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ABSTRACT

Generalized zero-shot learning (GZSL) is the task of predicting a test image from
seen or unseen classes using pre-defined class-attributes and images from the seen
classes. Typical ZSL models assign the class corresponding to the most relevant
attribute as the predicted label of the test image based on the learned relation be-
tween the attribute and the image. However, this relation-based approach presents
a difficulty: many of the test images are predicted as biased to the seen domain,
i.e., the domain bias problem. Recently, many methods have addressed this diffi-
culty using a synthesis-based approach that, however, requires generation of large
amounts of high-quality unseen images after training and the additional training of
classifier given them. Therefore, for this study, we aim at alleviating this difficulty
in the manner of the relation-based approach. First, we consider the requirements
for good performance in a ZSL setting and introduce a new model based on a
variational autoencoder that learns to embed attributes and images into the shared
representation space which satisfies those requirements. Next, we assume that the
domain bias problem in GZSL derives from a situation in which embedding of the
unseen domain overlaps that of the seen one. We introduce a discriminator that
distinguishes domains in a shared space and learns jointly with the above embed-
ding model to prevent this situation. After training, we can obtain prior knowledge
from the discriminator of which domain is more likely to be embedded anywhere
in the shared space. We propose combination of this knowledge and the relation-
based classification on the embedded shared space as a mixture model to compen-
sate class prediction. Experimentally obtained results confirm that the proposed
method significantly improves the domain bias problem in relation-based settings
and achieves almost equal accuracy to that of high-cost synthesis-based methods.

1 INTRODUCTION

The recent high performance of deep neural networks on image classification and object recogni-
tion depends greatly on whether one can obtain sufficiently labeled images of classes to predict.
Nevertheless, it is difficult to do this in the real world because the number of existing classes is
enormous. As long as human beings create or develop new objects, their number might continue
to increase daily, thereby creating difficulty in obtaining labeled data of all classes to predict. In
recent years, this difficulty led to great interest in zero-shot learning (ZSL) (Farhadi et al., 2009;
Frome et al., 2013; Lampert et al., 2014; Xian et al., 2018a), which is training by a labeled set from
certain classes called seen classes and then predicting completely unseen classes that are not in-
cluded in the training set.

Usually, ZSL is accomplished by preparing pre-defined semantic representations of all classes, such
as attributes, and learning the relation between images and the class-attributes (relation-based ap-
proach). Once it is learned from the training set, we can predict the labels of test examples from
unseen classes by selecting the most relevant attributes on this relationship. However, it has been
pointed out that this approach does not work for generalized zero-shot learning (GZSL), which is
a more general setting where test samples can be from both seen and unseen classes (Chao et al.,
2016). This is because all examples of the training set are obtained from the seen classes, so the
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Figure 1: An overview of MCMAE-D. Images and attributes are embedded in the shared represen-
tation space by MCMAE inference models learned given the training set. We propose a model to
distinguish different domains (seen or unseen) in space and to learn jointly with MCMAE. After
learning, we can perform class prediction with a reduced bias toward the seen classes by combining
relation-based classifier and domain discriminator as a mixture model, as shown in the equation on
the right side.

data to be predicted as one of the unseen classes also has a strong relationship with the seen class
attributes, resulting most of them assigned to one of the seen classes. In this paper, we refer to a
domain as belonging to either seen or unseen, and call the problem that class prediction is biased to
the seen domain as the domain bias problem.

To address this difficulty, recent works have taken an approach of learning a generative model that
generates images from corresponding attributes, and of then training a classifier to predict classes
from the generated synthesis images (Mishra et al., 2017; Verma & Rai, 2017; Xian et al., 2018b;
Felix et al., 2018). The advantage of this synthesis-based approach is that samples of both domains
are obtainable by generation, which contributes to alleviation of the domain bias problem. However,
these synthesis-based methods require the generative model to generate numerous diverse and high-
quality images for each class, including unseen ones, sufficient to classify with high-performance,
which can be difficult and costly. In addition, this requires a classifier that classifies all classes from
the generated images. On the other hand, conventional relation-based methods can make class pre-
dictions using only the learned image–attribute relation, not requiring enormous image generation
and additional classifier training after training the model. Therefore, we address the following ques-
tion in this paper: Can we mitigate the domain bias problem of GZSL in the relation-based manner
and achieve high performance?

We first discuss the importance of the following requirements for good relation-based ZSL per-
formance when embedding images and attributes in a shared representation space that satisfies
the following requirements: images and attributes belonging to the same class must be in the
same place (modality invariance); and different classes of samples must be separated in the shared
space (class separability). To achieve such embedding, we propose Modality-invariant and Class-
separable Multimodal AutoEncoder (MCMAE), which is an extension of variational autoencoders
(VAEs) (Kingma & Welling, 2013; Rezende et al., 2014). The objective of MCMAE is designed
based on the two requirements presented above.

Next, we hypothesize that the domain bias problem results from a situation in which the unseen
domain overlaps that of the seen one in the shared space. To address this point, we explicitly intro-
duce a discriminator for separation of these two domains. This discriminator is trained jointly with
MCMAE. After training, it gives the probability of a test image being in a given domain. In other
words, it gives prior knowledge of the domain in the shared space. Based on this insight, we con-
sider the class prediction probability as a soft combination of MCMAE classification and consider
the domain discriminator as a mixture model (see Figure 1). Such combination-based classification
has been proposed as a “gating” approach (Atzmon & Chechik, 2019). However, unlike this work,
our method is able to train the entire model while retaining an end-to-end manner. We call this
proposed approach as MCMAE with the Domain discriminator (MCMAE-D).

The contribution of this research is the following. (1) We consider the requirements of the shared
representation space to perform in the ZSL setting and introduce MCMAE as a model to learn the
embedding of images and attributes into that space. (2) We also propose MCMAE-D, which com-
bines MCMAE with the domain discriminator. The experiment results demonstrate that it greatly
reduces the domain bias problem, thereby contributing to exceed the performances of the existing
relation-based models greatly and to be equivalent to the state-of-the-art synthesis-based method.
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Figure 2: (a) Two requirements exist for achieving good performance in ZSL: modality invariant
and class separability. (b) Failure of class separation between domains. The unseen domain overlaps
with the seen domain. Therefore, all examples of the unseen classes might be predicted as one of
the seen ones. (c) The network architecture of our proposed model, MCMAE-D.

2 PROBLEM FORMULATION: GENERALIZED ZERO-SHOT LEARNING

We assume that the dataset Dtr = {xi, yi}Ntr
i=1 is given as the training set, where xi ∈ X is the input

data, e.g. an image, and where yi ∈ Ys = {1..., S} is the corresponding label data.

The objective of ZSL is to learn the classifier using Dtr and to predict labels ŷj ∈ Y from the
example xj ∈ X in the test set Dts = {xj , yj}Nts

j=1. For the standard ZSL, it is assumed that
the classes of the test set are completely unseen in the training set, which means that Y = Yu =
{S+1, ..., S+U}. Our goal is to train in the setting of GZSL, which includes both seen and unseen
classes in the test set (Y = Ys ∪ Yu).

Furthermore, we assume that we have the class-attribute matrix A ∈ RM×(S+U) as the semantic
information of classes, where each column represents the M -dimensional attribute vector ac ∈ A =
RM of each class c = 1, ..., S + U . Using this attribute vector, the training set Dtr can be replaced
as {xi,ayi}

Ntr
i=1.

Using the relation-based approach, the objective is changed to train the compatibility function of
the input and attribute F (x,ay), which represents how the input and attribute are related: stronger
relations have greater values. Once this function is learned from the training set, the classification
probability can be expressed as

p(y = c|x) = exp (F (x,ac))∑
ŷ∈Y exp (F (x,aŷ))

. (1)

One can predict the class labels by choosing the one that maximizes this probability, i.e., ŷ =
argmaxy∈Y p(y|x).
Additionally, we call seen and unseen ones as different domains and express it as a binary variable
d ∈ {0, 1}, where d = 0 represents the seen domain and d = 1 represents the unseen one.

3 PROPOSED METHOD

3.1 RELATION-BASED CLASSIFICATION OF THE SHARED REPRESENTATION

In this study, the image x and the attribute ay are regarded as different modalities. Also, the mapping
qϕx

(z|x) and qϕa
(z|ay) embed them into the same space, i.e., the shared representation space

z. In this approach, the compatibility function can be expressed with the Kullback–Leibler (KL)
divergence as

Fϕx,a
(x,ay) = −DKL(qϕx

(z|x)||qϕa
(z|ay)), (2)

where ϕx,a is a shorthand notation for ϕx and ϕa. Therefore, learning the compatibility function
corresponds to learning embeddings into the shared representation. Then, what kind of space em-
bedding engenders good performance of ZSL and GZSL?
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First, images and attributes belonging to the same class must be embedded in a nearby place in terms
of KL divergence. It is clear that this embedding is a requirement for ZSL because, if not satisfied,
the assumption on the relation-based methods is violated, rendering it impossible to predict corre-
sponding classes from an input. Note that this requirement must also be generalized to unknown
data, i.e., examples of unseen classes. That is, the shared representation must be modality invariant
(see Figure 2(a)).

Second, examples embedded in the shared space by the mapping must be grouped by the same class
and separated from other classes. If not satisfied (e.g., an area of one class overlaps with that of
other classes), they may be misclassified as other classes. This can be rephrased that the embedded
representation needs to be easily separated by some classifier, i.e., the shared representation must
have class separability (Figure 2(a)).

Class separability between domains is particularly important for GZSL performance. Because only
seen data are given during GZSL training, there is no clue to properly embed the unseen classes.
Consequently, embedding of the unseen domain might overlap with those of the seen domain, and
any input might be only to assigned to one of the more relevant seen classes (Figure 2(b)). We
hypothesize that the failure of class separability between domains is the underlying cause of the
domain bias problem.

3.2 MODALITY-INVARIANT AND CLASS-SEPARABLE MULTIMODAL AUTOENCODER

Given training data (x,ay), the simplest way to satisfy modality invariant is to maximize
Eq. 2 over these data directly, but it is difficult to generalize to test data. For this study,
we first introduce a shared representation learning method based on variational autoencoders
(VAE) (Kingma & Welling, 2013; Rezende et al., 2014).

In VAE, the data x is assumed to be generated from a generative model pθx(x) =
∫
pθx(x|z)p(z)dz

(θx is a learnable parameter), and learning is performed by maximizing the lower bound of the log
marginal likelihood over the given data:

LV AE
θx,ϕx

(x) = Eqϕx (z|x)[log pθx(x|z)]−DKL(qϕx(z|x)||p(z)), (3)

where qϕx
(z|x) represents an approximate distribution of the true posterior pθx(z|x) and ϕx is a

parameter. This approximate distribution, also called the inference model, can be regarded as an
embedding from x into z.

Although VAE learns to maximize Eq. 3 not under an exact generative distribution but under a
finite training set, its representation is known to generalize well to unseen inputs. This capability is
suitable for shared representation learning in ZSL, which needs to be generalized to the examples of
the unseen classes.

To extend Eq. 3 to multimodal input of images and attributes, we first replace the prior in the regu-
larization term from p(z) to qϕa(z|ay):

LMAE
θx,ϕx,a

(x,ay) = Eqϕx (z|x)[log pθx(x|z)]−DKL(qϕx(z|x)||qϕa(z|ay)). (4)

This makes regularization of the shared representation more relaxed because the replaced prior is
learnable. In addition, maximizing this lower bound engenders learning to bring the two embeddings
closer together explicitly.

Next, we introduce a model pθa(ay|z) that discriminates attributes from the representation. By
learning this model together with Eq. 4, one can add a constraint to the representation from which
attributes can be successfully predicted:

LCMAE
θx,a,ϕx,a

(x,ay) = LMAE
θx,ϕx,a

(x,ay) + Eqϕx (z|x)[log pθa(ay|z)]. (5)

Attributes are semantically distributed representations of classes, which engenders the class-
separable representation. In addition, this equation can be interpreted as introducing an attribute
generative model pθ(ay|z). From such a perspective, this equation considers not only the recon-
struction of an image, but also the “cross” reconstruction of the corresponding attribute from the
image. This model is actually the same as the multimodal model known as PSE (Jiao et al., 2019),
as described in Sec 4.2.
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Furthermore, as discussed in Sec. 3.1, the shared representation must be modality-invariant. There-
fore, we add an expected term at qϕa

(z|ay) in Eq. 5, which is a constraint by which the embedded
representation is the same as long as it represents the same thing, irrespective of which modality
inference model is used. Therefore, our objective is finally

LMCMAE
θx,a,ϕx,a

(x,ay) = LCMAE
θx,a,ϕx,a

(x,ay) + Eqϕa (z|ay)[log pθx,a(x,ay|z)]
= Eqϕx (z|x)[log pθx,a(x,ay|z)] + Eqϕa (z|ay)[log pθx,a(x,ay|z)]
−DKL(qϕx

(z|x)||qϕa
(z|ay)), (6)

where log pθx,a(x,ay|z) = log pθx(x|z) + log pθa(ay|z). All distributions are parameterized by
deep neural networks. Moreover, we regard that the inference models as Gaussian and generative
models as a Laplace distribution with a constant scale parameter. Therefore, the log-likelihood of
the generative models is obtained by the negative absolute-difference loss.

This model considers all the requirements that the shared representation should satisfy. For this
study, we call this Modality-invariant and Class-separable Multimodal AutoEncoder (MCMAE).

3.3 DOMAIN DISCRIMINATOR

MCMAE includes domain invariance and class separability. However, class separability between
domains is not fully considered because no knowledge related to the unseen domain is given during
training, meaning that the domain bias problem cannot be avoided. Therefore, we propose addition
of another approach to address this problem.

We introduce a model pβ(d|z) that discriminates a domain from the shared representation. If this
discriminator can be trained together with MCMAE, then the representation is separable between
domains, leading to alleviation of the domain bias problem.

For training pβ(d|z), we create a dataset with all class-attributes as inputs and corresponding domain
variables as labels Dtra = {(ayc

, dc)}S+U
c=1 . Since the input of this discriminator is z, we should

sample it from attributes ay using the inference model. Here, we use a reconstructed representation
not only via the inference model of attributes but also via the generative and inference model of
images. Therefore, the objective of the domain discriminator given (ay, d) is

LD
θx,a,ϕa,β(ay, d) = Ez′∼qϕx (z|x),x∼pθx (x|z),z∼qϕa (z|ay)[log pβ(d|z

′)]. (7)

We will explain the reason for using the reconstructed representation and the details of Eq. 7 in
Appendix B. When testing, the domain discriminator must be able to correctly discriminate the
domain given an image. It is noteworthy that, for this to work properly, different modalities need to
be embedded in the same place in the shared space by each inference model.

By training the objective of the domain discriminator together with that of MCMAE, the embedded
shared representation is prompted to be separated by domain. The resulting objective, given Dtr and
Dtra , becomes

1

|Dtr|
∑

(x,ay)∈Dtr

LMCMAE
θx,a,ϕx,a

(x,ay) + α · 1

|Dtra |
∑

(ay,d)∈Dtra

LD
θx,a,ϕa,β(ay, d), (8)

where α is a hyper-parameter representing the degree to which domain separation is enforced in the
representation. We learn the model end-to-end by maximizing Eq.8 in terms of all parameters.

After training, this discriminator can predict the possibility of assigning a domain from any input z.
In addition, if modality invariant embedding is possible, then one can predict the domain for unseen
images and can thereby obtain “prior knowledge of the domain” from this classifier. We propose
combination of this with an attribute-based classifier (Eq. 1) to compensate the class prediction as a
mixture model:

p(y|x) = p(y|x, d = 0)p(d = 0|x) + p(y|x, d = 1)p(d = 1|x), (9)

where p(y|x, d = 0) =
exp (F (x,ay))∑

ŷ∈Ys
exp (F (x,aŷ))

, p(y|x, d = 1) =
exp (F (x,ay))∑

ŷ∈Yu
exp (F (x,aŷ))

, and p(d =

1|x) = exp(Ez∼qϕx (z|x)[log pβ(d = 1|z)]).
We expect that the domain bias problem can be alleviated by selecting a class that maximizes this
probability as the prediction result. We call this approach as MCMAE with the Domain discriminator
(MCMAE-D). Figure 2(c) shows the overall architecture of MCMAE-D.
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4 RELATED WORK

4.1 ZERO-SHOT LEARNING / GENERALIZED ZERO-SHOT LEARNING

The main approach for tackling ZSL is to learn a compatibility function that represents the relation
between images and class-attributes from the seen data1. Some early studies used classifiers such
as SVM to learn a mapping from images to class-attributes (Lampert et al., 2009; 2014), but many
other methods use linear embedding into attributes (or semantic representations) and typically set
a ranking loss as the objective function to train such embedding (Frome et al., 2013; Akata et al.,
2015; Romera-Paredes & Torr, 2015; Kodirov et al., 2017). Romera-Paredes & Torr (2015) add
the regularization term of the mapping to this objective function, and Kodirov et al. (2017) min-
imizes the embedding error in both directions with the objective. The nonlinear model is also
used (Socher et al., 2013) to take non-linearity between images and attributes into consideration.
However, with this mapping direction, a hubness problem occurs in which all images are assigned
to one type of attributes. To avoid this, some methods measure the similarity in the image space by
obtaining the reverse mapping of attributes to images (Zhang et al., 2017; Verma & Rai, 2017).

Another approach is to map images and attributes to another shared representation space and mea-
sure the similarity in that space (Zhang & Saligrama, 2015; 2016), which is adopted in our paper.
The advantage of this is that it can obtain a representation that does not depend on the dimension or
representation of the input. Moreover, arbitrary representation can be learned by adding constraints
during training. Recently, several methods use VAEs to learn this, which we will discuss in Sec. 4.2.

These relation-based methods have the advantage of being able to perform classification just by
learning the compatibility function, but they do not work well in GZSL due to the domain bias prob-
lem (Chao et al., 2016). One way to alleviate this problem is to calibrate the compatibility func-
tion (Chao et al., 2016; Liu et al., 2018). In recent years, synthesis-based methods2 have become
mainstream because of their significant improvement in GZSL performance (Mishra et al., 2017;
Verma et al., 2018; Xian et al., 2018b; Felix et al., 2018). In particular, Zhang & Koniusz (2018a)
propose a model selection mechanism that improves synthesis-based performance by distinguish-
ing seen and unseen domains from the generated images. However, these synthesis-based methods
require costly image generation and additional classifier learning. In this study, we aim to achieve
high performance with the end-to-end relation-based method.

4.2 MULTIMODAL DEEP GENERATIVE MODELS FOR SHARED REPRESENTATION LEARNING

It has been discussed that the importance of learning appropriate representation in ZSL. Jiang et al.
(2017) propose to learn an attribute representation that is discriminative between classes while main-
taining their semantic information. In this study, we discuss how to learn a good shared representa-
tion that integrates different modalities of images and attributes in ZSL.

In recent years, several methods have been proposed to learn the shared representation with
VAEs. JMVAE (Suzuki et al., 2016) and TrELBO (Vedantam et al., 2017) are aimed at obtaining
a modality-invariant representation by learning the inference model of each modality close to that
of taking two modality inputs. However, because an additional inference model is required, it is
expensive in terms of the number of parameters. In addition, regularization that forces the repre-
sentation to be close to the standard Gaussian prior makes it difficult to obtain a class-separable
representation (Jiao et al., 2019).

PSE (Jiao et al., 2019) and CADA-VAE (Schonfeld et al., 2019) are very similar to MCMAE in
terms of shared representation learning. PSE is not for ZSL but is equivalent to Eq. 5 by considering
label information as attributes a 3. Their mutual difference is therefore whether they contain the
reconstruction term given attributes, imposing a modality invariant representation. CADA-VAE, a

1Although Xian et al. (2018a) categorizes these methods into four groups, we call all of them relation-based
approaches, because all methods learn the relation between images and classes (or attributes) and use it directly
to evaluate test data.

2In this study, we refer to a method that requires training a classifier given samples generated from a learned
model as synthesis-based.

3In Jiao et al. (2019), this model is called PSE*, and the model corresponding to Eq. 4 is called PSE.
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synthesis-based model on the shared representation, has an objective that consists of three parts4:
VAE losses for each modality, cross-alignment losses that reconstruct one modality from the other,
and distribution-alignment loss that brings the inference models of each modality closer. The main
difference between MCMAE is that the inference model is forced to stay close to the prior. Similarly
to JMVAE and TrELBO, this might be too restrictive to obtain a good shared representation.

5 EXPERIMENTS

5.1 DATASET AND SETTING

For experimentation, we use the following four datasets, which are commonly used for ZSL:
Animals with Attributes (AWA) (Lampert et al., 2014), CUB-200-2011 Bird (CUB) (Wah et al.,
2011), SUN Attribute (SUN) (Patterson & Hays, 2012), and Attribute Pascal and Yahoo
(aPY) (Farhadi et al., 2009). Each dataset includes images of each class, where each class is rep-
resented by semantic attributes. For fair comparison, we use a 2048-dim top-layer embedding of
the 101-layered ResNet (He et al., 2016) provided by Xian et al. (2018a) as the image vector. Fur-
thermore, for the class-attribute representation, we use the attributes valued continuously between 0
and 1 provided with each dataset. We followed the split proposed in Xian et al. (2018a) for splitting
each dataset into train, validation, and test. The hyper-parameter selection of our model was based
on this train–validation split. In training of GZSL, we used both as training data.

As the metric of evaluation, we use the average per-class top-1 accuracy on both the seen and unseen
classes (referred as accs and accu). In addition, to evaluate the performance on GZSL, we calculate
the harmonic mean of accs and accu, which is accH = (2 · accs · accu)/(accs + accu).

The architecture of each deep probabilistic model is listed in Appendix A. We set the dimension of
the latent variable to 512 and α = 0.01. We used the Adam optimization algorithm (Kingma & Ba,
2014) with a learning rate of 10−3. In all experiments, we trained for 100 epochs5. All models in
this paper were implemented using PyTorch (Paszke et al., 2017).

5.2 ANALYSIS OF OUR PROPOSED METHOD

This section presents analyses of the proposed method from various perspectives. We use AWA for
this analysis because the number of data per class is greater than that for other datasets.

First, we confirm the effectiveness of the proposed method by comparing it with a similar shared
representation learning model: PSE and CADA-VAE. To align the conditions, we used the same
network structure for the inference and generative models of each modality throughout all methods.
The original CADA-VAE paper takes a synthesis-based approach in which samples are generated
from the shared space and use for learning a classifier. Here, to compare the effectiveness of shared
representation learning, we evaluate CADA-VAE with a relation-based approach similar to MC-
MAE. In all methods, the classification probability was obtained by Eq. 1.

Table 1 presents results in GZSL. First, compared with PSE and MCMAE, accs is higher in the
MCMAE, but accu is higher in the PSE. One might infer that this result means that MCMAE ob-
tains a shared representation that is not generalized. However, when learning these models and
domain classifiers simultaneously and when classifying them with the mixture prediction model
(shown as PSE-D and MCMAE-D), MCMAE-D has markedly higher performance. Furthermore,
the performance of the domain discriminator by AUROC is the highest in MCMAE-D. As described
in Sec. 3.3, this domain discriminator approach does not work properly unless the modality invari-
ance is generalized. This suggests that MCMAE can obtain a modality-invariant representation. On
the other hand, because PSE does not consider modality invariance, the domain discriminator does
not generalize well to the image modality. In addition, the result that accu is greatly improved by
MCMAE-D implies that MCMAE can acquire the class separability representation but its perfor-
mance is degraded due to the domain bias problem.

4See Appendix C for details of CADA-VAE.
5This was determined based on performance when learning with the training-test split in AWA. For detail

of learning progress in our method, see Appendix D.
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Table 1: Comparison with shared representation learning models in a GZSL setting. We include the
results of combining each model with a domain discriminator (denoted as x-D). AUROC shows the
evaluation of domain prediction by the domain discriminator using the area under the curve of the
receiver operating characteristic.

Models accu accs accH AUROC
PSE 34.8 86.4 49.6 -
CADA-VAE (relation-based) 21.4 73.9 33.1 -
MCMAE 25.3 88.4 39.3 -
PSE-D 36.6 58.4 45.0 0.78
CADA-VAE-D (relation-based) 50.6 43.6 46.8 0.77
MCMAE-D 60.4 67.9 63.9 0.89

Figure 3: 2-D representation of PSE, MCMAE, and MCMAE-D. These were obtained by learning
by setting the z dimension of the model to 2. Circle plots show embedding of the test images by
pϕx(z|x). Triangles represent embedding of the class-attributes: △ denotes a seen class and ▽
is an unseen one. The contour lines in MCMAE-D represent the domain prediction probability
p(d = 1|z) obtained by the domain discriminator.

To confirm this consideration qualitatively, we visualize the shared representation of PSE, MCMAE,
and MCMAE-D in two dimensions. Figure 3 portrays the visualization results. In PSE, the test
images of the seen classes are well embedded around the corresponding attribute. However, for the
unseen class, the data of some classes such as “collie”, are embedded in a location that differs from
the corresponding attribute, which indicates that the modality invariance is generalized insufficiently.
By contrast, in MCMAE, we can confirm that the unseen images are embedded almost appropriately,
i.e., we can obtain a generalized modality-invariant representation. However, it is apparent that some
class attributes overlap, which can cause the domain bias problem. Then, moving to the MCMAE-
D representation, we confirm that embedding of seen and unseen is separated slightly because of
learn embedding with the domain discriminator jointly. Furthermore, the domain classifier has prior
knowledge to predict which domain is the location before the test images are given. Then we confirm
that the test images are actually embedded almost in accordance with it. This demonstrates that the
domain discriminator has the ability to alleviate the domain bias problem.

Let us go back to Table 1 and see the CADA-VAE results. Schonfeld et al. (2019) reports that
this model performs well with a synthesis-based approach in latent space. However, this result
demonstrates that it is worse than PSE and MCMAE in the relation-based case. This is probably
true because the representation is over-constrained by the regularization term of the inference model
included in CADA-VAE.
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Figure 4: Transition of GZSL performance (the harmonic mean) when each parameter is changed:
(a) the dimension of the shared representation and (b) the coefficient of domain discriminator α in
MCMAE-D.
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Table 2: Comparison with GZSL state-of-the-art models. Bold typeface denotes the best perfor-
mance among the relation-based models.

CUB AWA SUN aPY
accu accs accH accu accs accH accu accs accH accu accs accH

Relation-based
GFZSL (Verma & Rai, 2017) 0.0 45.7 0.0 1.8 80.3 3.5 0.0 39.6 0.0 0.0 83.3 0.0
CONSE (Szegedy et al., 2015) 1.6 72.2 3.1 0.4 88.6 0.8 6.8 39.9 11.6 0.0 91.2 0.0
CMT (Socher et al., 2013) 7.2 49.8 12.6 0.9 87.6 1.8 8.1 21.8 11.8 1.4 85.2 2.8
SYNC (Changpinyo et al., 2016) 11.5 70.9 19.8 8.9 87.3 16.2 7.9 43.3 13.4 7.4 66.3 13.3
ESZSL (Romera-Paredes & Torr, 2015) 12.6 63.8 21.0 6.6 75.6 12.1 11.0 27.9 15.8 2.4 70.1 4.6
SJE (Akata et al., 2015) 23.5 59.2 33.6 11.3 74.6 19.6 14.7 30.5 19.8 3.7 55.7 6.9
DEVISE (Frome et al., 2013) 23.8 53.0 32.8 13.4 68.7 22.4 16.9 27.4 20.9 4.9 76.9 9.2
ZSKL (Zhang & Koniusz, 2018b) 21.6 52.8 30.6 17.9 82.2 29.4 20.1 31.4 24.5 10.5 76.2 18.5
MCMAE 30.9 64.9 41.9 25.3 88.4 39.3 21.1 39.8 27.6 5.2 87.9 9.8
MCMAE-D 51.0 38.3 43.7 60.4 67.9 63.9 47.1 28.8 35.8 20.8 52.7 29.8
Synthesis-based
CVAE-ZSL (Mishra et al., 2017) - - 34.5 - - 47.2 - - 26.7 - - -
SE-GZSL (Verma et al., 2018) 41.5 53.3 46.7 56.3 67.8 61.5 40.9 30.5 34.9 - - -
F-CLSWGAN (Xian et al., 2018b) 43.7 57.7 49.7 59.7 61.4 59.6 42.6 36.6 39.4 - - -
Cycle-(U)WGAN (Felix et al., 2018) 47.9 59.3 53.0 59.6 63.4 59.8 47.2 33.8 39.4 - - -
CADA-VAE (Schonfeld et al., 2019) 51.6 53.5 52.4 57.3 72.8 64.1 47.2 35.7 40.6 - - -
ModelSel-3Way (Zhang & Koniusz, 2018a) - - - 52.6 76.7 62.4 - - - 28.4 75.5 41.2

Next, we analyze the parameter sensitivity of our proposed models: The dimension of the shared
representation (in both MCMAE and MCMAE-D) and the coefficient of domain discriminator α (in
MCMAE-D). Figure 4 presents the results. First, from Figure 4(a), we see that MCMAE perfor-
mance decreases slightly as the dimension of latent variables increases. This seems to be because
in a large dimension, embedding of the unseen domain becomes more difficult. On the other hand,
we find that MCMAE-D is robust to the dimension of latent variables. This result shows that the
domain classification probability contributes to the compensation of the performance significantly.
Next, from Figure 4(b), we find that increasing the value of the coefficient α decreases the GZSL
performance because over-enforced separation might cause imperfect embedding from the input.

5.3 COMPARISON WITH GZSL STATE-OF-THE-ART MODELS

Table 2 presents the respective performance results obtained for the proposed method and GZSL
state-of-the-art methods. First, MCMAE can be seen to have the same performance as existing
relation-based models. These models have low accuracy for the unseen domain, indicating that the
domain bias problem occurs. Next, in synthetic-based models, the accuracy of the unseen domain is
almost identical to that of the seen, indicating that the domain bias problem is mitigated. However,
as described above, this approach must generate many images for even unseen classes after training
their generative model and must prepare and learn an additional classifier.

Finally, the results obtained with MCMAE-D, which learns domain discriminator jointly, clarify that
the domain bias problem has been relaxed greatly and MCMAE-D achieves the best performance
among the relation-based models. Additionally, it is apparent that it performs as well as state-of-
the-art synthesis-based models.

These results revealed that the domain bias problem in GZSL can be alleviated and that high per-
formance can be achieved using the domain discriminator on the shared representation, even in
relation-based approach.

6 CONCLUSION

This study addressed the domain bias problem in GZSL. First, we considered domain invariance
and class separability as requirements necessary for high performance in ZSL, and introduced MC-
MAE that learns embedding in a shared representation that satisfy these requirements. Next, we
assumed that the domain bias problem occurs when the unseen domain overlaps with the seen do-
main and, to address this, proposed MCMAE-D to learn the discriminator that distinguishes two
domains from its representation. This discriminator not only encourages domain embedding to be
separated in the representation space during training, but it also gives prior knowledge of which
domain a point in the representation belongs to after training. Therefore, we combined this discrim-
inator and relation-based classification on MCMAE shared representation as a mixture model to
ascertain the classification probability. Through experimentation, we confirmed that this approach
mitigates the domain bias problem considerably. Future studies will assess application of our model
to larger amounts of data while taking advantage of the relation-based method.
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A NETWORK ARCHITECTURES

The Gaussian distribution is parameterized as

p(z|x) = N (z;µ,σ2),µ = fµ(fMLP(x)),σ = Softplus(fσ(fMLP(x))),

where fx represents a neural network and Softplus is a softplus function.

Moreover, the Laplace distribution with a constant scale c is parameterized as follows.

p(x|z) = L(x;µ, 2c2),µ = fµ(fMLP(z)).

In this paper, it is assumed that only the mean parameter µ is output deterministically when sampling
from the Laplace distribution with a constant scale:

x ∼ L(x;µ, 2c2) ⇔ x = µ.

For the notation of model structures, we denote a linear fully-connected layer with k units as k,
batch normalization, and ReLU as DkBR. Also, we denote DkBR without batch normalization and
ReLU as Dk. In addition, the process of applying J after I is denoted as I-J, and the process of
concatenating the last layers of the two networks I, J into one layer is denoted as (I,J).

The network structures of distributions of MCMAE are as follows (DdimA is the dimension of
attributes and DdimZ is that of latent variable):

• pθx(x|z) (Laplace)

– fµ: D2048
– fMLP: z-D1024BR-D1024BR

• pθa(a|z) (Laplace)

– fµ: DdimA
– fMLP: z-D1024BR-D1024BR

• qϕx
(z|x) (Gaussian)

– fµ and fσ2 : DdimZ
– fMLP: x-D1024BR-D1024BR

• qϕa(z|a) (Gaussian)

– fµ and fσ2 : DdimZ
– fMLP: a-D1024BR-D1024BR

Moreover, the structure of the domain discriminator pλ(d|z) = B(d;µ = Sigmoid(fµ(fMLP(z)))
(where B means Bernoulli distribution and Sigmoid is a sigmoid function) is as follows.

• pλ(d|z) (Bernoulli)

– fµ: D1
– fMLP: z-D1024BR

B LEARNING THE DOMAIN DISCRIMINATOR

A straightforward way to learn the domain discriminator is to use an inference model qϕa(z|ay) to
maximize the following objective function:

Ez∼qϕa (z|ay)[log pβ(d|z)]. (10)

By learning both the inference model and the discriminator together, we expect to obtain a represen-
tation that can be separated by the domain. However, only qϕa

(z|ay) will be affected strongly by the
learning of the discriminator and might not be stable during training. In addition, the representation
that we want to discriminate in the test time is embedded from the images, not from the attributes.
Therefore, we take a method of generating image data in pseudo and learning the discriminator
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Figure 5: Learning curves of MCMAE-D for each dataset.

on the representation inferred from them, which is why we use the reconstructed representation in
discriminator learning.

Because attributes have less variation than images, the variance of representation sampled from
qϕa(z|ay) becomes small, and as a result, that of the reconstructed representation can also be small,
which may lead to overfitting of the domain discriminator on the representation during training. To
alleviate this, we consider increasing the variance of the inference model when calculating Eq.7, that
is, we consider the inference model as qϕa

(z|ay) = N (z;µ, a2σ2), where a > 1. In this study, we
set a = 2. Note that this change is only for Eq.7 and does not apply to other calculations such as the
objective function of MCMAE (Eq.6).

C CADA-VAE

The objective of CADA-VAE (Schonfeld et al., 2019) is as follows:

LCADA−V AE
θx,a,ϕx,a

(x,ay) = LV AE
θx,ϕx

(x) + LV AE
θa,ϕa

(ay)

+γ(Eqϕa (z|a)[log pθx(x|z)] + Eqϕx (z|x)[log pθa(a|z)])
−δW2(qϕx(z|x), qϕa(z|ay)), (11)

where W2(p, q) is the 2-Wasserstein distance between p and q and where δ and γ are weighting
factors. Moreover, LV AEa

is the objective of VAE that takes attributes as inputs and uses inference
and generative models for attributes.

In our experiment on Table 1, all coefficients in Eq. 11 are set to 1 for a fair comparison with
MCMAE. Moreover, in the relation-based setup, we used the Wasserstein distance instead of KL
divergence to calculate the compatibility function (Eq. 2).

D LEARNING PROGRESS OF MCMAE-D

One advantage of relation-based methods including MCMAE-D is that GZSL performance can be
verified during model learning. On the other hand, the synthesis-based method cannot be confirmed
it unless learning of the generative model is completed and the synthesis data are generated. Figure 5
shows learning curves of MCMAE-D for each dataset. From this result, it can be seen that the
learning progress of this model is almost stable, although the performance of aPY drops before 100
epochs.
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