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ABSTRACT

Existing neural networks proposed for low-level image processing tasks are usu-
ally implemented by stacking convolution layers with limited kernel size. Every
convolution layer merely involves in context information from a small local neigh-
borhood. More contextual features can be explored as more convolution layers
are adopted. However it is difficult and costly to take full advantage of long-range
dependencies. We employ non-local operation to build up connection between
every pixel and all remain pixels. Moreover a novel Pyramid Non-local Block is de-
vised to robustly estimate pairwise similarity coefficients between different scales
of content patterns. Considering computation burden and memory consumption,
we exploit embedding feature maps with coarser resolution to represent content
patterns with larger spatial scale. Through elaborately combining the pyramid
non-local blocks and dilated residual blocks, we set up a Pyramid Non-local En-
hanced Network for edge-preserving image smoothing. It achieves state-of-the-art
performance in imitating three classical image smoothing algorithms. Additionally,
the pyramid non-local block can be directly incorporated into existing convolution
neural networks for other image processing tasks. We integrate it into two state-of-
the-art methods for image denoising and single image super-resolution respectively,
achieving consistently improved performance.

1 INTRODUCTION

Recently impressive progress has been achieved in low-level computer vision tasks as the development
of convolution neural networks (CNN), e.g. edge-preserving image smoothing (Li et al., 2016; Fan
et al., 2017; Zhu et al., 2019), image denoising (Mao et al., 2016; Zhang et al., 2017; 2018) and image
super-resolution (Tai et al., 2017a;b; Zhang et al., 2018). This paper focuses on devising a novel
pyramid non-local block oriented for effectively and efficiently mining long-range dependencies in
low-level image processing tasks.

Typical convolution layers operate on a small local neighborhood without considering non-local
contextual information. One common practice for capturing long-range dependencies is to enlarge
the receptive field by stacking large number of convolution layers (Kim et al., 2016a) or dilating
convolution layers (Yu et al., 2017). However, it is difficult to deliver information between distant
positions in such a manner (Hochreiter & Schmidhuber, 1997).

Discovering similar patterns (including small texture patches and large object parts) residing in natural
images is valuable to low-level image processing (Buades et al., 2005; Dabov et al., 2007; Mairal
et al., 2009). Dependencies on similar patterns can be used for recognizing out real region boundary in
image smoothing and recovering contaminated or missing details in image restoration tasks. Inspired
from this concept, a few literatures (Lefkimmiatis, 2017; Wang et al., 2018; Liu et al., 2018; Li et al.,
2018a) introduce non-local operation into deep networks in form of self-similarity strategy. Wang
et al. (2018) presents a non-local component in video classification, which is placed after high-level,
sub-sampled feature maps. Huge computational cost and memory consumption of their non-local
operations hinder its adaption to low-level computer vision tasks, where high-resolution feature
maps are demanded to produce appealing pixel-wise outputs. NLRN (Liu et al., 2018) and NLEDN
(Li et al., 2018a) apply non-local operation for image restoration and rain removal, respectively.
One fatal drawback of this kind of methods is that the estimation of self-similarity is confined in
a neighborhood of tens of pixels. Besides it is a very common phenomenon that the same type of
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patterns appear to own various spatial scales, which has not been taken into consideration in existing
non-local operations.

To settle the above issues, we propose a pyramid structure, named Pyramid Non-local Block (PNB),
to perform non-local operation with a cost-effective amount of computation load. It utilizes a
query feature map with full resolution and a pyramid of reference feature maps to robustly estimate
similarities between different scales of patterns. Accordingly, a pyramid of embedding feature
maps are extracted to enhance the input feature map with the help of estimated similarity matrices.
To ensure acceptable computation burden and memory consumption, resolutions of the reference
and embedding feature maps are downscaled. Through intervening pyramid non-local blocks and
dilated residual blocks (Yu et al., 2017), we set up Pyramid Non-Local Enhanced Networks for
edge-preserving image smoothing. It achieves the state-of-the-art performance in imitating various
classical image smoothing filters.

In addition, efficient computation allows our proposed pyramid non-local block to be incorporated into
deep CNN-based methods for pixel-level image processing tasks. We demonstrate the effectiveness
of PNB on two classical tasks, image denoising and single image super-resolution (SISR). Two
state-of-the-art models, RDN (Zhang et al., 2018) and MemNet (Tai et al., 2017b), are adopted as
the baseline models. The PNB acts as a critical component to exploit long-range dependencies.
Performance improvements over baseline have been consistently obtained thanks to the adoption of
pyramid non-local blocks.

2 RELATED WORK

Deep Learning Based Image Processing Edge-preserving image smoothing aims to preserve sig-
nificant image structures while smoothing out trivial details. Because of the strong feature learning
ability, deep neural networks attracts a lot of attention in this field. The pioneering work (Xu et al.,
2015) employs a three-layer CNN to predict a gradient map which is subsequently used to guide
the smoothing procedure. Recurrent network is adopted to efficiently propagate spatial contextual
information across pixels (Liu et al., 2016). Joint filtering (Li et al., 2016) and edge map (Fan et al.,
2017) are dedicated to using extra guidances for image smoothing. Meanwhile, deep neural networks
have been proposed for image denoising and super-resolution (Kim et al., 2016a; Zhang et al., 2017).
Residual connections (Lim et al., 2017) and dense connections (Tong et al., 2017; Zhang et al., 2018)
are added to alleviate the vanishing-gradient problem. Features at different scales are fused to get
efficacious information (Li et al., 2018b). Other representative methods include Huang et al. (2015);
Shi et al. (2016); Tai et al. (2017a;b); Ahn et al. (2018); Hui et al. (2018). We do not elaborate due to
limited space.

Non-local Context Information. Image non-local self-similarity has been widely exploited in many
non-local methods for image restoration, such as BM3D (Dabov et al., 2007) and WNNM (Gu et al.,
2014). Recently a few studies attempt to incorporate non-local operations into deep neural networks
for capturing long-range dependencies. Wang et al. (2018) presented trainable non-local neural
networks in video classification. However, the computation complexity of their non-local operation
grows dramatically as size of the input feature map increases. Liu et al. (2018) and Li et al. (2018a)
incorporated non-local module into RNN architecture and encoder-decoder architecture for image
restoration and image de-raining, respectively. Nevertheless, the measurement of self-similarity is
restricted within a small neighborhood.

Our method differs from existing models proposed for low-level image processing in two aspects.
Firstly, our method can robustly measure similarities between different scales of content patterns as
we adopt a pyramid structure for the non-local operation. Secondly, computation burden and memory
consumption is greatly relieved because the spatial resolutions of reference features in the non-local
operation are downscaled.

3 METHOD

Non-local correlations between patterns are paramount for edge-preserving image smoothing. Long-
range contextual features are beneficial to suppress textures inside objects (object parts) while
identifying out real region boundaries in image smoothing. We propose a deep pyramid non-local
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Figure 1: The overall architecture of our proposed pyramid non-local enhanced network (PNEN).

enhanced network (PNEN), which introduces pyramid non-local block (PNB) to explicitly mine
long-range dependencies. The overall architecture is illustrated in Figure 1. The pyramid non-local
block (PNB) is carefully designed to involve in correlation with distant pixels when inferring every
pixel, as well as guaranteeing computation efficiency in terms of complexity and tolerant memory
consumption. Besides, dilated residual blocks (DRB) (Yu et al., 2017) are introduced to enlarge
receptive field for taking advantage of full structural and textural information in the image. In the
following sections, each component of the proposed architecture will be elaborated with more details.

3.1 ENTRY AND EXIT NETWORK

Define the input color image as X with size of h× w × 3. h and w represents the height and width
of the input image respectively. Our proposed PNEN employs one convolution layer as the entry net
to transform X into a feature map F0 which is a h× w × c tensor. Formally, we have

F0 = Fentry(X,Wentry), (1)

where the Fentry(·, ·) denotes the convolution operations in the entry net and Wentry represents
related convolution parameters. Subsequently, M blocks, each of which is consisting of a pyramid
non-local block and a dilated residual block, are stacked to induce deep features. We define the
feature produced by the m-th block as Fm. We have

Fm = FPNB(FDRB(Fm−1,W
m
DRB),W

m
PNB), (2)

where FPNB(·, ·) and FDRB(·, ·) indicates the calculation procedure inside the pyramid non-local
block and dilated residual block which will be elaborated in Section 3.2 and 3.3 respectively. Wm

DRB
and Wm

PNB represent their parameters correspondingly. Inspired by MemNet (Tai et al., 2017b),
features generated by all blocks {Fm|m = 1, · · · ,M} are accumulated to generate residual images
using the exit network. The residual image produced with Fm is defined as

Rm = Fexit(Fm,Wm
exit), (3)

where Fexit(·, ·) denotes the convolution operations in the exit network and Wm
exit represents the

related parameters. The exit network contains three convolutional layers. Suppose Ym = X+Rm.
The final reconstructed images is computed by

Y =

M∑
1

wm ·Ym, (4)

where {wm|m = 1, · · · ,M} are trainable weights. During the training stage, supervisions are
imposed to intermediate predictions Ym-s and final output Y. The loss function is defined as the
mean squared error towards groundtruth images G:

L =
1

hwc
(‖G−Y‖2 +

M∑
m=1

‖G−Ym‖2). (5)

3.2 PYRAMID NON-LOCAL BLOCK (PNB)

Let F ∈ Rh×w×c denotes the input feature activation map. Here h, w and c represents the height,
width and channel, respectively. A general formulation of non-local operation (Wang et al., 2018)
can be defined as

F̂ = T ( 1

D(F)
M(F)G(F)) + F, (6)
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(b) Pyramid Non-local Block

Figure 2: Architecture of prior non-local block (Wang et al., 2018) and our pyramid non-local block
(PNB). In PNB, φk and gk are implemented with convolutional layers of different strides, while θ is
shared. The kernel size k, number of filters f and stride s are indicated as (k, f, s) for each convolution
layer.

where F̂ is the enhanced feature representation. M(F) ∈ Rhw×hw is the self-similarity matrix,
where each elementM(F)i,j indicates the similarity between pixel i and j. G(X) ∈ Rhw×n gives
rise to a n-dimensional pixel-wise embedding. D(X) is a diagonal matrix for normalization purpose.
T (·) is the transformation function which converts the embedded features back into the original space
of input feature. In this way, the feature representation is non-locally enhanced through considering
all positions of the feature map. One instantiation (Wang et al., 2018) can be constructed by taking
the linear embedded Gaussian kernel as the distance metric to compute correlation matrixM, and
linear function to compute G:

M(F) = exp(Femb(F,Wθ)Femb(F,Wφ)
T), (7)

G(F) = Femb(F,Wg). (8)

The embedding function Femb(F,W) can be implemented by first applying convolutional operation
of parameter W on F, and then transforming the result into a 2-dimensional tensor in which each
column represents one embedding channel. When calculatingM(F), a query and a reference feature
with same size of hw ×m are generated using convolution kernel Wθ and Wφ respectively. The
output dimension of Wg is denoted as n. The diagonal elements of D(F) are obtained through
calculating column summation ofM(F). T (·) is also implemented with a convolution operation
of parameter Wψ to convert the embedding feature back into the original c-dimensional space. All
convolutions use kernel size of 1× 1. An example non-local block is illustrated in Figure 2(a). The
computation complexity and memory occupation of the correlation matrix increases exponentially as
the number of pixels grows. For sake of reducing computation burden, previous works (Liu et al.,
2018; Li et al., 2018a) utilize a small neighborhood to restrict the range of non-local operation.
In comparison, we propose a novel pyramid non-local block to effectively soften the computation
demand while achieving appealing performance in low-level image processing tasks.

At first, we produce one query feature Eθ = Femb(F,Wθ). The spatial kernel size and stride of
Wθ is 1 × 1 and 1 respectively. Then, multi-scale reference features and embedding features are
generated with convolutional layers using different kernel sizes and strides. Suppose there are totally
S scales. The computation procedure of the non-local operation in the s-th scale is as follows:

Eθ = Femb(F,Wθ), EsΦ = Femb(F,Ws
Φ), Esg = Femb(F,Ws

g), (9)

Ês =
1

Ds
exp{Eθ(EsΦ)T}Esg, (10)

where {EsΦ|s = 1, · · · , S} are query features for calculating similarity matrices with respect to Eθ
and {Esg|s = 1, · · · , S} are embedding features in all scales. The stride of convolutional layers in
the s-th scale is set to 2s. This implies that the number of rows in EsΦ and Esg is reduced to hw/4s,
which greatly reduces the amount of computation for estimating the self-similarity matrix. We adopt
larger convolutional kernels to extract reference feature representations of larger content patterns.
The pyramidal design is motivated by two reasons: 1) The computation and memory requirement of
non-local operations can be controlled within an acceptable load. 2) The robustness of self-similarity
estimation is enhanced since the self-similarity is measured at various resolutions.
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Figure 3: Architecture of dilated residual block (DRB). Our proposed DRB contains five Conv-BN-
ReLU-Conv groups, which have dilation factor 1, 2, 4, 2, 1, respectively.

After performing non-local operation in all scales, enhanced embedding features {Ês|s = 1, · · · , S}
are concatenated together, followed by one 1× 1 convolution layer to generate residual values to F.
Formally, the final output of pyramid non-local block can be achieved by

F̂ = FΨ({Ê1, · · · , ÊS},Wψ) + F. (11)
We summarize Eq. (9), (10) and (11) with the function FPNB(·, ·), as mentioned in Section 3.1. One
characteristic of pyramid non-local block is the flexibility of balancing accuracy and computation
resources through adjusting kernel sizes and strides in different scales. An illustration of the pyramid
non-local block is shown in Figure 2(b). We set m = 64, n = 32 and S = 3 in practice.

3.3 DILATED RESIDUAL BLOCK (DRB)

In pixel-wise image processing tasks, high-resolution feature maps are favorable for reconstructing
complicate textural details while large receptive field benefits the extraction of features which can
grab high-level contextual information. Considering the above issues, we employ dilated convolution
(Yu et al., 2017) to rapidly increase the receptive fields without sacrificing spatial resolutions of
learned features in our proposed model. As shown in Figure 3, we devise a dilated residual block with
5 cascaded residual modules which is set up with dilated convolutions. The calculation procedure of
the dilated residual block is indicated with the function FDRB(·, ·), as mentioned in Section 3.1.

As illustrated in Figure 1, our model is built up through intervening PNB-s and DRB-s. Every group
of consecutive PNB and DRB contributes a feature map for the final prediction.

3.4 DISCUSSION

The benefits of our proposed pyramid non-local block are three folds: First, the pyramidal strategy
adopts convolutions with various kernel sizes to generate embedding features for self-similarity
estimation. This improves the robustness of estimating correlation across pattern scales.

Second, existing deep models equipped with non-local modules are implemented via connecting all
pairs of pixels in the feature map Wang et al. (2018) or limiting the nonlocal dependencies within a
constant neighborhood size Liu et al. (2018); Li et al. (2018a). The former kind of methods merely
plug non-local modules after high-level feature maps with small resolution, because the computational
complexity and memory usage will grow exponentially as the number of pixels in the feature map
increases. The later kind of methods inevitably neglect valuable correlations from pixels outside
the fixed neighborhood. We solve the problem ingeniously through embedding the input feature
into a query feature map with full resolution and multiple reference feature maps with downscaled
resolutions. In such a manner, the computation burden can be greatly relieved when applying our
method in low-level pixel-wise image processing tasks.

Third, the pyramid non-local block can be easily incorporated into existing CNN-based models
devised for low-level image processing, such as RDN(Zhang et al., 2018) for denoising or MemNet
(Tai et al., 2017b) for single image super-resolution. Experiments on various datasets indicate that
the pyramid non-local block consistently improves the performance in image smoothing, denoising
and super-resolution.

4 EXPERIMENTS IN EDGE-PRESERVING SMOOTHING

Edge-preserving smoothing is a fundamental topic in image processing. It aims at detecting major
image structures while neglecting insignificant details, which is critical in many computer vision
tasks such as image segmentation and contour detection.
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Table 1: Quantitative comparison in terms of PSNR/SSIM on three smoothing filters. The best
performance is marked in bold. Model depth and parameter number are also indicated.

DJF (Li et al., 2016) CEILNet (Fan et al., 2017) ResNet (Zhu et al., 2019) PNEN

WMF 34.31/0.9647 37.73/0.9773 38.30/0.9813 39.45/0.9846
L0 30.20/0.9458 31.30/0.9519 32.30/0.9671 33.44/0.9741

SD Filter 30.95/0.9264 32.67/0.9452 33.21/0.9532 34.19/0.9646
Max depth 6 32 37 37

#Parameters 99k 1113k 1961k 1875k

(a) Original Image (b) Ground Truth (c) DJF (Li et al., 2016)

(d) CEILNet (Fan et al., 2017) (e) ResNet (Zhu et al., 2019) (f) Our PNEN

Figure 4: Visual comparison of learning L0 smoothing filter. There exist unwanted details in previous
methods if we examine closely. In contrast, the result generated by our PNEN is closer to the
groundtruth.

4.1 DATASET

The image datasets are from Zhu et al. (2019). There are 500 images of clear structures and
visible details to evaluate the learning apability of deep model in reproducing edge-preserving filters.
Following Zhu et al. (2019), we use 400 images as training set and the remaining 100 images as
testing set. We train models to reproduce three representative filters in our experiments, including
weighted median filter (r = 10, σ = 50) (Zhang et al., 2014), L0 smoothing (λ = 0.02, κ = 2) (Xu
et al., 2011) and SD Filter (λ = 15) (Ham et al., 2017).

Implementation Details Without specification, all convolutional layers have 64 filters with kernel
size 3× 3. We stack three PNB-s and DRB-s consecutively as the feature extractor, resulting in a
37-layer deep network. During the training stage, random horizontal flip and rotation are applied for
data augmentation. Training images are split into 96× 96 patches. The mini-batch size is set to 8.
Adam optimizer (Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.999, ε = 10−8 is used for optimization.
The initial learning rate is set to 5× 10−4 and reduced by half when training loss stops decreasing,
until it reduces to 10−4. It takes around 2 days to train a model on one TITAN Xp GPU. For inference,
the model takes 1.2 seconds to process a testing image of 500× 400 pixels.

4.2 COMPARISON WITH THE STATE-OF-THE-ART

Recently, piles of CNN-based approaches (Xu et al., 2015; Liu et al., 2016; Li et al., 2016; Fan et al.,
2017; Zhu et al., 2019) have been proposed to reproduce edge-preserving smoothing filters. We
compare our proposed PNEN against three state-of-the-art methods, including DeepJointFilter (DJF)
(Li et al., 2016), Cascaded Edge and Image Learning Network (CEILNet) (Fan et al., 2017) and
Residual Networks (ResNet) (Zhu et al., 2019). For fair comparison, the networks are re-trained from
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(a) Input Image (b) Scale 2 (c) Scale 4 (d) Scale 8

Figure 5: Correlation map of pyramid non-local operation at different scales. The first row shows the
correlation map computed at the red point. The second row shows correlation map computed at the
blue point.

Table 2: Ablation study on different design choices
of pyramid non-local block.

1 2 3 4 5 6
Scale 2 X X X

Scale 4 X X X

Scale 8 X X

PSNR 31.95 32.57 33.17 32.87 33.21 33.44
SSIM 0.9665 0.9706 0.9708 0.9707 0.9720 0.9741

Table 3: Comparison of computation resource
requirements in terms of floating point opera-
tions (FLOPs) and memory consumption.

w/o
w/

Wang et al. (2018)
w/

our PNB
FLOPs 40.6G 46.2G 42.5G

Memory 1.1GB 9.6GB 4.3GB
#Parameters 1334k 1519k 1875k

PSNR 31.95 32.40 33.44

scratch on the same training dataset as described above. We evaluate the quality of the generated
images using two metrics, including Peak Signal-to-Noise Ratio (PSNR) and Structure Similarity
Index (SSIM) (Wang et al., 2004).

Quantitative results are reported in Table 1. When reproducing WMF, L0 smoothing and SD Filter,
our proposed method (PNEB) outperforms the second best method ResNet (Zhu et al., 2019) by
1.15dB, 1.14dB and 0.98dB in PSNR metric respectively. Higher SSIM performance also indicates
that our method can give rise to smoothed images with better structural information. A visual
comparison of learning L0 smoothing filter is provided in Figure 4. As can be seen in close-ups of
the selected patch, the region smoothed by our proposed PNEN appears to be cleaner and flatter than
other methods. Our result is closer to the groundtruth image.

As shown in Figure 5, we visualize the similarity map derived from the last pyramid non-local block
at two locations, marked by red and blue respectively. Figure 5 (b), (c) and (d) show the similarity
map at ‘Scale 2’, ‘Scale 4’ and ‘Scale 8’, respectively. We can see that the pixels with similar features
show high correlation in these maps. Thus, the features are non-locally enhanced by exploiting
long-range dependencies. Particularly, for the pixel marked by red, there exist noises when estimating
correlation coefficients with similar patterns (left-bottom area) in ‘Scale 2’ while ‘Scale 4’ performs
well on these patterns. It indicates that the adoption of pyramid non-local operations can benefit the
robustness of estimating correlations between different scales of patterns.

4.3 ABLATION STUDY

To validate the effectiveness and necessity of pyramidal strategy, we exhaustively compare PNB with
its variants on learning L0 smoothing filter. The performance changes in terms of PSNR and SSIM
are shown in Table 2. The multi-scale pyramid non-local networks outperforms single-scale non-local
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Table 4: Image denoising results. Aver-
age PSNR/SSIM results are reported on Set12,
BSD68 and Urban100 dataset.

Dataset RDN RDN(deeper) RDN(w/ PNB)

Set12 30.60/0.8651 30.62/0.8662 30.72/0.8689
BSD68 29.30/0.8335 29.31/0.8341 29.38/0.8370

Urban100 30.28/0.8923 30.32/0.8945 30.83/0.9023
#Parmeters 20.5M 23.2M 20.9M

Table 5: SISR results. Average PSNR/SSIM re-
sults are reported on Set5, Set14, BSD100 and
Urban100 dataset.

Dataset MemNet MemNet(deeper) MemNet(w/ PNB)

Set5 34.09/0.9248 34.12/0.9250 34.18/0.9267
Set14 30.00/0.8350 30.04/0.8361 30.12/0.8409

BSD100 28.96/0.8001 28.97/0.8008 29.02/0.8072
Urban100 27.56/0.8376 27.65/0.8380 27.88/0.8474
#Parmeters 677k 1056k 1047k

networks with a significant margin. It is noteworthy that the design of PNB is flexible according to
the trade-off between computation efficiency and accuracy.

The required computational resources, in terms of floating point operations (FLOPs) and memory
consumption, are summarized in Table 3. The performance is obtained by testing methods on a
96 × 96 patch. We compare our proposed PNB with the non-local block proposed in Wang et al.
(2018). Memory consumption increases dramatically since non-local operation needs to store a large
correlation matrix. Our memory requirement is 57% less than that of Wang et al. (2018). Under the
same GPU memory constraint, our method allows larger training patches and larger receptive field
for low-level image processing tasks.

5 EXTENSION: EXPERIMENTS ON IMAGE RESTORATION

Deep convolutional networks are widely used in image restoration tasks (Kim et al., 2016a;b; Zhang
et al., 2017; Lim et al., 2017; Tai et al., 2017b; Hui et al., 2018; Zhang et al., 2018). We adopt
two state-of-the-art methods, RDN (Zhang et al., 2018) and MemNet (Tai et al., 2017b), as the
baseline models for image denoising and image super-resolution task, respectively. As discussed
in Section 3.4, efficient computation allows our proposed pyramid non-local block be incorporated
into these low-level baseline models. The PNB acts as a basic component to exploit non-local image
self-similarity. Model architectures and visual comparisons are provided in the appendix.

Image Denoising: Three PNB-s are incorporated into RDN. To demonstrate the effectiveness of
PNB, we compare with a variant of RDN by stacking more convolutional layers. The deeper RDN
has more parameters than the PNB-enhanced RDN. We follow the training and testing protocols as in
Zhang et al. (2018) for fair comparison. 800 images from DIV2K dataset (Timofte et al., 2017) are
utilized as training data. We add white Gaussian noise with standard deviation σ = 25 to the original
images to synthesize noisy images. Results on three widely used benchmarks, Set12 (Zhang et al.,
2017), BSD68 (Roth & Black, 2009), Urban 100 (Huang et al., 2015), are reported in Table 4. The
PNB-enhanced RDN yields better results than original RDN and its variant.

Image Super-Resolution: We add three PNB-s into MemNet. We also compare with a variant of
MemNet by stacking more convolutional layers. The deeper MemNet and PNB-enhanced MemNet
have similar parameter numbers. We follow the training and testing protocols as in Tai et al. (2017b)
for fair comparison. The training sets consist of 291 images where 200 images are BSD train set
and other 91 images are from Yang et al. (2010). The training data are constructed by bicubic
downsampling with factor 3, and then upscaled to the original size. Results on four widely used
benchmarks, Set5 (Bevilacqua et al., 2012), Set14 (Zeyde et al., 2010), BSD100 (Martin et al., 2001)
and Urban100 (Huang et al., 2015), are presented in Table 5. The PNB-enhanced MemNet yields
better results than original MemNet and its variant.

6 CONCLUSION

In this paper, we present a novel and effective pyramid non-local enhanced network (PNEN) for
edge-preserving image smoothing. The proposed pyramid non-local block (PNB) is computation-
friendly, which allows it be a plug-and-play component in existing deep methods for low-level image
processing tasks. Methods incorporating our proposed pyramid non-local block achieve significantly
improved performance in image denoising and image super-resolution.
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A CORRELATION MAP VISUALIZATION

Here, we visualize correlation maps computed by the pyramid non-local block (PNB). In each input
image, the correlation maps at two positions, marked by red and blue point, are shown respectively.
As shown in Figure 6 and Figure 8, we can see that the pixels with similar features show high
correlation in the correlation map.

The 64 channel feature activation maps, before and after applying PNB, are visualized in Figure 7
and Figure 9. They are placed in the 8× 8 grid. The features are non-locally enhanced by exploiting
image self-similarity, showing stronger structure information after applying pyramid non-local block.

Input Image Scale 2 Scale 4 Scale 8

Figure 6: Correlation map of pyramid non-local operation at different scales. The first row shows the
correlation map computed at the red point. The second row shows correlation map computed at the
blue point.

Feature Map before PNB Feature Map after PNB

Figure 7: Feature activation maps before and after applying pyramid non-local block.
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Input Image Scale 2 Scale 4 Scale 8

Figure 8: Correlation map of pyramid non-local operation at different scales. The first row shows the
correlation map computed at the red point. The second row shows correlation map computed at the
blue point.

Feature Map before PNB Feature Map after PNB

Figure 9: Feature activation maps before and after applying pyramid non-local block.
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B IMAGE DENOISING: MODELS AND VISUAL COMPARISON

The architecture of RDN (Zhang et al., 2018) is shown in Figure 10 (a), which is built upon EDSR
(Lim et al., 2017). They replaced residual blocks with their proposed residual dense block (RDB).
Please refer to Zhang et al. (2018) for more details. We incorporate three our proposed PNB-s into
their network every five RDBs, as shown in Figure 10 (b).
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Figure 10: Baseline RDN architecture, and the enhanced RDN architecture by incorporating our
PNB.

Here, we show more qualitative results of RDN and the PNB-enhanced RDN. The groundtruth clean
images are degraded with white Gaussian noise (level: σ = 25) to synthesize noisy images. From left
to right, they are the groundtruth clean images, noisy images, results generated by RDN and results
generated by RDN with PNB, respectively.

Ground Truth Noisy RDN RDN(w/ PNB)
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Ground Truth Noisy RDN RDN(w/ PNB)

Ground Truth Noisy RDN RDN(w/ PNB)

Ground Truth Noisy RDN RDN(w/ PNB)

Figure 11: Denoising Comparison. From left to right, they are the ground truth clean images, noisy
images, results generated by RDN and results generated by RDN with PNB, respectively.
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C IMAGE SUPER-RESOLUTION: MODELS AND VISUAL COMPARISON

The architecture of MemNet (Tai et al., 2017b) is shown in Figure 12 (a). They proposed memory
block as their basic component. Please refer to Tai et al. (2017b) for more details. As shown in
Figure 12 (b), we incorporate three our proposed PNB-s into their network without affecting the
dense connections between memory blocks.
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Figure 12: Baseline MemNet architecture, and the enhanced MemNet architecture by incorporating
our PNB.

We show more qualitative results of MemNet and the PNB-enhanced MemNet. The groundtruth
high-resolution (HR) images are bicubic downsampled and upsampled by factor 3 to synthesize low-
resolution (LR) images. From left to right, they are the groundtruth HR images, bicubic-interpolated
images, results generated by MemNet and results generated by MemNet with PNB, respectively.

Ground Truth Bicubic MemNet MemNet (w/ PNB)
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Ground Truth Bicubic MemNet MemNet (w/ PNB)

Ground Truth Bicubic MemNet MemNet (w/ PNB)

Groundtruth Bicubic MemNet MemNet (w/ PNB)

Figure 13: Super-resolution Comparison. From left to right, they are the groundtruth high-resolution
images, bicubic-interpolated images, results generated by MemNet and results generated by MemNet
with PNB, respectively.
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