKLpρπθ
||q̄q

“ KLpρπE ||q̄q ` λKLpρπN ||q̄q `KLpρπθ
||q̄q

´

ĳ

pρπEps,aq ` λρπNps,aq ` ρπθ
ps,aqqdsda` p2` λq

ĳ

q̄ps,aqdsda

“ KLpρπE
||q̄q ` λKLpρπN

||q̄q `KLpρπθ
||q̄q

´

ĳ

pρπE
ps,aq ` λρπN

ps,aq ` ρπθ
ps,aqqdsda`

ĳ

qps,aqdsda

“ KLpρπE ||q̄q ` λKLpρπN ||q̄q `KLpρπθ
||q̄q. (16)

Then, the optimal value in Eq.(14) can be rewritten in terms of gKL divergences as

LλpF ‹, G‹, H‹q “ gKLpρπE ||q̄q ` λgKLpρπN ||q̄q ` gKLpρπθ
||q̄q

` λ log λ´ p2` λq logp2` λq (17)

Next, we consider a JS divergence among ρπE
, ρπN

, and ρπθ
with corresponding weights 1{p2`λq,

λ{p2` λq, and 1{p2` λq, which can be defined based on (generalized) KL divergence as

JSλpρπE
, ρπN

, ρπθ
q “

1

2` λ
pgKLpρπE

||q̄q ` λgKLpρπN
||q̄q ` gKLpρπθ

||q̄qq . (18)

Note that we use the fact that the sum of gKL and the sum of KL are equivalent to define the
JS divergence. Alternatively, we may use a definition of JS in terms of a Shannon entropy,
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JSλpρπE
, ρπN

, ρπθ
q “ ´ 1

2`λ pHpρπE
q ` λHpρπN

q `Hpρπθ
qq ` H

´

1
2`λ pρπE

` λρπN
` ρπθ

q

¯

,

where Hpρq “ ´
ť

ρπps,aq log ρπps,aqdsda, to obtain the same definition of JS divergence.

By comparing Eq.(17) and Eq.(18), we have that the maximum value of Lλ corresponds to JSλ with
a positive scaling and a constant shift:

LλpF ‹, G‹, H‹q “ p2` λqJSλpρπE
, ρπN

, ρπθ
q ` log

´

λλp2` λq´p2`λq
¯

. (19)

Notice that JSλpρπE
, ρπN

, ρπθ
q is a convex function of ρπθ

. By setting its derivative to zero, we have
that the minimum of JSλpρπE , ρπN , ρπθ

q is obtained when ρπθ
“

ρπE`λρπN
1`λ . Then, the correspond-

ing mixture policy can be obtained by using the one-to-one correspondence between occupancy
measure and policy given as πpa|sq “ ρπps,aq

ρπpsq
.

B RELATION TO MAXIMUM ENTROPY INVERSE REINFORCEMENT
LEARNING

Recently, Finn et al. (2016a) and Fu et al. (2018) showed an interesting result that an objective for
solving a binary classification problem in generative adversarial training is related to a maximum
entropy IRL objective (Ziebart et al., 2008; 2010). Here, we show that multiclass classification
objective only approximates a maximum entropy IRL objective with two reward functions.

Let us consider the goal of learning the expert reward function rEps,aq and the non-expert reward
function rNps,aq by parameterized functions fφps,aq, and gφps,aq, respectively. rNps,aq is a
reward function whose πN is optimal6. The parameter φ of the two reward functions may be learned
independently using maximum entropy IRL. However, we are interested in jointly learn both reward
functions by maximizing the following objective:

Mλpφq “ EpEpτ q rlog pf pτ qs ` λEpNpτ q rlog pgpτ qs . (20)

The first and second terms are the maximum entropy IRL objectives for learning the ex-
pert reward and the non-expert reward, respectively. The weight parameter λ ą 0 con-
trols the influence of the second objective. The trajectory density pf pτ q is defined as
pf pτ q 9 p0ps0q

śT
t“0 ppst`1|st,atq exppfφpst,atqq and pgpτ q is also defined similarly. The fol-

lowing proposition shows that Lλpφ,θq is a surrogate of Mλpφq.

Proposition 1. Under the assumption that hφps,aq “ πθpa|sq for fixed θ, the gradient of Lλpφ,θq
is a biased gradient of Mλpφq. The bias vanishes when λ “ 0 and πθ is an optimal maximum
entropy policy for reward function fφps,aq.

This proposition indicates that local maxima of Mλpφq are approximated by local maxima of
Lλpφ,θq, and that approximation errors decrease as λ decreases to zero. Due to approximation
errors, our method does not perform IRL and does not learn the true reward functions. However,
it still suggests that we may still use fφps,aq and gφps,aq as approximations of the reward func-
tions which could be useful in the IRLF framework of Shiarlis et al. (2016) when the non-expert
demonstrations are clearly failure demonstrations.

The proof of Proposition 1 is an extension of the proof by Fu et al. (2018) for their adversarial IRL
(AIRL) method, but with additional terms from non-expert demonstrations in our case. That is, we
show that the gradient of a maximum entropy IRL objective proposed by Finn et al. (2016b) with
specific importance weights only differs from the gradient of the discriminator learning objective in
the importance weights. Similar to the case of AIRL, we only consider the case of non-discounted,

6The optimal reward function always exists since for any trajectory there is at least one reward function that
makes the trajectory optimal (Ng & Russell, 2000).
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finite horizon MDP. The gradient of this objective w.r.t. φ is

∇φMλpφq “ EpEpτ q

«

T
ÿ

t“0

∇φfφpst,atq

ff

´∇φ log

ż

p0ps0q
T
ź

t“0

ppst`1|st,atq exppfφpst,atqqdτ

` λEpNpτ q

«

T
ÿ

t“0

∇φgφpst,atq

ff

´ λ∇φ log

ż

p0ps0q
T
ź

t“0

ppst`1|st,atq exppgφpst,atqqdτ

“ EpEpτ q

«

T
ÿ

t“0

∇φfφpst,atq

ff

´ Epf pτ q

«

T
ÿ

t“0

∇φfφpst,atq

ff

` λEpNpτ q

«

T
ÿ

t“0

∇φgφpst,atq

ff

´ λEpgpτ q

«

T
ÿ

t“0

∇φgφpst,atq

ff

. (21)

Let ptEps,aq “
ş

pEpτ qdτ t1‰t be a state-action marginal density at time t obtained by marginaliz-
ing pEpτ q over states and actions at all time-step except at t. The state-action marginal densities
ptNps,aq, p

t
f ps,aq, and ptgps,aq are defined similarly. We can rewrite the expectations over trajecto-

ries as a sum of expectations over state-action marginals as follows:

∇φMλpφq “
T
ÿ

t“0

!

EptEps,aq
”

∇φfφps,aq
ı

´ Eptf ps,aq
”

∇φfφps,aq
ı

` λEptNps,aq
”

∇φgφps,aq
ı

´ λEptgps,aq
”

∇φgφps,aq
ı)

. (22)

Let µtθps,aq “ ptEps,aq ` λptNps,aq ` ptθps,aq be a (unnormalized) sampling dis-
tribution where ptθps,aq is a state-action marginal of a trajectory density pθpτ q “

p0ps0q
śT
t“0 ppst`1|st,atqπθpat|stq. By rearranging terms and using importance weights for the

expectations over ptf ps,aq and ptgps,aq, we can rewrite the gradient as

∇φMλpφq “
T
ÿ

t“0

!

EptEps,aq
”

∇φfφps,aq
ı

` λEptNps,aq
”

∇φgφps,aq
ı

´ Eµtθps,aq
” ptf ps,aq

µtθps,aq
∇φfφps,aq ` λ

ptgps,aq

µtθps,aq
∇φgφps,aq

ı)

. (23)

Next, we show that ∇φLλpφ,θq has the same form as ∇φMλpφq but with incorrect importance
weights. First, we rewrite Lλpφ,θq using the state-action marginal densities as
Lλpφ,θq “ EπE

rlogFφps,aqs ` λEπN
rlogGφps,aqs ` Eπθ

rlogHφps,aqs

“ EpEpτ q

«

T
ÿ

t“0

logFφpst,atq

ff

` λEpNpτ q

«

T
ÿ

t“0

logGφpst,atq

ff

` Epθpτ q

«

T
ÿ

t“0

logHφpst,atq

ff

“

T
ÿ

t“0

!

EptEps,aq rlogFφps,aqs ` λEptNps,aq rlogGφps,aqs ` Eptθps,aq rlogHφps,aqs
)

,

(24)
where in the second line we use the definition of the expected return for non-discounted finite-
horizon case. Replacing Fφ, Gφ, and Hφ by their parameterization in Eq.(4) with hps,aq “
log πθpa|sq gives

Lλpφ,θq “
T
ÿ

t“0

!

EptEps,aq rfφps,aqs ` λEptNps,aq rgφps,aq ` log λs ` Eptθps,aq rlog πθpa|sqs

´ EptEps,aq`λptNps,aq`ptθps,aq rlog pexppfφps,aqq ` λ exppgφps,aqq ` πθpa|sqqs
)

“

T
ÿ

t“0

!

EptEps,aq rfφps,aqs ` λEptNps,aq rgφps,aq ` log λs ` Eptθps,aq rlog πθpa|sqs

´ Eµtθps,aq rlog pexppfφps,aqq ` λ exppgφps,aqq ` πθpa|sqqs
)

, (25)

16



Under review as a conference paper at ICLR 2019

where we use logpλ exppgφps,aqqq “ gφps,aq ` log λ in the first equality and use µtθps,aq defined
above in the second equality. Then, the gradient of Lλpφ,θq w.r.t. φ is given by

∇φLλpφ,θq “
T
ÿ

t“0

!

EptEps,aq r∇φfφps,aqs ` λEptNps,aq r∇φgφps,aqs

´ Eµtθps,aq r∇φ log pexppfφps,aqq ` λ exppgφps,aqq ` πθpa|sqqs
)

“

T
ÿ

t“0

!

EptEps,aq r∇φfφps,aqs ` λEptNps,aq r∇φgφps,aqs

´ Eµtθps,aq
„

exppfφps,aqq

Zφps,aq
∇φfφps,aq ` λ

exppgφps,aqq

Zφps,aq
∇φgφps,aq



)

, (26)

where Zφps,aq “ exppfφps,aqq ` λ exppgφps,aqq ` πθpa|sq. Let ptθpsq “
ş

ptθps,aqda be a state
marginal of the policy trajectory density. By multiplying both the nominators and denominators of
the third and fourth terms by ptθpsq, we obtain

∇φLλpφ,θq “
T
ÿ

t“0

!

EptEps,aq r∇φfφps,aqs ` λEptNps,aq r∇φgφps,aqs

´ Eµtθps,aq
„

ptθpsq exppfφps,aqq

ptθpsqZφps,aq
∇φfφps,aq ` λ

ptθpsq exppgφps,aqq

ptθpsqZφps,aq
∇φgφps,aq



)

,

(27)

By comparing Eq.(23) and Eq.(27), we can see that ∇φLλpφ,θq and ∇φMλpφq have the same
form and they only differs in the importance weights in the third and fourth terms. The importance
weights used in ∇φMλpφq are correct and performing gradient ascent with ∇φMλpφq leads to
a local maxima of Mλpφq (assuming exact computation of the expectations). On the other hand,
the importance weights used in ∇φLλpφ,θq lead to bias in terms of the objective Mλpφq, and
performing gradient ascent with ∇φLλpφ,θq does not lead to a local maxima of Mλpφq. Thus, the
global maximizer of Lλpφ,θq does not recover the true reward functions regardless of θ.

The bias can be corrected only when λ “ 0 and πθ is the optimal maximum entropy policy of a
reward fφps,aq. This is because when λ “ 0, M0pφq is the maximum entropy IRL objective for
learning the expert reward function and L0pφ,θq us the binary classification objective of GAIL and
AIRL. As shown by Fu et al. (2018), the gradients of these two objectives are equivalent under the
assumption that πθ is the optimal maximum entropy policy for reward rps,aq “ fφps,aq.

We emphasize that for our case it is insufficient to only assume that πθ is the optimal maximum
entropy policy without assuming that λ “ 0. This is because to make the nominators equal, we
need that the two equalities, ptθpsq exppfφps,aqq “ ptf ps,aq and ptθpsq exppgφps,aqq “ ptgps,aq,
hold. The former holds when πθ is (maximum entropy) optimal for a reward fφps,aq, while the
latter holds when πθ is (maximum entropy) optimal for a reward gφps,aq. Both cannot hold at the
same time unless fφps,aq “ αgφps,aq with a positive scaling α, which implies non-expert is expert
himself. Moreover, to have that the partition functions are equivalent, ptθpsqZφps,aq “ µtθps,aq,
we also need the policy πθ to be optimal for a reward mixture. These contradictions imply that the
two gradients can be made identical only when λ “ 0.
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C PSEUDOCODE

Algorithm 1 Multiclass Generative Adversarial Imitation Learning (M-GAIL)

1: Input: Demonstration datasets DE and DN, initial parameters θ and φ, weight parameter λ.
2: while not converge do
3: Collect trajectory samples tpsk,akquKk“1 using πθpa|sq.
4: Sample mini-batches data from DE and DN.
5: Update φ to maximize Lλpφ,θq in Eq.(5), by e.g., Adam (Kingma & Ba, 2014).
6: Update θ to solve the RL problem in Eq.(8), by e.g., TRPO (Schulman et al., 2015).
7: end while
8: Output: Parameterized policy πθ.

D IMPLEMENTATION DETAILS

We implemented all methods with PyTorch deep learning framework (Paszke et al., 2017) (Our code
will be publicly available.). All methods use a common setting as follows. The discriminator and
policy are represented by neural networks with two hidden layers and 100 hyperbolic tangent units
in each layer, as proposed by the original GAIL paper (Ho & Ermon, 2016). We use a Gaussian
policy with state-independent and diagonal covariance for all tasks. The network parameters are
initialized randomly. The discriminator is optimized by Adam (Kingma & Ba, 2014) with step-size
3 ˆ 10´4, β1 “ 0.9, and β2 “ 0.999. In each update iteration, we sample mini-batch of size 64
from DE and DN to update the discriminator.

We tried to make the implementation of GAIL, U-GAIL, V-GAIL, and M-GAIL as close as possible.
In particular, we let fφps,aq “ 0 be a constant function in U-GAIL, V-GAIL, and M-GAIL (This
makes exppfφps,aqq “ 1). That is, the discriminator networks give two outputs; gφ and hφ. This
choice is valid since using three estimators to estimate three class posteriors is over-parameterize
and we only need two estimators to compute an estimate of the third class posterior. With this
implementation choice, U-GAIL, V-GAIL, M-GAIL with λ “ 0 are exactly the same as GAIL
where hφ is the same as dφ in GAIL.

The policy is optimized by trust-region policy optimization (TRPO) with generalized advantage
estimation (GAE) (Schulman et al., 2016) with KL bound ε “ 0.01 and damping coefficient for the
Fisher information matrix 0.1. We do not add causal entropy and set β “ 0 for all methods. For
GAE, we use the above network architecture to learn the value function with γ “ 0.995 and λGAE “

0.97. In each update iteration, we use Adam, with step-size 3ˆ 10´4, β1 “ 0.9, β2 “ 0.999, and `2
regularizer of 10´3, to update the value function network for 3 epochs with minibatch size 128. The
GAE value is standardized to have zero mean and unit variance for TRPO update. In each update
iteration, we collect transition samples of size K using the current policy. This hyper-parameter
setting is chosen for TRPO since it works well for learning the expert policy, as described below.

We consider four tasks; Half-Cheetah, Hopper, Walker2D, and Ant, simulated by PyBullet physics
simulator (Coumans & Bai, 2018). (At the time of submission, OpenAI gym with Pybullet physics
does not have the Swimmer task, and we could not successfully train a Humanoid expert agent.
The two inverted-pendulum tasks are too simple with all methods perform equally well.) For these
tasks, a trajectory (episode) consists of 1000 transition samples. To train the expert policy, we use
TRPO with GAE with the above setting with K “ 2000, except for Walker2D where we require
an entropy regularizer of β “ 0.0001 to learn a walking policy. Without this regularizer, the agent
simply stands still to receive a reward of 1 in each time-step. The same issue does not happen when
we train the IL agents and we do not use the entropy regularizer for IL. For each task, we train a
TRPO agent for 5 trials with different random seeds and choose the best policy among 5 trials that
gives the highest return at the 10000-th iteration as expert. The return of the chosen TRPO agent, as
well as the returns at approximately 50% and 70% of the expert’s return are shown in Figure 3. We
can clearly see that non-expert policies can be learned using much less samples when compared to
the expert policy.

After obtaining the expert and non-expert policies, we use the learned Gaussian policies to collect
demonstration trajectories with exploration noise. The same datasets are used in all 5 trials of IL.
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(a) HalfCheetah
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(d) Walker2D

Figure 3: The return in each update iteration of TRPO expert agent. The return is computed using
Gaussian policy with exploration noise. “Random” is the initial random policy. “Iter.” denotes the
update iteration to achieve the corresponding return values.

To sample expert demonstrations of size N P t100, 300, 500u, which is smaller than a trajectory
length, we use sub-trajectory sampling procedure as described by Ho & Ermon (2016). That is, we
sample 2, 6, 10 sub-trajectories of length 50 to obtain expert demonstrations of size 100, 300, 500,
respectively. For expert demonstrations of size N P t1000, 10000u, we sample 1 and 10 full-length
trajectories.

E MORE EXPERIMENTAL RESULTS

We train IL agents for 5 trials with different random seeds. All trials use the same datasets collected
by the TRPO agent as explained previously. We evaluate the learned policies by generating 10 test
trajectories using the learned policies to select actions without exploration noise. Then, we compute
the averaged return over 10 trajectories using the true reward function without discount factor, and
this gives us a learning curve for each trial.

Figures 4 to 7 show the results on each task for N P t100, 300, 500u and different values of λ,
and Figures 8 to 11 show those for N P t1000, 10000u. Tables 1 and 2 report the total return
and final return, respectively, for N P t100, 300, 500u, and Tables 3 and 4 report those for N P

t1000, 10000u. Based on Table 1, we choose the best overall value of λ as follows; λ “ 0.5 for
M-GAIL, λ “ 0.01 for U-GAIL, and λ “ 0.01 for V-GAIL. We did not try different value of λ and
ω for MM-GAIL. Instead, we use λ “ 0.5 and ω “ 0.01 since λ “ 0.5 works well for multiclass
classification in M-GAIL and the mixture coefficient of 0.01 works well in U-GAIL.
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(a) Results on Half-Cheetah for N “ 100 with D50%
N (top row) and D70%

N (bottom row).

(b) Results on Half-Cheetah for N “ 300 with D50%
N (top row) and D70%

N (bottom row).

(c) Results on Half-Cheetah for N “ 500 with D50%
N (top row) and D70%

N (bottom row).

Figure 4: Results on Half-Cheetah for N P t100, 300, 500u and K “ 1000 on λ P t0.01, 0.1, 0.5u.
The right-most column shows the results of U-GAIL for λ “ 0.01, V-GAIL for λ “ 0.01, M-GAIL
for λ “ 0.5, and MM-GAIL for λ “ 0.5 and ω “ 0.01.

20



Under review as a conference paper at ICLR 2019

(a) Results on Ant for N “ 100 with D50%
N (top row) and D70%

N (bottom row).

(b) Results on Ant for N “ 300 with D50%
N (top row) and D70%

N (bottom row).

(c) Results on Ant for N “ 500 with D50%
N (top row) and D70%

N (bottom row).

Figure 5: Results on Ant for N P t100, 300, 500u and K “ 1000 on λ P t0.01, 0.1, 0.5u. The
right-most column shows the results of U-GAIL for λ “ 0.01, V-GAIL for λ “ 0.01, M-GAIL for
λ “ 0.5, and MM-GAIL for λ “ 0.5 and ω “ 0.01.
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(a) Results on Hopper for N “ 100 with D50%
N (top row) and D70%

N (bottom row).

(b) Results on Hopper for N “ 300 with D50%
N (top row) and D70%

N (bottom row).

(c) Results on Hopper for N “ 500 with D50%
N (top row) and D70%

N (bottom row).

Figure 6: Results on Hopper for N P t100, 300, 500u and K “ 1000 on λ P t0.01, 0.1, 0.5u. The
right-most column shows the results of U-GAIL for λ “ 0.01, V-GAIL for λ “ 0.01, M-GAIL for
λ “ 0.5, and MM-GAIL for λ “ 0.5 and ω “ 0.01.
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(a) Results on Walker for N “ 100 with D50%
N (top row) and D70%

N (bottom row).

(b) Results on Walker for N “ 300 with D50%
N (top row) and D70%

N (bottom row).

(c) Results on Walker for N “ 500 with D50%
N (top row) and D70%

N (bottom row).

Figure 7: Results on Walker for N P t100, 300, 500u and K “ 1000 on λ P t0.01, 0.1, 0.5u. The
right-most column shows the results of U-GAIL for λ “ 0.01, V-GAIL for λ “ 0.01, M-GAIL for
λ “ 0.5, and MM-GAIL for λ “ 0.5 and ω “ 0.01.
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(a) Results on Half-Cheetah for N “ 1000 with D50%
N (top row) and D70%

N (bottom row).

(b) Results on Half-Cheetah for N “ 10000 with D50%
N (top row) and D70%

N (bottom row).

Figure 8: Results on Half-Cheetah for N P t1000, 10000u and K “ 2000 on λ P t0.01, 0.1, 0.5u.
The right-most column shows the results of U-GAIL for λ “ 0.01, V-GAIL for λ “ 0.01, M-GAIL
for λ “ 0.5, and MM-GAIL for λ “ 0.5 and ω “ 0.01.

(a) Results on Ant for N “ 1000 with D50%
N (top row) and D70%

N (bottom row).

(b) Results on Ant for N “ 10000 with D50%
N (top row) and D70%

N (bottom row).

Figure 9: Results on Ant for N P t1000, 10000u and K “ 2000 on λ P t0.01, 0.1, 0.5u. The
right-most column shows the results of U-GAIL for λ “ 0.01, V-GAIL for λ “ 0.01, M-GAIL for
λ “ 0.5, and MM-GAIL for λ “ 0.5 and ω “ 0.01.
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(a) Results on Hopper for N “ 1000 with D50%
N (top row) and D70%

N (bottom row).

(b) Results on Hopper for N “ 10000 with D50%
N (top row) and D70%

N (bottom row).

Figure 10: Results on Hopper for N P t1000, 10000u and K “ 2000 on λ P t0.01, 0.1, 0.5u. The
right-most column shows the results of U-GAIL for λ “ 0.01, V-GAIL for λ “ 0.01, M-GAIL for
λ “ 0.5, and MM-GAIL for λ “ 0.5 and ω “ 0.01.

(a) Results on Walker for N “ 1000 with D50%
N (top row) and D70%

N (bottom row).

(b) Results on Walker for N “ 10000 with D50%
N (top row) and D70%

N (bottom row).

Figure 11: Results on Walker for N P t1000, 10000u and K “ 2000 on λ P t0.01, 0.1, 0.5u. The
right-most column shows the results of U-GAIL for λ “ 0.01, V-GAIL for λ “ 0.01, M-GAIL for
λ “ 0.5, and MM-GAIL for λ “ 0.5 and ω “ 0.01.
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