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Abstract

Oversubscription planning (OSP) is the problem
of finding plans that maximize the utility value
of their end state while staying within a specified
cost bound. Recently, it has been shown that OSP
problems can be reformulated as classical planning
problems with multiple cost functions but no utili-
ties. Here we take advantage of this reformulation
to show that OSP problems can be solved optimally
using the A∗ search algorithm, in contrast to previ-
ous approaches that have used variations on branch-
and-bound search. This allows many powerful
techniques developed for classical planning to be
applied to OSP problems. We also introduce novel
bound-sensitive heuristics, which are able to reason
about the primary cost of a solution while taking
into account secondary cost functions and bounds,
to provide superior guidance compared to heuris-
tics that do not take these bounds into account.
We implement two such bound-sensitive variants
of existing classical planning heuristics, and show
experimentally that the resulting search is signif-
icantly more informed than comparable heuristics
that do not consider bounds.

Introduction
Oversubscription planning (OSP) problems are a family of
deterministic planning problems. In contrast to classical plan-
ning, where a set of hard goals is specified and the planner
searches for a minimal (or low) cost plan that reaches a state
in which all of the goals are made true, oversubscription plan-
ning specifies a utility function that describes the benefit as-
sociated with achieving different possible states, and asks for
a plan whose cost does not exceed a set bound and achieves
as high a utility as possible [Smith, 2004].

While domain-independent classical planning approaches
have increasingly standardized around variations on A∗

search and heuristics that are automatically extracted from the
problem description [Bonet and Geffner, 2001; Keyder and
Geffner, 2008; Haslum and Geffner, 2000; Edelkamp, 2001;
Helmert et al., 2014; Helmert and Domshlak, 2009], OSP has
generally been solved with branch-and-bound algorithms and

heuristics that compute an admissible (in this context non-
under) estimate of the utility achievable from a state. In or-
der to obtain these estimates, recent approaches often adapt
classical planning techniques such as landmarks [Mirkis and
Domshlak, 2014; Muller and Karpas, 2018] or abstractions
[Mirkis and Domshlak, 2013], and enhance them with rea-
soning that is specific to the context of OSP, such as the
knowledge that there always exists an optimal plan that ends
with a utility-increasing action, or that the cost bound for the
problem can be reduced under specific conditions to aid the
search algorithm in detecting that improving over the cur-
rently achieved utility is impossible.

In contrast to these approaches, our aim here is to show
that general methods from classical planning, including A∗
search, can be used in the OSP setting nearly as is. This previ-
ously turned out to be the case for the related net-benefit plan-
ning problem, where classical planners solving a compilation
were shown to outperform planners designed specifically for
that task [Keyder and Geffner, 2009]. Here, we use a similar,
recently proposed compilation that converts OSP problems
into classical planning problems with multiple cost functions
but no utilities [Katz et al., 2019a]. In addition, we demon-
strate that existing classical planning heuristics can be used
to guide the search for optimal plans. While these heuristics
are typically uninformative out-of-the-box, they require only
minor modifications (and no specific reasoning about utili-
ties) to render them sensitive to the secondary cost functions
and bounds that are introduced by the compilation. Our ex-
periments with A∗ and the newly introduced estimators that
we refer to as bound-sensitive heuristics show that they lead
to informed searches that are competitive with, and in some
cases outperform, the state of the art for optimal OSP.

One related area of research in the classical setting is
that of bounded-cost planning, where the planner looks for
any plan with (primary) cost below a given bound, simi-
lar to the treatment of the secondary cost in the OSP set-
ting. Approaches proposed for this setting include dedicated
search algorithms [Stern et al., 2011] and heuristics that take
into account accumulated cost and plan length at the cur-
rent search node [Thayer and Ruml, 2011; Haslum, 2013;
Dobson and Haslum, 2017]. These approaches work by pref-
erentially expanding nodes in areas of the search space that
are likely to have a solution under the cost bound. Optimal
OSP, however, requires expanding all nodes that potentially



lie on a path to state with maximal utility. Furthermore, it
cannot be assumed that solutions necessarily achieve all soft
goals. Heuristics that are able to take into account bounds on
secondary cost functions have also been investigated in the
stochastic shortest path setting, where they were used as ad-
ditional constraints in an LP-based heuristic to consider limi-
tations on fuel or time resources [Trevizan et al., 2017].

We now briefly review the various flavors of planning that
we consider in this work, and introduce the formalisms by
which we describe them.

Background

We describe planning problems in terms of extensions to the
SAS+ formalism [Bäckström and Nebel, 1995]. A classical
planning task Π = 〈V ,O; sI , G, C 〉 is given by a set of vari-
ables V , with each variable v ∈ V having a finite domain
dom(v), a set of actions O, with each action o ∈ O described
by a pair 〈pre(o), eff(o)〉 of partial assignments to V , called
the precondition and effect of o, respectively, initial state sI
and goal condition G, which are full and partial assignments
to V , respectively, and the cost function C : O → R0+. A
state s is given by a full assignment to V . An action is said
to be applicable in a state s if pre(o) ⊆ s, and sJoK denotes
the result of applying o in s, where the value of each v ∈ V
is given by eff(o)[v] if defined and s[v] otherwise. An op-
erator sequence π = 〈o1, . . . , ok〉 is applicable in s if there
exist states s0, · · · , sk such that (i) s0 = s, and (ii) for each
1 ≤ i ≤ k, oi is applicable in si−1 and si = si−1JoiK. We
refer to the state sk by sJπK and call it the end state of π. An
operator sequence π is a plan for a classical planning problem
if it is applicable in sI and G ⊆ sIJπK. The cost of a plan π
is given by C(π) =

∑
o∈π C(o); the goal of optimal classical

planning is to find a plan with minimal cost. We refer to a pair
of variable v and its value ϑ ∈ dom(v) as a fact and denote
it by 〈v, ϑ〉. We sometimes abuse notation and treat partial
assignments as sets of facts.

An oversubscription planning (OSP) problem is given by
ΠOSP = 〈V ,O, sI , C , u,B〉, where V , O, sI , and C are as in
classical planning, u : (〈v, ϑ〉)→ R0+ is a non-negative val-
ued utility function over variable assignments (facts), and B
is a cost bound for the plan, imposing the additional require-
ment that only plans π such that C(π) ≤ B are valid. The
utility of a plan π is given by

∑
〈v,ϑ〉∈sIJπK u(〈v, ϑ〉); the ob-

jective of OSP problems is to find valid plans with maximal
utility.

A multiple cost function (MCF) problem is given by
ΠMCF = 〈V,O, sI , G, C0,C 〉, where V , O, sI , and C0 are
as in classical planning, C0 is the primary cost function, and
C = {〈Ci,Bi〉 | 1 ≤ i ≤ n} is a set of secondary cost
functions Ci : O → R0+, and bounds, both non-negative.
Valid plans for MCF planning problems fulfill the condition
Ci(π) ≤ Bi for all secondary cost functions, and optimal
plans for MCF planning have minimal primary cost C0(π).
In this paper we only consider MCF problems with a single
secondary cost function, i.e. n = 1.

Reformulating OSP Problems
It has recently been shown that an OSP problem can be com-
piled into an MCF planning problem with a single secondary
cost function that corresponds to the cost function C of the
original problem, and is constrained to not exceed the spec-
ified bound B [Katz et al., 2019a]. The primary cost func-
tion for the problem, or the cost function to be optimized,
results from compiling the utilities from the original problem
into costs. Two different compilations have been proposed
for this task: (i) the soft goals compilation, which adds for
each variable v that has some value ϑ ∈ dom(v) for which
a utility is specified, a hard goal, along with actions that are
able to achieve this hard goal at different costs, and (ii) the
state delta compilation which encodes in the cost of each ac-
tion the change in state utility that results from applying it.
Here we consider only (i), as (ii) introduces negative action
costs that A∗ and existing classical planning heuristics are
not designed to handle. Note, however, that our methods do
not depend on the specific choice of compilation, as long as
they remove utilities from the problem and do not introduce
negative action costs.

The soft goals compilation was originally introduced in the
context of net-benefit planning, which is similar to oversub-
scription planning but does not specify a bound on plan cost,
having instead as an objective the minimization of the dif-
ference between the achieved utility and the cost of the plan
[Keyder and Geffner, 2009]. It can be applied in the OSP
setting to result in an MCF planning problem as follows:

Definition 1 Let ΠOSP = 〈V ,O, sI , C , u,B〉 be an over-
subscription planning task. The soft goals reformulation
Πsg

MCF = 〈V ′, O′, sI , G′, C0, {〈C ′,B〉}〉 of ΠOSP is an MCF
planning task, where

• V ′ = {v′|v ∈ V }, with

dom(v′) =

{
dom(v) ∪ {gv} umax(v) > 0

dom(v) otherwise,

• O′ = O ∪ {ov,ϑ = 〈{〈v, ϑ〉}, {〈v, gv〉}〉 | ϑ ∈
dom(v), v ∈ V, umax(v) > 0}
• G′ = {〈v, gv〉|v ∈ V, umax(v) > 0},

• C0(o) =

{
0 o ∈ O
umax(v)− u(〈v, ϑ〉) o = ov,ϑ,

• C ′(o) =

{C(o) o ∈ O
0 otherwise,

with umax(v) := maxϑ∈dom(v) u(〈v, ϑ〉) denoting the maxi-
mum utility over the values of the variable v.

In the reformulated problem, only the ov,ϑ actions for
which ϑ is not the maximum utility value of v have posi-
tive primary costs. These actions make explicit that a par-
ticular utility will not be achieved, and that the plan has in-
stead chosen to achieve the associated gv by accepting the
associated cost penalty. The primary cost of a plan π for
the reformulated problem is then given by

∑
v∈V umax(v) −∑

f∈sJπK u(f).



Note that this compilation assumes that utilities are defined
for single facts. The more general case, in which utilities are
instead defined for logical formulae ϕ, can be handled as in
the soft goals compilation by introducing a new variable vϕ,
and two actions that achieve its goal value with cost 0 and
precondition ϕ, and cost u(ϕ) and precondition ∅, respec-
tively [Keyder and Geffner, 2009]. Since we consider only
single fact utilities here, we do not discuss this case in detail.

While this compilation is sound as stated, two further op-
timizations can be made to reduce the state space of the re-
sulting compiled problem. First, an arbitrary ordering can be
introduced over V to ensure that the gv values are achieved in
a fixed sequence, to avoid searching over different orderings.
Second, a new precondition fact that is deleted by the ov,ϑ
actions can be added to the original domain actions to ensure
that ov,ϑ actions happen only at the end of the plan and are
not interleaved with the original domain actions. We make
use of both of these optimizations here.

A∗ for MCF Planning Problems

TheA∗ algorithm extends blind search techniques such as Di-
jkstra’s algorithm by allowing the incorporation of admissible
(non-overestimating) heuristics [Hart et al., 1968]. In each it-
eration of its main loop, A∗ picks a node n to expand with
minimal f(n) = g(n) + h(n) value, where g(n) is the cost
of the path to n, and h(n) is an admissible estimate of the re-
maining cost to the goal. An optimal solution to the problem
is found when a node n with minimal f(n) value is a goal
node.

To adapt A∗ to the MCF planning setting, we store at each
node n a set of accumulated path costs gi(n) resulting from
each of the secondary cost functions C1, . . . , Cn, in addition
to the accumulated primary cost g0(n). When a node is taken
from the priority queue and expanded, generated successor
nodes for which any gi(n) > Bi can be immediately pruned,
as all Ci are assumed to be non-negative, and they cannot
constitute valid prefixes for solution paths.

One key optimization used in modern A∗ implementations
in the classical setting is duplicate detection, which allows
states that are rediscovered during search to be discarded, if
the new g value exceeds the cost of the path to the state that
was previously found, or to be updated with a new parent, if
the cost of the new path is less. In the MCF setting, care must
be taken to ensure that newly discovered nodes are discarded
(or replace existing nodes), only when they are dominated
by (or dominate), the existing node in all cost dimensions.
While the only necessary property of the open list from a cor-
rectness perspective is that it order nodes by increasing pri-
mary f(n) value, the choice of a secondary ordering heuris-
tic plays a role here: an ordering that causes a dominating
node to be generated first and enables subsequently generated
nodes to be immediately discarded as dominated results in su-
perior performance. In our implementation of the algorithm,
we therefore use an open list that orders nodes by increasing
gi(n) value when their primary f(n) values are the same.

l0 l1

u(visited(l1)) : 10

l2

u(visited(l2)) : 10

1 1

Figure 1: An OSP problem based on the VISIT-ALL domain.

Bound-Sensitive Heuristics
While any admissible heuristic can be used to guide search
in MCF planning, classical planning heuristics that ignore
bounds entirely are typically extremely uninformative. Con-
sider the problem shown in Figure 1: the agent is initially
at l0, and can obtain a utility of 10 by visiting each of the
locations l1 and l2. The costs of the actions move(l0, l1)
and move(l1, l2) are both 1. In the compiled MCF version
of this problem, an optimal but naive heuristic that ignores
the bound will give an estimate for the primary cost of 0, as
both visited(l1) and visited(l2) can be made true, and the as-
sociated 0-primary cost ovisited(l∗) actions applied to reach the
newly introduced hard goals corresponding to each utility. If,
however, B = 1, the optimal C0 cost at l0 is 10, since l2
cannot be reached at cost ≤ B and the agent must use the
onot-visited(l2) action to achieve the associated hard goal with a
cost of 10. Similarly, if B = 0, the C0 cost of the optimal plan
is 20, since the value of C1 for all available actions exceeds
the bound B. In practice, it turns out that the OSP versions
of many classical planning problems have similar behavior:
their state spaces are strongly connected, so any variable as-
signment can be achieved from any state, and classical plan-
ning heuristics that ignore bounds are no more informed than
blind search.

In order to obtain estimates that take secondary cost bounds
into account and can guide heuristic search towards feasible
solutions, we therefore introduce bound-sensitive heuristics.
In the following, we use b to denote a budget vector of non-
negative reals that indicate the unused component of each of
the secondary cost bounds Bi at a given search node.

Definition 2 (Optimal bound-sensitive heuristic) Given
an MCF planning problem ΠMCF = 〈V,O, sI , G, C0,C 〉, the
optimal bound-sensitive heuristic h∗(s, b) for a state s and
budget vector b is given by the minimal primary cost C0(π)
of a plan π for s such that Ci(π) ≤ bi for i = 1, . . . , n.

By analogy with standard admissible heuristics, an ad-
missible bound-sensitive heuristic is a non-overestimating
bound-sensitive heuristic:

Definition 3 (Admissible bound-sensitive heuristic) Given
an MCF planning problem ΠMCF = 〈V,O, sI , G, C0,C 〉, an
admissible bound-sensitive heuristic h(s, b) for a state s and
budget vector b is a heuristic h such that h(s, b) ≤ h∗(s, b)
for all s, b.

Any classical planning heuristic that completely ignores Ci
and Bi can be thought of as an admissible bound-sensitive
heuristic that assumes b = ∞. As the value of b decreases,
the value of h∗(s,b) can only increase. In general, it is useful
to keep in mind the following property:



Theorem 1 Given a state s and budget vectors b, b’ such that
b ≤ b’ (where ≤ is interpreted as a pairwise comparison),
h∗(s, b) ≥ h∗(s, b’).

Proof sketch: This follows from the fact that any plan π for
s such that Ci(π) ≤ bi also has the property that Ci(π) ≤ b’i
for i = 1, . . . , n since b ≤ b’, yet the opposite is not the case.

Theorem 1 applied to MCF planning problems obtained
as the soft goals compilations of OSP problems states that
for any s, decreasing b increases h∗(s,b), and decreases the
achievable utility, since the primary cost here indicates the
utility that the plan must declare unachievable through ov,ϑ
actions with C0(ov,ϑ) ≥ 0.

Bound-Sensitive hmax

The admissible classical heuristic hmax estimates the cost of a
set of facts F as the cost of the most expensive fact f ∈ F ,
and applies this approximation recursively to action precon-
ditions in order to obtain the cost of the goal [Bonet and
Geffner, 2001]:

hmax
C (F, s) = max

f∈F
hmax
C (f, s)

hmax
C (f, s) =

{
0 f ∈ s

min
o∈achievers(f,s)

hmax
C (o, s) otherwise

hmax
C (o, s) = C(o) + hmax

C (pre(o), s)

where hmax
C denotes the value of hmax computed with a cost

function C, and achievers(f, s) denotes the set of actions o
for which f ∈ eff(o). Note that the hmax cost of a fact
f that is not present in s is computed by choosing an ac-
tion o from this set that achieves it with minimum possible
cost. Given a set of secondary cost functions and bounds
C = {〈C1,B1〉, . . . , 〈Cn,Bn〉}, a bound-sensitive version of
hmax can easily be obtained by replacing the set of achievers
used to compute hmax

C0 with

achievers(f, s)C0 = {o |f ∈ eff(o) ∧∧
i=1,...,n

hmax
Ci (o, s) ≤ Bi}

where actions o for which any estimate hmax
Ci (o, s) exceeds Bi

are not considered. Note that due to the admissibility of hmax,
this restriction of the set of achievers is sound but not com-
plete: it is guaranteed that any action removed from the set of
achievers cannot be used in a valid plan, but there may be ad-
ditional actions that cannot be achievers but are not pruned by
the heuristic. In general, any admissible estimate hmax

Ci (o, s)

could be used to compute achievers(f, s)C0 , but we have cho-
sen hmax here for simplicity.

Theorem 2 Bound-sensitive hmax
C0 is an admissible bound-

sensitive heuristic.

Proof sketch: This follows from the admissibility of the
heuristic used to compute achievers(f, s)C0 .

Bound-Sensitive Merge-and-shrink
Merge-and-shrink heuristics are a family of abstraction
heuristics that incrementally build a representation of the full
state space of a problem [Helmert et al., 2014]. The construc-
tion process begins with the set of transition systems induced
over each state variable; at each step, two transition systems
are selected to be merged and replaced with their synchro-
nized product. Since the transition systems need to be rep-
resented explicitly in memory, before the merge a shrinking
step is perfomed on the two selected transition systems to en-
force a user-specified threshold on the size of the synchro-
nized product. This step is performed by abstracting multi-
ple states in the current representation into a single state (and
thereby losing optimality). The final output of the algorithm
consists of a single abstract transition system in which mul-
tiple states and actions from the original task are mapped to
a single state or transition, respectively. hMS(s) is then given
by the cost of a shortest path from the abstract state represent-
ing s to the closest abstract goal state in the final transition
system. This estimate is admissible by definition.

To adapt merge-and-shrink to the MCF setting, we main-
tain for each transition in the abstract state space the mini-
mum Ci cost for i = 1, . . . , n among all of the transitions
from the original task represented by that transition. The dis-
tance Ci between any two abstract states s, s′ then represents
a non-overestimate of the secondary cost of reaching s′ from
s. A bound-sensitive heuristic value for a state s can be com-
puted as the minimum C0 cost of a path π from s to an abstract
goal state sg whose Ci cost in the abstract state space does not
exceed Bi, for any i. The C0 cost of such such a path can be
computed with a modified version of Dijkstra’s algorithm that
stores secondary cost information for each node and discards
nodes for which Ci > Bi for any i.

Theorem 3 Bound-sensitive hMS is an admissible bound-
sensitive heuristic.

Proof sketch: This follows from the fact that the secondary
costs used in the abstract state space are the minimums of
the secondary costs Ci of the represented transitions in the
original problem, and the proof of admissibility of standard
hMS.

While the msb heuristic can be implemented by running Di-
jkstra’s algorithm in the abstract state space for each heuristic
computation, an important optimization when a single sec-
ondary cost function is present (which is the case in the com-
piled OSP problems that we consider) is to run Dijkstra only
once during preprocessing, and compute the primary cost
in the presence of different bounds on the secondary cost.
This information can then be stored as a sequence of pairs
〈〈b0, c0〉, . . . , 〈bn, cn〉〉, where b0, . . . , bn is strictly increas-
ing and c0, . . . , cn is strictly decreasing (recall Theorem 1).
hMS(s,b) is then given by the first ci such that bi ≤ b.

Experiments
We implemented our approach in the Fast Downward plan-
ner [Helmert, 2006], and evaluated it on a set of publically



25 50 75 100
Coverage BnB bl maxb max msb ms BnB bl maxb max msb ms BnB bl maxb max msb ms BnB bl maxb max msb ms
airport 27 ±0 -1 -1 -9 -9 22 ±0 ±0 -1 -4 -4 21 ±0 -1 ±0 -4 -4 21 ±0 -3 -3 -5 -5
barman11 12 ±0 +1 ±0 ±0 ±0 8 ±0 ±0 ±0 ±0 ±0 4 ±0 ±0 ±0 ±0 ±0 4 ±0 ±0 ±0 ±0 ±0
barman14 6 ±0 ±0 ±0 +2 ±0 3 ±0 ±0 -3 ±0 ±0 0 ±0 ±0 ±0 ±0 ±0 0 ±0 ±0 ±0 ±0 ±0
blocks 35 ±0 ±0 ±0 ±0 ±0 28 ±0 +1 -2 +4 ±0 21 ±0 ±0 ±0 +8 ±0 18 ±0 ±0 ±0 +8 ±0
childsnack14 0 ±0 +1 ±0 +2 ±0 0 ±0 ±0 ±0 ±0 ±0 0 ±0 ±0 ±0 ±0 ±0 0 ±0 ±0 ±0 ±0 ±0
depot 16 ±0 -1 -2 -1 ±0 11 ±0 ±0 -4 ±0 -1 7 ±0 ±0 -1 ±0 ±0 4 ±0 ±0 ±0 +1 ±0
driverlog 15 ±0 ±0 ±0 ±0 ±0 13 ±0 +1 -1 +1 ±0 10 ±0 +1 ±0 +2 ±0 7 ±0 +1 ±0 +4 ±0
elevators08 30 ±0 ±0 -1 -1 ±0 25 ±0 -1 -1 ±0 ±0 23 ±0 -1 -1 +1 ±0 17 +1 ±0 -1 +3 +1
elevators11 20 ±0 ±0 ±0 ±0 ±0 19 ±0 ±0 ±0 ±0 ±0 18 ±0 -1 -1 +1 ±0 14 +1 ±0 -1 +2 +1
floortile11 9 ±0 ±0 ±0 -2 ±0 4 ±0 +1 ±0 ±0 ±0 2 ±0 +2 +2 +1 ±0 2 ±0 +4 +4 ±0 ±0
floortile14 9 ±0 ±0 ±0 -2 -3 2 ±0 ±0 ±0 ±0 ±0 0 ±0 +2 +1 ±0 ±0 0 ±0 +5 +5 ±0 ±0
freecell 77 ±0 -14 -33 -12 -6 30 ±0 -2 -13 -2 -1 21 ±0 -6 -6 -1 -1 20 ±0 -6 -6 -2 -4
ged14 20 ±0 ±0 ±0 ±0 ±0 20 ±0 ±0 ±0 ±0 ±0 20 ±0 ±0 ±0 -1 ±0 20 ±0 ±0 ±0 ±0 ±0
grid 5 ±0 ±0 -1 ±0 ±0 3 ±0 ±0 ±0 -1 ±0 2 ±0 ±0 ±0 -1 ±0 1 ±0 ±0 ±0 +1 ±0
gripper 11 ±0 ±0 ±0 +1 ±0 8 ±0 ±0 ±0 ±0 ±0 8 ±0 -1 ±0 ±0 ±0 8 ±0 -1 ±0 ±0 ±0
hiking14 19 ±0 -1 -5 +1 ±0 14 ±0 -1 -3 +3 ±0 13 ±0 -2 -2 +2 ±0 11 ±0 -2 -2 +3 ±0
logistics00 21 ±0 +1 ±0 ±0 ±0 16 ±0 ±0 ±0 ±0 ±0 12 ±0 +2 ±0 +2 ±0 10 ±0 ±0 ±0 +4 ±0
logistics98 6 ±0 +1 ±0 ±0 ±0 4 ±0 +1 ±0 +1 ±0 2 ±0 +1 ±0 +1 ±0 2 ±0 ±0 ±0 ±0 ±0
miconic 96 ±0 -1 -4 +12 -1 65 ±0 ±0 -1 +7 ±0 55 ±0 ±0 ±0 +11 ±0 50 +5 ±0 ±0 +11 +4
mprime 35 ±0 ±0 -2 -4 -2 28 -1 -1 -5 -3 -1 24 ±0 -1 -2 -2 ±0 19 ±0 +1 -5 -2 ±0
mystery 29 ±0 ±0 ±0 -2 ±0 27 -1 ±0 -3 -4 -1 21 ±0 ±0 -3 -1 ±0 18 ±0 ±0 -3 -1 ±0
nomystery11 20 ±0 ±0 ±0 ±0 ±0 14 ±0 ±0 -2 ±0 ±0 10 ±0 -1 -2 ±0 ±0 8 ±0 ±0 ±0 +3 +1
openstacks08 30 ±0 ±0 ±0 ±0 ±0 25 ±0 ±0 ±0 ±0 ±0 24 ±0 ±0 ±0 ±0 ±0 22 ±0 -3 -2 ±0 ±0
openstacks11 20 ±0 ±0 ±0 ±0 ±0 18 ±0 ±0 ±0 ±0 ±0 17 ±0 ±0 ±0 ±0 ±0 17 ±0 -3 -3 ±0 ±0
openstacks14 20 -1 -1 -1 -1 -1 15 -2 -4 -4 -2 -2 7 ±0 -3 -3 ±0 ±0 3 ±0 -1 ±0 ±0 ±0
openstacks 9 ±0 -2 -2 -2 -2 7 ±0 ±0 ±0 ±0 ±0 7 ±0 ±0 ±0 ±0 ±0 7 ±0 ±0 ±0 ±0 ±0
parcprinter08 17 -2 +1 -2 -3 -3 13 ±0 +1 ±0 ±0 -1 11 ±0 +2 ±0 ±0 -1 11 -1 +2 +2 +1 ±0
parcprinter11 13 -1 +1 -2 -2 -2 9 ±0 +1 ±0 ±0 ±0 7 ±0 +2 ±0 +1 ±0 6 ±0 +3 +2 +2 +2
parking11 11 -1 -1 -2 -3 -1 1 ±0 ±0 ±0 ±0 ±0 0 ±0 ±0 ±0 ±0 ±0 0 ±0 ±0 ±0 ±0 ±0
parking14 14 -2 -3 -6 -3 -3 4 ±0 -3 -4 ±0 ±0 0 ±0 ±0 ±0 +1 ±0 0 ±0 ±0 ±0 ±0 ±0
pathways-nn 5 ±0 ±0 ±0 ±0 ±0 4 ±0 +1 ±0 +1 ±0 4 ±0 ±0 ±0 ±0 ±0 4 ±0 ±0 ±0 ±0 ±0
pegsol08 30 ±0 ±0 ±0 ±0 ±0 30 ±0 ±0 ±0 ±0 ±0 29 -1 ±0 -2 ±0 ±0 27 ±0 ±0 ±0 ±0 ±0
pegsol11 20 ±0 ±0 ±0 ±0 ±0 20 ±0 ±0 ±0 ±0 ±0 19 -2 ±0 -2 ±0 ±0 17 ±0 ±0 ±0 ±0 ±0
pipes-notank 45 ±0 ±0 -2 -30 -27 30 ±0 -1 -5 -14 -12 22 ±0 -2 -6 -5 -5 15 ±0 -1 -2 ±0 -1
pipes-tank 35 -2 -6 -11 -9 -9 20 ±0 -3 -5 -3 -3 16 -1 -4 -5 -1 -1 11 ±0 -1 -3 ±0 ±0
psr-small 50 ±0 ±0 ±0 ±0 ±0 50 ±0 ±0 ±0 ±0 ±0 49 ±0 ±0 ±0 +1 ±0 49 ±0 ±0 ±0 ±0 ±0
rovers 15 ±0 +1 -2 -1 ±0 8 ±0 +1 ±0 +1 ±0 6 ±0 ±0 ±0 +1 ±0 5 +1 +1 +1 +1 +1
satellite 9 ±0 +2 ±0 +2 ±0 7 ±0 ±0 ±0 +1 ±0 6 ±0 ±0 ±0 +1 ±0 5 ±0 ±0 -1 +1 ±0
scanalyzer08 13 +1 ±0 ±0 -1 -1 12 ±0 ±0 -3 ±0 ±0 12 ±0 -3 -3 ±0 ±0 12 ±0 -3 -3 ±0 ±0
scanalyzer11 10 ±0 ±0 ±0 -1 -1 9 ±0 ±0 -3 ±0 ±0 9 ±0 -3 -3 ±0 ±0 9 ±0 -4 -3 ±0 ±0
sokoban08 30 ±0 ±0 ±0 ±0 ±0 29 ±0 ±0 -1 ±0 ±0 24 ±0 +3 ±0 ±0 ±0 22 ±0 +3 +1 ±0 ±0
sokoban11 20 ±0 ±0 ±0 ±0 ±0 20 ±0 ±0 ±0 ±0 ±0 20 ±0 ±0 ±0 ±0 ±0 19 ±0 +1 -1 ±0 ±0
storage 20 ±0 ±0 -1 -1 ±0 17 ±0 ±0 -1 -1 ±0 15 ±0 ±0 ±0 ±0 ±0 14 ±0 ±0 ±0 ±0 ±0
tetris14 17 ±0 ±0 ±0 -15 -15 14 ±0 -3 -4 -13 -12 11 -1 -3 -3 -11 -9 9 ±0 -4 -4 -8 -7
tidybot11 20 ±0 ±0 ±0 -19 -19 20 ±0 -1 -3 -19 -19 18 -1 -4 -6 -17 -17 13 ±0 -6 -8 -13 -12
tidybot14 20 ±0 ±0 ±0 -20 -20 18 ±0 -2 -5 -18 -18 14 -1 -6 -10 -14 -14 6 ±0 -6 -6 -6 -6
tpp 9 ±0 ±0 ±0 -1 ±0 7 ±0 ±0 ±0 -1 ±0 6 ±0 ±0 ±0 ±0 ±0 6 ±0 ±0 ±0 ±0 ±0
transport08 17 ±0 +1 -2 -1 ±0 15 ±0 ±0 -1 -2 ±0 12 +1 +1 -1 +1 +1 11 ±0 ±0 ±0 -1 ±0
transport11 15 ±0 +1 -1 -2 -1 11 ±0 ±0 ±0 -2 -1 8 +1 +1 -2 +1 +1 6 ±0 ±0 ±0 +1 ±0
transport14 13 +1 ±0 -1 ±0 ±0 9 ±0 ±0 ±0 -3 ±0 9 ±0 ±0 -3 -2 ±0 7 ±0 -1 -2 -1 ±0
trucks 13 -1 ±0 -1 -1 -1 8 ±0 ±0 ±0 ±0 ±0 6 ±0 ±0 ±0 ±0 ±0 5 ±0 ±0 +1 ±0 ±0
visitall11 16 ±0 +1 -1 ±0 ±0 12 -1 ±0 -1 ±0 ±0 9 ±0 ±0 ±0 ±0 ±0 9 ±0 ±0 ±0 ±0 ±0
visitall14 10 ±0 ±0 -1 -1 ±0 6 ±0 ±0 ±0 ±0 ±0 4 ±0 ±0 ±0 ±0 ±0 3 ±0 ±0 ±0 +1 ±0
woodwork08 25 ±0 ±0 -3 -6 -11 15 ±0 -1 -3 -7 -4 10 ±0 +1 -1 ±0 -1 7 ±0 +2 +2 +2 ±0
woodwork11 18 ±0 -1 -2 -3 -5 10 ±0 -1 -3 -4 -4 5 ±0 +1 -1 ±0 -2 2 ±0 +2 +2 +3 -1
zenotravel 13 ±0 ±0 ±0 ±0 ±0 10 ±0 ±0 ±0 +2 ±0 8 ±0 +1 ±0 +2 ±0 8 ±0 ±0 ±0 ±0 ±0
Sum all 1190 -8 -20 -92 -139 -143 897 -5 -16 -85 -82 -84 748 -5 -22 -66 -22 -53 651 +7 -20 -39 +13 -26

Table 1: The coverage results as diff from the baseline BnB, for four domain suites defined by the 25%, 50%, 75%, and 100% of
best known solution cost for the classical planning task as an OSP task cost bound. bl stands for blind, maxb and max for hmax,
bound-sensitive and regular variants, msb and ms for merge-and-shrink, bound-sensitive and regular variants, respectively.
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Figure 2: Expansions up to the last layer, A∗ with blind heuristic vs. (a) bound-sensitive hmax and (b) bound-sensitive
merge-and-shrink; A∗ with bound-sensitive vs. regular heuristic for (c) hmax and (c) merge-and-shrink.

available OSP benchmarks [Katz et al., 2019b]. The set of
benchmarks is taken from the International Planning Compe-
titions of recent years, in which goal facts are replaced with
utilities, and the bound set at 25%, 50%, 75%, or 100% of the
cost of the optimal or best known solution to each problem.
The baseline for our comparison is a blind branch-and-bound
search, currently the best available configuration for oversub-
scription planning that we know of [Katz et al., 2019a]. We
compare this baseline to our proposed approach of A∗ search
on the MCF compilation of the OSP task. Since the compila-
tion introduces intermediate states at which some but not all
of the ov,ϑ have been applied, we use a further optimization
that avoids generating these nodes and applies all of the ov,ϑ
actions in a single step, reducing the state space to that of the
original OSP task. We experiment with blind A∗ search, and

A∗ using classical hmax and hMS, as well as the two heuris-
tics’ bound-sensitive variants introduced here. For hMS, we
used exact bisimulation with an abstract state space threshold
of 50000 states and exact generalized label reduction [Siev-
ers et al., 2014]. The experiments were performed on Intel(R)
Xeon(R) CPU E7-8837 @2.67GHz machines, with time and
memory limits of 30min and 3.5GB, respectively. Per-domain
and overall coverage, as well as per-task node expansions for
the various configurations and problem suites are shown in
Table 1 and Figure 2, respectively. We now report some ob-
servations from our results.

• Blind branch-and-bound search usually slightly outper-
forms blind A∗ in terms of coverage, except for the
100% suite. The difference between the two may come



down to the fact that A∗ must do extra work in ordering
the priority queue, while the variant of branch and bound
search that we consider uses no ordering heuristic and
can use a simple stack as its search queue. Alternately it
may be due to small differences in implementation.

• Bound-sensitive heuristics are much more informative
than their classical variants on OSP problems, some-
times decreasing expansions by orders of magnitude.
Compared to non-bound-sensitive heuristics, they also
almost always result in better coverage.

• Blind search dominates informed search in terms of cov-
erage when bounds are low, but the effect diminishes as
the bound increases and it becomes intractable to explore
the full state space under the bound. For the 25% suite
of problems, heuristic configurations solve an average
of approximately 100 instances fewer than the baseline,
compared to approximately 15 instances fewer on the
100% suite. Notably, bound-sensitive hMS has the best
coverage in the 100% suite, solving 13 problems more
than the baseline, and 6 more than blind A∗.

• Coverage on several domains benefits from more in-
formed search schemes. On BLOCKSWORLD, DRIVER-
LOG, and MICONIC, bound-sensitive hMS solves the
largest number of problems, and this is also the case for
bound-sensitive hmax on FLOORTILE, PARC-PRINTER,
and SOKOBAN.

• hMS often times out in the construction phase and before
search has begun. This occurs on average in approxi-
mately 300 problems per suite, or 1200 problems total.
This is especially pronounced in the TIDYBOT, TETRIS,
and PIPESWORLD-NOTANKAGE domains. This sug-
gests a hybrid approach that combines the strengths of
blind search and hMS: setting an upper bound on the
time allotted to heuristic construction, and running blind
search instead if construction does not terminate within
this bound. Using this configuration with a value of 10
minutes for the upper bound results in a planner that
outperforms blind A∗ by +11, +16, +37, and +38 in-
stances for the 25%, 50%, 75%, and 100% suites, re-
spectively. This makes hMS schemes that are less ex-
pensive to construct but maintain informativeness in this
setting an appealing future subject of research.

Conclusions and Future Work
We have shown that a previously introduced compilation to
multiple cost function classical planning allows the A∗ algo-
rithm to be used to solve oversubscription planning problems,
and introduced a family of bound-sensitive heuristics that are
much more informed than their classical counterparts in this
setting. Our experiments show that this approach results in a
state-of-the-art method for some bound settings and domains.

One future research direction we would like to explore
that builds on the methods introduced here is the use of
non-admissible heuristics for satisficing OSP. The method by
which bound-sensitive hmax is obtained is fairly general and
should be equally applicable for hadd or general relaxed plan
heuristics [Keyder and Geffner, 2008]. A second direction is

the use of these heuristics in other planning settings in which
tradeoffs must be made between different cost functions, e.g.
minimizing fuel use in the presence of bounds on time or vice
versa in logistics problems.

Finally, our methods may be applicable to numeric plan-
ning problems in which the variables describe resources that
are strictly decreasing and can be expressed in terms of
secondary cost functions and associated bounds. Bound-
sensitive heuristics could provide a principled way of reason-
ing about numeric variables in this context.
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