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Abstract

The structure of a deep convolutional neural network initialized with random
weights is able to sufficiently capture the patterns in a natural image. This finding
motivates using deep neural network as an effective prior for natural images. In this
work, we show that this strong prior, enforced by the structure of a ConvNet, can be
augmented with the information that recurs in different patches of a natural image
to boost the performance. We demonstrate that the self-similarity in the image
patches can be exploited alongside deep image prior by optimizing the network
weights to fit patches extracted from a single noisy image. Our results indicate that
employing deep image prior on noisy patches provides an additional disincentive
for the network to fit noise, and is encouraged to exploit redundancies among the
patches yielding better denoising performance.

1 Introduction

In this paper, we consider the problem of recovering an unknown signal x ∈ Rn from its noisy
measurements y ∈ Rn of the form

y = x+ η, (1)
where η ∈ Rn denotes additive Gaussian noise. Since denoising is an ill-posed and under-constrained
inverse problem, some prior knowledge is often used to restrict the solution space.

Natural image statistics, such as sparsity [1], smoothness [2], and patch recurrence [3] have guided
the development of priors for image recovery from noisy measurements. These hand-crafted priors
have proven to be effective. However, a large majority of unnatural signals also satisfy the constraints
specified by these hand-designed priors due to which they suffer. To overcome this limitation, several
deep learning based methods have been developed to learn image prior models for reconstructing
an estimate of the true image from the noisy observation. Specifically, these deep learning based
approaches invert the forward acquisition model of denoising via end-to-end training of deep neural
networks in a supervised manner [4]. These techniques require a large number of clean-noisy image
pairs for network training that are inconvenient to obtain.

To recall classical engineered priors, a leap of improvement in denoising was obtained by exploiting
the patch recurrence in natural images that has led to several advanced denoising algorithms, such as
BM3D. The key idea is to leverage the self similarity of natural images i.e. patches extracted from
a natural image tend to recur much more frequently (densely) inside the same image, than in any
random collection of images.

Surprisingly, it was recently shown in [5] that the structure of a deep convolutional neural network
(CNN) can regularize image reconstruction without any prior training. Deep Image Prior (DIP)
is a new strategy for handling the regularization task in inverse problems. Rather than taking the
supervised avenue, as most earlier methods did, DIP suggests to benefit from the structure of deep
network itself assuming that convolutional neural network has lower impedance in fitting image
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Figure 1: Block diagram of proposed approach.

signal as compared to noise signal. DIP fits the network weights to the corrupted image adapting it
for each image to be treated.

It has been shown in [6] that implicit internal image statistics like self similarity are equally rewarding
as explicit external image statistics that are learned from a collection of images. Neural network
architectures that explicitly make use of these internal natural properties of images should able
to produce even better reconstructions. In this work, we make a similar attempt to show that, by
augmenting DIP framework with a network that is encouraged to exploit patch recurrence property in
natural images significantly improves its reconstruction ability.

2 Methodology

From a Bayesian perspective, the solution x̂ can be obtained by solving the following Maximum A
Posteriori (MAP) problem,

x̂ = arg max
x∈Rn

log p(y | x) + log p(x) (2)

where log p(y | x) represents the log-likelihood of observations y, log p(x) is the prior knowledge
about the true signal x. (2) can be formulated as:

x̂ = arg min
x∈Rn

1

2
‖y − x‖22 + λφ(x) (3)

where the solution minimizes an energy function comprising of a fidelity term 1
2‖y − x‖22 , a

regularization term φ(x) and a trade-off parameter λ. The fidelity term guarantees that the solution
accords with the degradation process, while the regularization term enforces desired property of the
output.

In the context of image denoising, the associated optimization for DIP is formulated as:

Θ̂ = arg min
Θ

‖y − fΘ(z)‖22, x̂ = fΘ̂(z) (4)

where z ∈ Rm is input to the network and fΘ(·) is the deep convolutional neural network
parametrized by weights Θ. The regularization here is the network structure itself and early stopping.
Indeed, the fact that DIP operates well and recovers high quality images could be perceived as a
manifestation of the “correctness” of the chosen architecture to represent image synthesis.

Our aim is to supplement the regularization capability of DIP with the classical property of patch
recurrence in natural images. We do this by enforcing the network to operate on patches of a single
image rather than the entire image; see Figure 1. Specifically, we aim to minimize the following loss
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function.

Θ̂ = arg min
Θ

N∑
n=1

‖Pn(y)− fΘ(zn)‖22, x̂n = fΘ̂(zn) (5)

where operator Pn(·) extracts the nth patch from the input image and x̂n is the denoised nth

patch. Final estimate of the image is reconstructed by combining all the denoised patches,
x̂ = P̃(x̂1, x̂2, ..., x̂n), where P̃(·) is the function that reconstructs image back from its patches.
Minimizing (5) instead of (4) over all the noisy patches extracted from a single image provides two
additional incentives for denoising: (1) it provides regularization in the fitting process as now instead
of a single image, network weights are being optimized for multiple smaller image patches which
in turn leads to higher impedance to noise (2) this aforementioned regularization encourages the
network weights to leverage redundant information from the image patches in the reconstruction task.
Henceforth, this patch based approach will be referred to as PatchDIP. Through experiments we show
that PatchDIP shows better performance over DIP and offers higher impedance to noise.

3 Experiments

In this section, we evaluate the performance of the proposed approach, PatchDIP, against baseline
methods, both qualitatively and quantitatively. For quantitative comparison, we use peak signal to
noise ratio (PSNR) and structural similarity index measure (SSIM). All simulations are performed on
core-i7 computer (3.40 GHz and 16GB RAM) equipped with Nvidia Titan X GPU using Pytorch
framework.

Deep Decoder (DD) [7], Deep Image Prior (DIP), Non-Local Means (NLM), [8] and BM3D [9] are
used as baseline methods. We use default algorithmic parameters of all baseline methods unless
stated otherwise. As for PatchDIP, we extract overlapping patches of size 64× 64 with stride 32× 32
from 512 × 512 sized images. We ran 10, 000 gradient iterations for DD, DIP and PatchDIP and
extracted the solution with the best PSNR from the iterates. We also do not employ an exponential
running average on the iterates as in DIP paper.

Both qualitative and quantitative results are shown in Figure 2. It can be seen that denoised images
via NLM exhibit smoothness due to averaging effect of multiple patches. DIP reconstructions,
although sharp as compared to non-local means, still contain noise residuals. On the other hand,
the performance of PatchDIP exceeds DD, DIP and NLM, but slightly under performs as compared
BM3D.

To provide further insights into PatchDIP, two additional experiments are performed in Figure 3.
In the left pane, we show that PatchDIP provides additional impedance to noise over DIP. We plot
mean squared error (MSE) versus gradient iterations for DIP and PatchDIP when fitted to random
uniform noise. During the first 1000 iterations, PatchDIP shows high impedance to noise. Even
though, MSE starts decreasing after 1000 iterations, the convergence is still slower as compared
to DIP, indicating that PatchDIP in general fits noise even more reluctantly as compared to DIP. In
the right pane MSE is plotted against gradient iterations of PatchDIP for patches extracted from a
single image, and patches extracted randomly from a collection of images. Patches extracted from a
single image are vividly similar as compared to randomly selected patches and thus, PatchDIP shows
quicker and better convergence when patches belong to the same image. This is owing to the fact
patches belonging to the same image share redundant information that is leveraged by the deep neural
network during the fitting process.

4 Conclusion

To conclude, we propose to leverage the patch recurrence property of natural images alongside DIP.
We show that optimizing network weights over patches of images has an additional regularization ef-
fect in the fitting process that impedes noisy signals. This regularization coupled with the observation
that network fits patches from a single image better over random patches makes a strong case that the
network implicitly learns to exploit redundancies among patches, thus leading to a better denoising
performance.
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Figure 2: Denosing at σ = 25.
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Figure 3: In the left pane, DIP and PatchDIP were fitted to noise sampled from U(0, 1). It can
be seen that PatchDIP exhibits additional resistance over DIP in fitting noise. In the right pane,
PatchDIP was fitted on noisy patches from single image and from random images. Better and faster
convergence of MSE for patches from the same image provides insight that PatchDIP leverages
redundant information in patches.
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