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Abstract

Intelligent Transportation Systems (ITSs) are envisioned to play a critical role in1

improving traffic flow and reducing congestion, which is a pervasive issue impact-2

ing urban areas around the globe. Rapidly advancing vehicular communication3

and edge cloud computation technologies provide key enablers for smart traffic4

management. However, operating viable real-time actuation mechanisms on a5

practically relevant scale involves formidable challenges, e.g., Markov Decision6

Processes (MDP) and conventional Reinforcement Learning (RL) techniques suffer7

from poor scalability due to state space explosion. Motivated by these issues,8

we explore the potential for Deep Q-Networks (DQN) to optimize traffic light9

control policies. As an initial benchmark, we establish that the DQN algorithms10

yield the “thresholding” policy in a single-intersection. Next, we examine the11

scalability properties of DQN algorithms and their performance in a linear network12

topology with several intersections along a main artery. We demonstrate that DQN13

algorithms produce intelligent behavior, such as the emergence of “greenwave”14

patterns, reflecting their ability to learn favorable traffic light actuations.15

1 Introduction16

Emerging Intelligent Transportation Systems (ITSs) [1–6] are expected to play an instrumental role17

in improving traffic flow, thus optimizing fuel efficiency, reducing delays and enhancing the overall18

driving experience. Today traffic congestion is an exceedingly complex and vexing issue faced by19

metropolitan areas around the world. In particular, street intersections in dense urban traffic zones20

(e.g., Times Square in Manhattan) can act as severe bottlenecks.21

Current traffic light control policies typically involve preprogrammed cycles that may be optimized22

based on historical data and adapted according to daily patterns. The options for adaptation to23

real-time conditions, e.g. through detection wires in the pavement, tend to be fairly rudimentary.24

Evolving vehicular communication technologies offer a crucial capability to obtain more fine-grained25

knowledge of the positions and speeds of vehicles. Such comprehensive real-time information26

can be leveraged, in conjunction with edge cloud computation, for significantly improving traffic27

flow through more agile traffic light control policies, or in the longer term, via direct actuation28

instructions for fully automated driving scenarios [7]. While the potential benefits are immense,29

so are the technical challenges that evidently arise in solving such real-time actuation problems on30

an unprecedented scale in terms of intrinsic complexity, geographic range, and number of objects31

involved.32

Under suitable assumptions, the problem of optimal dynamic traffic light control may be formulated33

as a Markov decision process (MDP) [8–10]. The MDP framework provides a rigorous notion of34

optimality along with a basis for computational techniques such as value iteration, policy iteration35

or linear programming. However, an MDP formulation involves strong model assumptions, which36
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Figure 1: One intersection with two traffic flows (left) where X1 and X2 are the queue lengths, and
the state transition diagram (right).

may not always be satisfied in reality, and knowledge of relevant system parameters, which may37

not be readily available. Owing to these issues, an MDP approach tends to be vulnerable to model38

mis-specification and inaccurate parameter estimation. Moreover, in terms of computational aspects,39

an MDP approach suffers from the curse of dimensionality, resulting in excessively large state spaces40

in realistic problem instances and exceedingly slow convergence.41

Reinforcement Learning (RL) techniques, such as Q-learning, overcome some of these limitations42

[11–14] and have been previously considered in the context of optimal dynamic traffic light control43

[15–18]. However, conventional RL techniques are still prone to prohibitively large state spaces and44

extremely sluggish convergence, implying poor scalability beyond a single-intersection scenario.45

Motivated by the above issues, we explore in the present paper the potential for deep learning46

algorithms, particularly Deep Q-Networks (DQN) [19], to optimize real-time traffic light control47

policies in large-scale transportation systems. As an initial validation benchmark, we analyze a48

single-intersection scenario and corroborate that the DQN algorithms match the provably optimal49

performance achieved by an MDP approach and exhibit a similar threshold structure. Next, we50

consider a linear network topology with several intersections to examine the scalability properties51

of DQN algorithms and their performance in the presence of highly complex interactions created52

by the flow of vehicles along the main artery. As mentioned above, the use of an MDP approach or53

standard RL techniques involves an excessive computational burden in these scenarios; hence the54

optimal achievable performance cannot be easily quantified. As a relevant qualitative feature, we55

demonstrate that DQN algorithms produce intelligent behavior, such as the emergence of “greenwave”56

patterns [20, 21], even though such structural features are not explicitly prescribed in the optimization57

process. This emergent intelligence confirms the capability of the DQN algorithms to learn favorable58

structural properties solely from observations.59

The remainder of the paper is organized as follows. In Section 2, we present a detailed model60

description and problem statement. In Section 3, we provide a specification of the DQN algorithms61

for a single intersection as well as a linear network with several intersections. Section 4 discusses the62

computational experiments conducted to evaluate the performance of the proposed DQN algorithms63

and illustrate the emergence of “greenwave” patterns. In Section 5, we conclude with a few brief64

remarks and some suggestions for further research.65

2 Model Description and Problem Statement66

We model the road intersections and formulate our optimization problem. For the sake of transparency,67

we consider an admittedly stylized model that only aims to capture the most essential features that68

govern the dynamics of contending traffic flows at road intersections. We throughout adopt a discrete-69

time formulation to simplify the description and allow direct application of MDP techniques for70

comparison, but the methods and results naturally extend to continuous-time operation.71

2.1 Single Road Intersection72

As mentioned earlier, we start with a single-intersection scenario to facilitate the validation of the73

DQN algorithms by comparing it with the MDP approach. We consider the simplest meaningful74

setup with two intersecting unidirectional traffic flows as schematically depicted in the left side of75

Fig. 1. The state S(t) of the system at the beginning of time slot t may be described by the three-tuple76
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Figure 2: Linear bidirectional road network.

(X1(t), X2(t);Y (t)), with Xi(t) denoting the number of vehicles of traffic flow i waiting to cross77

the intersection and Y (t) ∈ {0, 1, 2, 3} indicating the configuration of the traffic lights:78

• “0”: green light for direction 1 and hence red light for direction 2;79

• “1”: yellow light for direction 1 and hence red light for direction 2;80

• “2”: green light for direction 2 and hence red light for direction 1;81

• “3”: yellow light for direction 2 and hence red light for direction 1.82

Each configuration k can either simply be continued in the next time slot or must otherwise be83

switched to the natural subsequent configuration (k + 1) mod 4. This is determined by the action84

A(t) selected at the end of time slot t, which is represented by a binary variable as follows: “0” for85

continue, and “1” for switch:86

Y (t+ 1) = (Y (t) +A(t)) mod 4. (1)

These rules give rise to a strictly cyclic control sequence as illustrated in the right side of Fig. 1.87

The evolution of the queue state over time is governed by the recursion88

(X1(t+ 1), X2(t+ 1)) = (X1(t) + C1(t)−D1(t), X2(t) + C2(t)−D2(t)), (2)

with Ci(t) denoting the number of vehicles of traffic flow i appearing at the intersection during time89

slot t and Di(t) denoting the number of departing vehicles of traffic flow i crossing the intersection90

during time slot t. While not essential for our analysis, we make the simplifying assumption that if91

one of the two traffic flows is granted the green light, then exactly one waiting vehicle of that traffic92

flow, if any, will cross the intersection during that time slot, i.e.,93

D1(t) = min{1, X1(t)} if Y (t) = 0;D2(t) = min{1, X2(t)} if Y (t) = 2; (3)

and D1(t) = 0 if Y (t) 6= 0 and D2(t) = 0 if Y (t) 6= 2.94

2.2 Linear Road Topology95

To examine the performance and scalability properties of the DQN algorithms in more complex96

large-scale scenarios, we will consider a linear road topology. Specifically, we investigate a lin-97

ear network topology with N intersections and bidirectional traffic flows, representing a main98

artery with cross streets as schematically depicted in Fig 2. We do not account for any traffic99

flows making left or right turns, but the analysis could easily be generalized to accommodate that.100

The state S(t) of the system at the beginning of time slot t may be described by a (5N)-tuple101

(Xn1(t), Xn2(t), Xn3(t), Xn4(t);Yn(t))n=1,...,N , with directions 1 and 2 corresponding to the east-102

west direction of the main artery and the north-south direction of the cross streets, and thus103

Yn(t+ 1) = (Yn(t) +An(t)) mod 4, (4)

with An(t) denoting the action selected for the n-th intersection at the end of time slot t.104

The evolution of the various queue states is governed by the recursion105

Xni(t+ 1) = Xni(t) + Cni(t)−Dni(t), (5)

with Cni(t) denoting the number of vehicles in direction i appearing at the n th intersection during106

time slot t and Dni(t) denoting the number of vehicles crossing the n-th intersection in direction i107
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during time slot t, i = 1, . . . , 4, n = 1, . . . , N . While C11(t), CN3(t), and Cn2(t), Cn4(t),108

n = 1, . . . , N , correspond to vehicles approaching the intersection from the external environment,109

we have Cn+1,1(t + u) = Dn1(t) and Cn3(t + u) = Dn+1,3(t), n = 1, . . . , N − 1. This reflects110

that the vehicles crossing the n-th intersection in eastern direction during time slot t appear at the111

(n+1)-th intersection u time slots later; likewise, vehicles passing through the (n+1)-th intersection112

in western direction during time slot t arrive at the n-th intersection u time slots later. In this manner,113

the vehicles that travel along the main artery create highly complex interactions among the various114

intersections, which present additional challenges in optimizing the control policy.115

Note that116

Dn1(t) = min{1, Xn1(t)}, Dn3(t) = min{1, Xn3(t)}, if Yn(t) = 0, (6)
Dn1(t), Dn3(t) = 0 if Yn(t) 6= 0, and similarly for Dn2(t) and Dn4(t) depending on whether117

Yn(t) = 2 or not.118

2.3 Optimization Goal119

We assume that the “congestion cost” in time slot t may be expressed as a function F (X(t))120

of the queue state, with X(t) = (X1(t), X2(t)) in the single-intersection scenario and X(t) =121

(Xn1(t), Xn2(t), Xn3(t), Xn4(t))n=1,...,N in the linear topology with N intersections. The goal is122

to find a dynamic control policy which selects actions over time so as to minimize the long-term123

expected discounted cost E [
∑∞

t=1 γ
tF (X(t))], with γ ∈ (0, 1) representing a discount factor.124

3 Algorithm Design125

We provide a detailed specification of the DQN algorithms for the scenarios of a single intersection126

or a linear topology with several intersections as described in the previous section.127

First of all, letQ(s, a) be the maximum achievable expected discounted reward (or minimum negative128

congestion cost in our context) under the optimal policy starting from state s = (X;Y ) when action a129

is taken. The Q(s, a) values satisfy the equations130

Q(s, a) = r(s, a) + γ
∑
s′∈S

p(s, s′; a)max
a′∈A

Q(s′, a′) = r(s, a) + γE
[
max
a′∈A

Q(s′, a′)

]
, (7)

with r(s, a) = F (X) denoting the congestion cost in queue state X , and p(s, s′; a) denoting the131

transition probability from state s to state s′ when action a is taken. Observe that the values132

V (s) = max
a′∈A

Q(s, a′) satisfy the Bellman optimality equations133

V (s) = max
a′∈A
{r(s, a) + γ

∑
s′∈S

p(s, s′; a)V (s′)} = max
a′∈A
{r(s, a) + γE[V (s′)]}. (8)

The system state S serves as the input for both the target network and the evaluate network134

in the DQN algorithms, with S = (X1, X2;Y ) in the single-intersection scenario and S =135

(Xn1, Xn2, Xn3, Xn4;Yn)n=1,...,N in the linear topology with N intersections. Equation (7) pro-136

vides the basis for deriving the target Q-values at each time step, while the Q-learning update for the137

neural network approximator in the i-th iteration is calculated based on138

Loss(θi) = Es,a,r,s′∼memory

[(
r + γmax

(
q target(s′, a′; θ′i)

)
− q eval(s, a; θi)

)2]
, (9)

where r is reward (negative cost) in the current step, s′ and a′ are the state and action in the next step,139

θi are parameters of the evaluate Q-network in the i-th iteration and θ′i are parameters of the target140

Q-network with delayed update following the evaluate network.141

The DQN algorithms sample from and train on data collected in memory. The online samples are142

stored in memory for further learning. A warm-up period of k0 time steps is applied before the143

learning operations are initiated. The evaluate network is updated with the AdamOptimizer [22]144

gradient-descent and ε-greedy policy, whereas the update of the target network is slightly later.145
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Algorithm 1 DQN for single intersection or linear road topology with N intersections

1: Initialize queue and control states: either X1, X2 = 0;Y = 0 [single intersection] or
Xn1, Xn2, Xn3, Xn4 = 0;Yn = 0 for all n = 1, . . . , N [linear topology];
2: For steps k = 1, . . . ,K do:
3: s = [X1, X2;Y ] [single intersection] or s = [X11, . . . , XN4;Y1, . . . YN ] [linear topology];
4: Select a∗ = argmax

a∈A
q eval(s; a), using eval net to evaluate the Q-value for each action;

5: Generate random variables C1, C2 [single intersection] or C11, CN3 and Cn2, Cn4 for all
n = 1, . . . , N ;
6: Given a∗, determine new queue and control states X ′1, X

′
2, Y

′ according to Eq. (1)-(3) [single
intersection] or X ′11, . . . , X

′
N4, Y

′
1 , . . . , Y

′
N according to Eq. (4)-(6) [linear topology];

7: r = −((X ′1)2+(X ′2)
2) [single intersection] or r = −

∑N
n=1

∑4
i=1(X

′
ni)

2 [linear topology];

8: s′ = [X ′1, X
′
2;Y

′] [single intersection] or s′ = [X ′11, . . . , X
′
N4;Y

′
1 , . . . , Y

′
N ] [linear topol-

ogy];
9: Store transition [s, a∗, r, s′] in memory;
10: Perform learning operation if k > k0:
11: Sample a minibatch of samples from memory;
12: Update target network: θ′i = θi;
13: Calculate the target Q-value: q target(s, a∗) = r + γmax

a′∈A
q target(s′, a′);

14: Update evaluate network with gradient descent (using AdamOptimizer) and ε-greedy
policy: Loss(θi) = E[(q target− q eval)2].

Based on the above outline, we provide the specification of the DQN algorithm for the single-146

intersection scenario Fig. 1 and a linear topology with N intersections in Fig. 2. It is worth observing147

that even in the latter case we adopt a ‘single-agent’ DQN algorithm which has access to the global148

state of the network, as opposed to the ‘multiple-agent’ method with one agent for each individual149

intersection as considered in [17, 23]. While the single-agent approach involves a larger state space, it150

allows more intelligent control and coordination on a global level, which manifests itself for example151

in the emergence of greenwave patterns as we will demonstrate in the next section.152

4 Performance Evaluation153

We present simulations to evaluate the performance of the DQN algorithm in Alg. 1, and in particular154

illustrate the emergence of “greenwave” patterns in linear topology networks.155

4.1 Single Road Intersection156

As an initial validation benchmark, we first consider a single-intersection scenario as described in157

Subsection 2.1. The reason for considering this toy scenario is that the state space is sufficiently small158

for the optimal policy to be computed using the baseline MDP approach. We assume the numbers of159

arriving vehicles of both traffic flows in each time step as represented by the random variables C1160

and C2 to be independent and Bernoulli distributed with parameter p = 1/4. We use a quadratic161

congestion cost function F (X1, X2) = X2
1 +X2

2 and a discount factor γ = 0.99.162

Inspection of the results in Fig. 3 shows that the DQN policy as obtained using Alg. 1 coincides with163

the optimal MDP policy. In particular, it matches the optimal performance and exhibits a similar164

threshold structure. This structural property was also reported in [24] for a strongly related two-queue165

dynamic optimization problem (with switch-over costs rather than switch-over times).166

4.2 Linear Road Topology167

We now turn to the scenario in Fig. 2. This is a more challenging scenario which serves to examine168

the scalability properties of our algorithm and its performance in the presence of highly complex169

interactions arising from the flow of vehicles along the main east-west arterial road.170

Assume the numbers of externally arriving vehicles in eastern and western directions in each time171

step, represented by the random variables C11 and CN3, to be independent and Bernoulli distributed172



6

Figure 3: Learning curve for DQN policy (left) and thresholding property of DQN policy (right).

Figure 4: Learning curve for the linear network of size 4×1 (left) and Greenwave traffic lights (right).
“Greenwave” is abbreviated to be “G-W”. In the right, numbers indicate the number of vehicles
waiting on each road. Black rectangles indicate incoming vehicles from peripheral roads.

with parameter p1 = 1/4. The numbers of arriving vehicles in southern and northern directions on173

each of the N cross streets in each time step, represented by the random variables Cn2 and Cn4,174

n = 1, . . . , N , are also independent and Bernoulli distributed with parameter p2 = 1/8. We use a175

quadratic congestion cost function F (X) =
∑N

n=1

∑4
i=1X

2
ni and a discount factor γ = 0.99. In176

simulations, the evaluate and target networks used in Alg. 1 have both 4 fully-connected layers of177

size 200, 100, 40 and 2, respectively. We use ReLu as activation functions and squared difference178

loss.179

The use of an MDP approach is computationally infeasible in this case due to the state space180

explosion, and hence the degree of optimality of our algorithm cannot be assessed in a quantitative181

manner. Instead we have therefore examined qualitative features to validate the intelligent behavior182

of our algorithm and evaluate its performance merit. In particular, we observed the emergence of183

“greenwave” patterns as shown in Fig. 4, even though such structural features are not explicitly184

prescribed in the optimization process. Specifically, the “greenwave” phenomenon is reflected as185

consecutive reduction of car numbers in each road. This emergent intelligence confirms the capability186

of our algorithm to learn favorable structural properties solely from observations.187

5 Conclusion188

We have explored the scope for Deep Q-Networks (DQN) to optimize real-time traffic light control189

policies in emerging large-scale Intelligent Transportation Systems. As an initial benchmark, we190

established that DQN algorithms deliver the optimal performance achieved by an MDP approach in a191

single-intersection scenario. We subsequently evaluated the scalability properties of DQN algorithms192

in a linear topology with several intersections, and demonstrated the emergence of intelligent behavior193

such as “greenwave” patterns, confirming their ability to learn desirable structural features. In future194

research we intend to investigate locality properties and analyze how these can be exploited in the195

design of distributed coordination schemes for wide-scale deployment scenarios.196
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