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ABSTRACT

We focus on the problem of learning a single motor module that can flexibly ex-
press a range of behaviors for the control of high-dimensional physically simu-
lated humanoids. To do this, we propose a motor architecture that has the general
structure of an inverse model with a latent-variable bottleneck. We show that it
is possible to train this model entirely offline to compress thousands of expert
policies and learn a motor primitive embedding space. The trained neural prob-
abilistic motor primitive system can perform one-shot imitation of whole-body
humanoid behaviors, robustly mimicking unseen trajectories. Additionally, we
demonstrate that it is also straightforward to train controllers to reuse the learned
motor primitive space to solve tasks, and the resulting movements are relatively
naturalistic. To support the training of our model, we compare two approaches
for offline policy cloning, including an experience efficient method which we call
linear feedback policy cloning. We encourage readers to view a supplementary
video summarizing our results.

1 INTRODUCTION

A broad challenge in machine learning for control and robotics is to produce policies capable of
general, flexible, and adaptive behavior of complex, physical bodies. To build policies that can effec-
tively control simulated humanoid bodies, researchers must simultaneously overcome foundational
challenges related to high-dimensional control, body balance, and locomotion. Recent progress in
deep reinforcement learning has raised hopes that such behaviors can be learned end-to-end with
minimal manual intervention. Yet, even though significant progress has been made thanks to better
algorithms, training regimes, and computational infrastructure, the resulting behaviors still tend to
exhibit significant idiosyncrasies (e.g. Heess et al., 2017; Bansal et al., 2018).

One advantage of working with humanoids in this context is that motion capture data is widely avail-
able and can serve to help design controllers that produce apparently humanlike movement. Indeed,
recent developments are now allowing for the production of highly specialized expert policies which
robustly, albeit narrowly, reproduce single motion capture clips (e.g. Liu et al. (2010); Peng et al.
(2018)).

A remaining challenge on the way to truly flexible and general purpose control is to be able to
sequence and generalize individual movements or “skills” in a task-directed manner. Achieving this
goal requires not just the ability to acquire individual skills in the first place, but also an architecture
and associated training procedure that supports representation, recruitment, and composition of a
large number of skills.

This paper presents a step in this direction. Specifically, the setting we focus on will be one in which
we have a large number of robust experts that perform single skills well and we wish to transfer
these skills into a shared policy that can do what each expert does as well as the expert, while also
generalizing to unseen behaviors within the distribution of skills. To this end we design a system
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that performs one-shot imitation as well as permits straightforward reuse (or transfer) of skills. We
require our approach to scale to a very large number of individual skills while also keeping manual
intervention and oversight to a minimum.

Our primary contribution is the development of a neural network architecture that can represent and
generate many motor behaviors, which we refer to as neural probabilistic motor primitives. This
architecture is designed to perform one-shot imitation, while learning a dense embedding space of a
large number of individual motor skills. Once trained, this module does not just reproduce individual
behaviors in the training data, but can sequence and compose these behaviors in a controlled fashion
as well as synthesize novel movements consistent with the training data distribution. Empirically,
we also find that training controllers to reuse this learned motor primitive module for new tasks
generates surprisingly human-like movement and the behavior generated seems to interpolate the
space of behaviors well.

In order to facilitate transfer and compression of expert skills at the scale of thousands of behav-
iors, we wish to avoid closed-loop RL training. We call the general, offline, functional transfer of
policy content policy transfer or policy cloning and consider two approaches. The natural baseline
approach involves the application of behavioral cloning to data gathered by executing experts many
times, with noise, and logging intended expert actions, resembling the approach of Laskey et al.
(2017). This works well, as it ensures the student behaves like the expert not only along nominal
expert rollouts but also at points arrived at by perturbing the expert. However, this approach may
require many rollouts, which can be costly to obtain in many settings. As a more efficient alternative
we therefore consider a second solution that operates by comprehensively transferring the functional
properties of an expert to a student policy by matching the local noise-feedback properties along one
or a small number of representative expert reference trajectories. We call this specific proposal linear
feedback policy cloning (LFPC), and we demonstrate that it is competitive with behavioral cloning
from many more rollouts in our setting.

1.1 BACKGROUND & RELATED WORK

Recent efforts in RL for humanoid control build on a large body of research in robotics and ani-
mation. While contemporary results for learning from scratch (Schulman et al., 2015; Heess et al.,
2017) can be impressive the behaviors are not consistently human-like. Learning from motion cap-
ture (mocap) can provide strong constraints, especially for running (Peng et al., 2017; Merel et al.,
2017). Several recent approaches have demonstrated that it is possible to acquire specific behavioral
skills, possibly jointly with external RL objectives (Merel et al., 2017; Peng et al., 2018; Liu &
Hodgins, 2018). At present, the policies produced tend to be restricted to single skills/behaviors and
can require very large quantities of environment interactions, motivating us to seek methods which
reuse existing single-skill expert policies.

Knowledge transfer refers to the broad class of approaches which transfer the input-output functional
mapping, to some extent or another, from a teacher (or expert) to a student (Hinton et al., 2015;
Srinivas & Fleuret, 2018; Furlanello et al., 2018). Distillation connotes the transfer of function from
one or more expert systems into a single student system often with the goal of compression or of
combining multiple experts qualities (Hinton et al., 2015; Parisotto et al., 2015; Rusu et al., 2015;
Teh et al., 2017). Imitation learning is the control-specific term for the production of a student policy
from either an expert policy or the behavioral demonstrations of an expert. One basic algorithm is
behavioral cloning, which refers to supervised training of the policy from state-action pairs. In the
most simple case it only requires examples from the expert. A broader setting is that in which more
liberal queries to the expert are permitted; e.g. for the online-imitation setting as in DAGGER (Ross
et al., 2011). This setting is often satisfied e.g. if we wish to combine behavior from multiple experts.

One-shot imitation is a concept which means that a trained system, at test time, can watch an ex-
ample behavior and imitate it, as, for instance, in Duan et al. (2017). More similar to our work is
the setting examined by Wang et al. (2017), in which full-body humanoid movements were studied.
Compared with this latter work, we will employ an architecture here that encourages imitation of
motor details, rather than overall movement type, and we scale our approach to more expert demon-
strations. The most similar work also demonstrates large-scale one-shot humanoid tracking and was
contemporaneously published (Chentanez et al., 2018); the approach they described involves direct
tracking as well as failure recovery, but relative to our work the authors do not consider skill reuse.
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The notion of motor primitives is widespread in neuroscience, where there is evidence that lower
dimensional control signals can selectively coordinate and blend behaviors produced by spinal cir-
cuits (Bizzi et al., 2008), and that the cortex organizes the space of primitive motor behaviors
(Graziano, 2006). In our setting, motor primitives refer to the reusable embedding space learned
from many related behaviors and the associated context-modulable policy capable of generating
sensory-feedback-stabilized motor behavior when executed in an environment. The particular ar-
chitecture we consider is inspired by the formalization presented in Todorov & Ghahramani (2003),
which places a probabilistic latent bottleneck on the sensory-motor mapping.

In the robotics literature, there is a rich line of research into various parameterizations of motion
trajectories used for robot control. A class of these are referred to as “movement primitives” (e.g.
Schaal et al., 2003), including the “probabilistic movement primitives” of Paraschos et al. (2013)
(see also e.g. Neumann et al., 2014). These approaches can be seen as specific implementation
choices for a certain notion of motor primitive, which emphasize the parameterization and learning
of movement trajectories from repeated demonstrations (Paraschos et al., 2013; Meier & Schaal,
2016), rather than learning the actuation/stabilization element, which is often handled by a pre-
specified PID controller.

It has previously been recognized that linear-feedback policies can work well around optimal tra-
jectories or limit cycles even for high DoF bodies. These can be obtained by sample-based opti-
mization (e.g. Ding et al. (2015)) or by differential dynamic programming (Morimoto & Atkeson,
2003; Tassa et al., 2012; 2014). For linear-quadratic-Gaussian control (Athans, 1971) or differen-
tial dynamic programming (Mayne, 1966; Jacobson & Mayne, 1970), we obtain feedback policies
where the feedback terms are computed from the value function, amounting effectively to feedback-
stabilized plans. Work by Mordatch et al. (2015) has shown that linear-feedback policies resulting
from trajectory optimization can be used to train neural networks. We employ a similar idea to trans-
fer optimal behavior from an existing policy, observing that an optimal policy implicitly reflects the
structure of the (local) value landscape and appropriately functions as a feedback controller.

2 TRANSFER AND COMPRESSION OF EXPERT BEHAVIORS

Figure 1: Examples of representative experts
learned from motion capture. From top to bottom,
these are “run and dodge”, “cartwheel”, “back-
flip”, and “twist”. See accompanying video. Note
that these four behaviors will be used as represen-
tative examples for validation in single-skill trans-
fer experiments.

In this section, we will first briefly describe the
expert policies used in this work (Sec. 2.1). We
then describe the Neural Probabilistic Motor
Primitive architecture and objective (Sec. 2.2).
We then describe two approaches for training
the module offline (Sec. 2.3).

2.1 OBTAINING EXPERTS FROM MOTION
CAPTURE DATA

In order to study how to transfer and consoli-
date experts, we must be able to generate ade-
quate quantities of expert data. For this work,
we use expert policies trained to reproduce mo-
tion capture clips. The approach we use for pro-
ducing experts is detailed more fully in Merel
et al. (2018) and largely follows Peng et al.
(2018). It yields time-indexed neural network
policies that are robust to moderate amounts of
action noise (see appendix A for additional de-
tails on the training procedure). Some examples
of the resulting single-skill time-indexed poli-
cies that are obtained from this procedure are
depicted in Fig. 1. All our experts were trained in MuJoCo environments (Todorov et al., 2012).
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Figure 2: Neural probabilistic motor primitive architecture for one-shot skill deployment. The
yellow-highlighted information are available for offline, supervised training. Once the full model
has been learned, the decoder can be reused as a policy in other settings.

Data We use the CMU Mocap database1, which contains more than 2000 clips of varying lengths
from more than 100 subjects. The motions in this dataset are quite varied, including many clips
of walking, turning, running, jumping, dancing, various hand movements, and many more idiosyn-
cratic behaviors. From this, we selected various clips of generic whole-body movements – any clips
longer than 6 seconds were cut into smaller pieces yielding approximately 3000, roughly 2-6 sec-
ond snippets. Just over half of these are generic locomotion such as walking, running, jumping and
turning. The rest of the clips mostly contained diverse hand movements while standing. We trained
one expert policy per selected snippet, yielding 2707 expert policies in our training set.

2.2 NEURAL PROBABILISTIC MOTOR PRIMITIVES

Our goal is to obtain a motor primitive module that can flexibly and robustly deploy, sequence, and
interpolate a diverse set of skills from a large database of reference trajectories without any manual
alignment or other processing of the raw experts. This requires a representation that does not just
reliably encode all behavioral modes but also allows effective indexing of behaviors for recall. To
ensure plausible and reliable transitions it is further desirable that the encoding of similar behaviors
should be close in some sense in the representation space.

Compression of many expert skills via a latent variable inverse model We achieve this goal by
training an autoregressive latent variable model of the state-conditional action sequence which, at
training time, is conditioned on short look-ahead snippets of the nominal/reference trajectory (see
Fig. 2). This architecture has the general structure of an inverse model, which produces actions
based on the current state and a target. The architecture and training scheme are designed for the
embedding space to reflect short-term motor behavior. As we demonstrate below, this allows for
the selective execution of particular behavioral modes and also admits one-shot imitation via the
trajectory encoder.

We use a model with a latent variable zt at each time step, modelling the state conditional action
distribution. The encoder and decoder are distributions q(zt|zt−1, xt) and π(at|zt, st) where st
is the state as in preceding sections and xt is concatenation of a small number of future states
xt = [st, ..., st+K ]. The encoder and decoder are MLPs with two and three layers, respectively. For
architecture and experimental details see appendix B. The generative part of the model is given by:

p(a1:T , z1:T |s1:T ) =

T∏
t=1

pz(zt|zt−1)π(at|zt, st). (1)

Temporally nearby trajectory snippets should have a similar representation in the latent space. To
implement this intuition, we choose an AR(1) process as a weak prior:

zt = αzt−1 + σε, ε ∼ N (0, I), (2)

where σ =
√

1− α2, ensuring that marginally zt ∼ N (0, I), and set α = 0.95 in experiments
unless otherwise stated. In subsequent efforts, it may be interesting to investigate different values of
α and learnable priors.

1The CMU motion capture database is available at mocap.cs.cmu.edu.
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In order to train this model, we consider the evidence lower bound (ELBO):

Eq

[
T∑
t=1

log π(at|st, zt) + β
(

log pz(zt|zt−1)− log q(zt|zt−1, xt)
)]
, (3)

with a β parameter to tune the weight of the prior. For β = 1 this objective forms the well-known
variational lower bound to log p(a1:T |s1:T ). This objective can be optimized using supervised learn-
ing (i.e. behavioral cloning from noisy rollouts) offline.

Note we chose not to condition the encoder on actions, since we are interested in one-shot imitation
in settings where actions are unobserved. We experimented with different values of K and obtained
similar performance. All the results reported in this paper use K = 5.2

Our architecture effectively implements a conditional information bottleneck between the desired fu-
ture trajectory xt and the action at given the past latent state zt−1 (similar to Alemi et al. (2017)). As
discussed above the auto-correlated prior encourages an encoding in which temporally nearby latent
states from the same trajectory tend to be close in the latent space, and the information bottleneck
more generally encourages a limited dependence on xt with zt forming a compressed representation
of the future trajectory as required for the action choice.

2.3 TRAINING A STUDENT POLICY FROM A SET OF EXAMPLES

When transferring knowledge from an expert policy to a student we would like the student to repli-
cate the expert’s behavior in the full set of states plausibly visited by the expert. In our case, experts
trained to reproduce single clips can be conceptualized as nonlinear feedback controllers around a
nominal trajectory, and the manifold of states visited by experts can be thought of as a tube around
that reference. We require the student to be able to operate successfully in and remain close to this
tube even in the face of small perturbations.

Formally, to ensure that the student retains expert robustness, we would like expert actions µE(s)
and student actions µθ(s) to be close under a plausible (noisy) expert state distribution ρE . A
surrogate loss used in imitation learning as well as knowledge transfer is the quadratic loss between
actions (Ross et al., 2011) (or activations Srinivas & Fleuret (2018)).

min
θ

Es∼ρE [(µE(s)− µθ(s))2] (4)

Behavioral cloning can refer to optimization of this objective, where ρE is replaced with an em-
pirical distribution of a set of state-action pairs S. This works well if S adequately covers the state
distribution later experienced by the student. Anticipating and generating an appropriate set of states
on which to train the student typically requires many rollouts and can thus be expensive.

Since we are aiming to compress the behavior of thousands of experts we desire a computationally
efficient method. We investigate two schemes that allow us to record the experts’ state-action map-
pings on a small-sample estimate of the experts’ state distributions and to then train the student via
supervised learning. Both schemes are convenient to implement in a regular supervised learning
pipeline and require neither querying many experts simultaneously (which limits scalability when
dealing with thousands of experts) nor execution of the student at training time.

Behavioral cloning from noisy rollouts The first approach amounts to simply gathering a number
of noisy trajectories from the expert (either under a stochastic policy or with noise injection) while
logging the optimal/mean action of the expert instead of the noisy action actually executed. A
version of this is equivalent to the DART algorithm of Laskey et al. (2017). We then perform
behavioral cloning from that data.

Specifically, given an expert policy πE , let µE(s) be the mean action of the expert in state s. To
obtain noisy rollouts, we run πηE , the expert with moderate action noise (η) to obtain a set of data
{sηk, µk}1...K , where µk = µE(sηk). And we optimize the policy according to Eqn. 4, with the
expectation over s ∼ ρE being approximated by a sum over the set of state and expert-actions

2We also experimented with ways to look further into the future by conditioning on xt =
[st, st+1, st+3, st+6, st+10, st+15]. This gave broadly similar results.
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collected. While we expect this approach can work well, we do not expect it to be particularly
efficient insofar as the expert may need to be executed for many rollouts.

Linear-feedback policy cloning (LFPC) The second approach, which we refer to as linear-
feedback policy cloning (LFPC), logs the action-state Jacobian as well as the expert action along a
single nominal trajectory. The Jacobian can be used to construct a linear feedback controller which
gives target actions in nearby perturbed states during training (described below). This approach is
not intended to outperform behavioral cloning, as this should not be possible for arbitrary quantities
of expert rollout data. Instead the motivation for LFPC is to do as well as behavioral cloning while
using considerably fewer expert rollouts.

As pointed out above, experts trained to reproduce single clips robustly can be thought of as non-
linear feedback controllers around this nominal trajectory. The nominal trajectory refers to the
sequence of nominal state-action pairs {s?t , a?t }1...T obtained by executing µE(s) recursively from
an initial point s?0. Since expert behavior in our setting is well characterized by single nominal tra-
jectories, we expect we can capture the relevant behavior of the expert by a linearization around the
nominal trajectory3.

Let δs be a small perturbation of the state and let J = dµE(s)
ds |s=s be the Jacobian. Then

µE(s+ δs) = µE(s) + Jδs+O
(
‖δs‖2

)
. (5)

This linearization induces a linear-feedback-stabilized policy that at each time-step has a nominal
action a?t , but also expects to be in state s?t , and correspondingly adjusts the nominal action with a
linear correction based on discrepancy between the nominal and actual state at time t:

µFB(st) = a?t + J?t (st − s?t ), where J?t =
dµE(s)

ds

∣∣∣∣
s=s?t

. (6)

We empirically validated that a linear feedback policy about the nominal trajectory of the expert can
approximate the expert behavior reasonably well for clips we examine (see results Fig. 3).

Above we presented the expert as a feedback controller operating in a tube around some nominal
trajectory with states s?1, . . . , s

?
T , actions a?1, . . . , a

?
T , and Jacobians J?1 , . . . ,J

?
T . We approximate

ρE with the distribution of states introduced by state perturbations around this nominal trajectory:

min
θ

1

T

∑
i

Eδsi∼∆(s)[‖µE(si + δsi)− µθ(si + δsi)‖2]. (7)

However, this objective still requires expert evaluations at the perturbed states. Using the lineariza-
tion described above we can replace the expert action µE(s + δs) with the Jacobian-based linear-
feedback policy µFB(s+ δs), which is available offline. This yields the LFPC objective:

min
θ

1

T

∑
i

Eδsi∼∆(s)[||µθ(s?i + δsi)− a?i − J?i δsi||22], (8)

One potentially important choice is the perturbation distribution ∆(s). Ideally, we would like ∆(s)
to be the state-dependent distribution induced by physically plausible transitions, but estimating this
distribution may require potentially expensive rollouts which we are trying to avoid. A cheaper
object to estimate is the stationary transition noise distribution induced by noisy actions, which can
be efficiently approximated from a small number of trajectories. Empirically, we found the objective
8 to be relatively robust to some variations in ∆, and we use a fixed marginal distribution for all clips.

Objective 8 bears interesting similarities to approaches such as denoising autoencoders (Vincent
et al., 2008), where networks can learn to ignore local noise perturbations on inputs sampled from
a high-dimensional noise distribution. Further, Mordatch et al. (2015) successfully distill feedback
policies obtained from a planner. One question left open by this latter work is that of how much data
might be required. Empirically we show in the experiments below that the augmented objective 8
can produce the desired robustness even from a very limited set of states.

3Note that in contemporary neural network languages, it is straightforward to automatically compute the
Jacobian of the actions with respect to observation inputs.
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Figure 3: Comparisons of trajectory rollouts for 4 reference behaviors for the nominal trajectory and
at varying noise levels. Note that the score is determined by similarity to motion-capture reference
and the expert may be slightly suboptimal so slight improvements on the expert may arise by chance.

There are multiple, relevant perspectives on LFPC. From one perspective, LFPC amounts to a data
augmentation method. From another vantage, the approach attempts to match the mean action as
well as the Jacobian at the set of relevant behavioral states, here sampled along the nominal trajec-
tory. In settings where expert behavior is more diverse or multimodal, LFPC should be applied to
states which representatively cover relevant behavioral modes or perhaps are expanded backwards
from goal states (roughly similar to the procedure used to expand LQR-trees by Tedrake 2009). Ex-
plicit Jacobian matching has been proposed elsewhere, for example in Czarnecki et al. (2017). See
appendix C for further disambiguation relative to other approaches.

To train our Neural Probabilistic Motor Primitive architecture using LFPC we can adapt the objective
in Eqn. 3 as follows:

Eδs,q

[
T∑
t=1

log π(at + Jtδst|st + δst, zt) + β
(

log pz(zt|zt−1)− log q(zt|zt−1, xt + δxt)
)]
, (9)

where δst are i.i.d. perturbations drawn from suitable perturbation distribution ∆ and δxt is the
concatenation of [δst, δst+1, ..., δst+K ].

3 EXPERIMENTS

3.1 VALIDATION: TRANSFER OF SINGLE-BEHAVIOR POLICIES

To ground our results in a simple setting, we begin with transfer of a single-skill, time-indexed
policy from one network to another. We compare the performance of various time-indexed policies
for each of the experts depicted in Fig. 1. We compare the original expert policy, an open-loop action
sequence along the experts nominal (i.e. mean) trajectory, a linear feedback policy along the expert
nominal trajectory, as well as the network trained to match the linear-feedback behavior (LFPC).
In addition we compare to policies trained from 100, 200, 500 or 1000 trajectories with behavioral
cloning. We compare each approach with no action noise, small action noise, and moderate action
noise (noise is i.i.d. normal per actuator with standard deviation magnitude .05 and .1 respectively,
for action ranges normalized to [−1, 1]). Note that, open loop control almost always fails if the state
is perturbed by even a small ε (though perhaps surprisingly, the backflip can almost be executed
open loop due to limited ground contact). Remarkably, LFPC with a single trajectory performs on
par with behavioral cloning based on hundreds of trajectories (see Fig. 3). For additional validation,
see appendix D.
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Figure 4: Performance relative to expert policies for trained neural probabilistic motor primitive
models. Performance of model variations are compared on training and testing data. We compare
models trained using cloning with 100 trajectories per expert for different levels of regularization,
using a smaller latent space of dimension 20 rather than 60 in all other experiments, as well as LFPC.

3.2 CORE RESULTS: COMPRESSING THOUSANDS OF EXPERTS

Having validated that single skills can be transferred, we next consider how well we can compress
behaviors of the 2707 experts in our training set into the neural probabilistic motor primitive archi-
tecture. Assessing the models using the action-reconstruction loss is not very intuitive since it does
not capture model behavior in the environment. Instead we report a more relevant measure based on
expert imitation. Here we encode an expert trajectory into a sequence of latent variables and then
execute the policy in the environment conditioned on this sequence. Note that this approach is open-
loop with respect to the latents while being closed-loop with respect to state. We can then compare
the performance of the trained system against experts on training and held-out clips according to the
tracking reward used to train the experts originally. To account for different expert reward scales
we report performance relative to the expert policy. Importantly, that this approach works is itself
a partial validation of the premise of this work, insofar as open-loop execution of action sequences
usually trivially fails with minor perturbations. The trained neural probabilistic motor primitive sys-
tem can execute behaviors conditioned on an open-loop noisy latent variable trajectory, implying
that the decoder has learned to stabilize the body during latent-conditioned behavior.

There are a few key takeaways from the comparisons we have run (see Fig. 4). Most saliently
cloning based on 100 trajectories from each expert with a medium regularization value (β = 0.1)
works best. LFPC with comparable parameters works less well here, but has qualitatively fairly
similar performance. Our ablations show that regularization and a large latent space are important
for good results. We also set the autoregressive parameter α = 0 (.95 in other runs), making the
latent variables i.i.d.. This hurts performance, validating our choice of prior.4

3.3 ANALYSIS OF THE TRAINED MODEL

We have no expectation that trajectories well outside the training distribution are likely to be either
representable by the encoder or executable by the decoder. Nevertheless, when one-shot imitation
of a trajectory fails, a natural question is whether the decoder is incapable of expressing the desired
actions, or the encoder fails to encode the trajectory in such a way that the decoder will produce it.

4One other feature of the training pipeline we experimented with is mirroring of policies according to
bilateral symmetry (thereby approximately doubling the expert data) – this improves results slightly and all
models compared here use mirroring.
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Figure 5: These panels consist of visualizations of the PCA latent space with comparisons in this
space between one-shot latent-variable sequences and optimized latent variable sequences for var-
ious behaviors: A. Run B. Backwards walking C. Jumping. Running executes well based on the
one-shot trajectory so serves as a reference for which optimization is not noticeably different. Walk-
ing backwards and jumping one-shot imitations fail, but are noticeably improved by optimization.

We propose an analysis to distinguish this for borderline cases. For held out trajectories that yield
unsatisfying performance on one-shot imitation, we can simply optimize directly:

min
z1...zT

T∑
t=1

||µθ(st, zt)− a?t ||22, (10)

where µθ is the decoder mean. Empirically we see that this optimization meaningfully improves the
executed behavior, and we visualize the shift in a three-dimensional space given by the first three
principal components in Fig. 5.

We exhibit three examples where we visualize the original latent trajectory as well as the optimized
latent trajectory. Performance is significantly improved (see supplementary video), showing the
latent space can represent behaviors for which one-shot imitation fails. However execution remains
imperfect suggesting that while much of the fault may lie with the encoder, the decoder still may
be slightly undertrained on these relatively rare behavior categories. Quantitatively, among a larger
set of clips with less than 50% relative expert performance for one-shot imitation we found that
optimization as described above improved median relative expert performance from 43% to 78%.

Other exploratory probes of the module suggest that it is possible in certain cases to obtain seam-
less transitioning between behaviors by concatenating latent-variable trajectories and running the
policy conditioned on this sequence (e.g. in order to perform a sequence of turns). See additional
supplementary video.

Reuse of motor primitive module Finally, we experimented with reuse of the decoder as a motor
primitive module. We treat the latent space as a new custom action space and train a new high-level
(HL) policy to operate in this space. At each time-step the high-level policy outputs a latent-variable

(a) Median return value across 10 seeds for the go-
to-target task vs learner steps. Compared to a very
weakly regularized module (β = 0.001), more
regularized motor primitives modules both trained
faster and achieved higher final performance.

(b) Our model is able to track the target speed ac-
curately. Shown here are target speed and actual
speed in the egocentric forward direction for three
episodes. The reward function is a Gaussian cen-
tered at the target speed. The shaded region corre-
sponds to ± one standard deviation.

Figure 6: Reuse of neural probabilistic motor primitive modules.
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zt. The actual action is then given by the motor primitive module p(at|st, zt). For training we
used SVG(0) (Heess et al., 2015) with the Retrace off-policy correction for learning the Q-function
(Munos et al., 2016).

A natural locomotion task that can challenge the motor module is a task which requires abrupt,
frequently redirected movement with sharp turns and changes of speed. To implement this we
provide the higher-level controller with a target that is constant until the humanoid is near it for a
few timesteps at which point it randomly moves to another nearby location. While no single task
will comprehensively probe the module, performing well in this task demands a wide range of quick
locomotion behavior. With only a sparse task reward, the HL-controller can learn to control the
body through the learned primitive space, and it produces rather humanlike task-directed movement.
We observed that more regularized motor primitive modules had more stable initial behavior when
connected to the untrained high-level controller (i.e. were less likely to fall at the beginning of
training). Compared to a very weakly regularized module (β = 0.001), more regularized motor
primitives modules both trained faster and achieved higher final performance (see Fig. 6a). We also
investigated a go-to-target task with bumpy terrain that is unobserved by the agent. The fact that our
model can learn to solve this task demonstrates its robustness to unseen perturbations for which the
motor primitive module was not explicitly trained. In another experiment we investigated a task in
which the agent has to move at a random, changing target speed. This requires transitions between
qualitatively different locomotion behavior such as walking, jogging, and running (see Fig. 6b).
See an extended video of these experiments. In a final reuse experiment, we consider an obstacle
course requiring the agent to jump across gaps (as in Merel et al. (2018)). We were able to solve
this challenging task with a high-level controller that operated using egocentric visual inputs (see
the main supplementary video).

We emphasize a few points about these results to impact their importance: (1) Using a pretrained
neural probabilistic motor primitives module, new controllers can be trained effectively from scratch
on sparse reward tasks, (2) the resulting movements are visually rather humanlike without additional
constraints implying that the learned embedding space is well structured, and (3) the module enables
fairly comprehensive and smooth coverage for the purposes of physics-based control.

4 DISCUSSION

In this paper we have described approaches for transfer and compression of control policies. We have
exhibited a motor primitive module that learns to represent and execute motor behaviors for control
of a simulated humanoid body. Using either a variant of behavioral cloning or linear feedback policy
cloning we can train the neural probabilistic motor primitive sytem to perform robust one-shot-
imitation, and with the latter we can use relatively restricted data consisting of only single rollouts
from each expert. While LFPC did not work quite as well in the full-scale model as cloning from
noisy rollouts, we consider it remarkable that it is possible in our setting to transfer expert behavior
using a single rollout. We believe LFPC holds promise insofar as it may be useful in settings where
rollouts are costly to obtain (e.g. adapted to real-world robotic applications), and there is room for
further improvement as we did not carefully tune certain parameters, most saliently the marginal
noise distribution ∆.

The resulting neural probabilistic motor primitive module is interpretable and reusable. We are
optimistic that this kind of architecture could serve as a basis for further continual learning of motor
skills. This work has been restricted to motor behaviors which do not involve interactions with
objects and where a full set a of behaviors are available in advance. Meaningful extensions of this
work may attempt to greatly enrich the space of behaviors or demonstrate how to perform continual
learning and reuse of new skills.
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APPENDICES

A MOTION CAPTURE EXPERTS

The approach we use for producing experts is detailed more fully in Merel et al. (2018). In short,
this approach for producing experts largely follows Peng et al. (2018). We took the energy function
proposed in SAMCON (Liu et al., 2010), and use it as a per timestep reward to train a time-indexed
policy that tracks/imitates a motion capture reference clip (Peng et al., 2018). As proposed in Merel
et al. (2017); Peng et al. (2018), episodes are initialized to poses throughout the motion capture
reference and episodes are early-terminated when the character falls. Here we use an off-policy
RL algorithm, SVG(0) (Heess et al., 2015) with Retrace (Munos et al., 2016). As done in Merel
et al. (2017); Peng et al. (2018) and elsewhere, we train stochastic policies and use the mean (i.e.
noiseless) action as the expert policy.

B ARCHITECTURE AND TRAINING DETAILS

The decoder p(at|st, zt) in our experiments was a MLP with three layers with 1024 hidden units
taking as input the concatenation of state st and latent variable zt. The decoder output distribution is
a multivariate Gaussian with fixed standard deviation of 0.1 (action values are normalized to [−1, 1]).
We found that fixing the standard deviation made it significantly easier to prevent overfitting. Note
that in this setting varying the β parameter is equivalent to varying the fixed output variance (up
to a constant). The encoder q(zt|zt−1, xt) in our experiments was also an MLP with two layers
of 1024 hidden units each. The inputs were simply concatenated at the input. The encoder output
distribution was a multivariate Gaussian with learnt variance. In most of our experiments, we used
a 60-dimensional latent space.
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We used the reparametrization trick (Kingma & Welling, 2013; Rezende et al., 2014) to train the
model and used stochastic gradient descent with ADAM (Kingma & Ba, 2015) with a learning rate
of 0.0001. In the case of models trained on 100 trajectories per expert we used minibatches of 512
subsequences of length 30.

For LFPC we sampled 32 subsequences of length 30 and produced 5 perturbed state sequences per
subsequence. In preliminary experiments the length of the subsequences did not have a major impact
on model performance.

C RELATIONSHIP TO OTHER KNOWLEDGE TRANSFER IDEAS

Firstly, we note that the emphasis of the proposal in this work is to match the responsivity of the
expert policy in a neighborhood around each state. This is distinct from activation matching or KL
matching where the emphasis is on matching the action/activation distribution for a particular state
(Rusu et al., 2015; Teh et al., 2017). Secondly, we emphasize that the kind of robust knowledge
transfer we discuss here is distinct from that which is seen to be important in other settings. For
example Srinivas & Fleuret (2018) provide a line of reasoning that involves training a student system
to match the exact activations of a teacher in the presence of perturbations on the student inputs. This
logic is sound in the setting of large-scale vision systems. However in the context of control policies,
this would look like:

min
θ

∑
s∈S?

Eδs∼∆(s)[(µE(s)− µθ(s+ δs))2] (11)

This essentially means that the student policy is learning to “blindly” reproduce the action of the
expert exactly, despite input perturbations. While this is well motivated if the noise is thought to be
orthogonal to the proper functioning of the system, this is a very bad idea for control, where you
need to pay close attention to small input perturbations. Technically, this amounts to setting the local
feedback to zero, and behaving in a sort of open-loop-like fashion.

D VISUALIZATION OF STATIONARY POLICY BEHAVIOR

Locomotion behavior is, at least in the simplest case roughly a limit cycle. In an additional experi-
ment to test LFPC we gathered three gait cycles of running behavior and performed LFPC. Note that
here the student policy need not be time-indexed even when the demonstrations were time-indexed.
This restricted case shows striking generalization in the presence of noise (see Fig. A.1 and also see
main supplementary video).

Figure A.1: Dimensionality reduction (PCA)
performed on set of poses obtained from noisy
rollouts of the stationary cloned policy (blue).
The limited reference data originating from a
time-indexed policy has been projected into the
same space (green). Observe that the rollouts
are considerably noisier and consistently deviate
from the reference trajectory, nevertheless the
cloned-policy trajectories return to the limit cy-
cle.
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