
Stochastic optimization library: SGDLibrary

Hiroyuki Kasai
The University of Electro-Communications

Tokyo, 182-8585, Japan
kasai@is.uec.ac.jp

Abstract

SGDLibrary is an open source MATLAB library of stochastic optimization algo-
rithms, which finds the minimizer of a function f : Rd → R of the finite-sum
form min f(w) = 1/n

∑
i fi(w). This problem has been studied intensively in

recent years in the field of machine learning. One typical but promising approach
for large-scale data is to use a stochastic optimization algorithm to solve the prob-
lem. SGDLibrary is a readable, flexible and extensible pure-MATLAB library of
a collection of stochastic optimization algorithms. The purpose of the library is
to provide researchers and implementers a comprehensive evaluation environment
for the use of these algorithms on various machine learning problems. The code
is available at https://github.com/hiroyuki-kasai/SGDLibrary 1.

1 Introduction

SGDLibrary aims to facilitate research on stochastic optimization for large-scale data. We particu-
larly address a regularized finite-sum minimization problem defined as

min
w∈Rd

f(w) :=
1

n

n∑
i=1

fi(w) =
1

n

n∑
i=1

L(w, xi, yi) + λR(w), (1)

where w ∈ Rd represents the model parameter and n denotes the number of samples (xi, yi).
L(w, xi, yi) is the loss function and R(w) is the regularizer with the regularization parameter λ ≥
0. Widely diverse machine learning (ML) models fall into this problem. This type of problems
include, for example, an ℓ2-norm regularized linear regression problem (a.k.a. ridge regression)
and an ℓ1-norm regularized logistic regression (LR) problem. Full gradient descent (a.k.a. steepest
descent) with a step-size η is the most straightforward approach for (1), which updates as wk+1 ←
wk − η∇f(wk) at the k-th iteration. However, this is expensive when n is extremely large. For
this issue, a popular and effective alternative is stochastic gradient descent (SGD), which updates
as wk+1 ← wk − η∇fi(wk) for the i-th sample uniformly at random [2, 3]. SGD assumes an
unbiased estimator of the full gradient as Ei[∇fi(wk)] = ∇f(wk). As the update rule clearly
represents, the calculation cost is independent of n. Furthermore, mini-batch SGD [3] calculates
1/|Sk|

∑
i∈Sk
∇fi(wk), where Sk is the set of samples of size |Sk|. SGD needs a diminishing

step-size algorithm to guarantee convergence, which causes a severe slow convergence rate [3].
To accelerate this rate, we have two active research directions in ML; Variance reduction (VR)
techniques that explicitly or implicitly exploit a full gradient estimation to reduce the variance of
the noisy stochastic gradient, leading to superior convergence spped. Another direction is to modify
deterministic second-order (SO) algorithms into stochastic settings, and solve the potential problem
of first-order algorithms for ill-conditioned problems. In a different direction, as a result of the recent
success of deep learning, non-convex algorithms have been studied extensively. Among them, some
sub-sampled Hessian algorithms achieve the second-order optimality condition [4].

Machine Learning Open Source Software 2018: Sustainable communities, Montréal, Canada.

1This paper is the updated version of the author’s paper [1].

https://github.com/hiroyuki-kasai/SGDLibrary

Why is SGDLibrary needed?: The performance of stochastic optimization algorithms is strongly
influenced not only by the distribution of data but also by the step-size algorithm [3]. Therefore,
we often encounter results that are completely different from those in papers in every experiment.
Consequently, an evaluation framework to test and compare the algorithms at hand is crucially im-
portant for fair and comprehensive experiments. SGDLibrary is a readable, flexible and extensible
pure-MATLAB library of a collection of stochastic optimization algorithms. The library is also
operable on GNU Octave. The purpose of the library is to provide researchers and implementers
a collection of state-of-the-art stochastic optimization algorithms that solve a variety of large-scale
optimization problems such as linear/non-linear regression problems and classification problems.
This also allows researchers and implementers to easily extend or add solvers and problems for fur-
ther evaluation. To the best of my knowledge, no report in the literature and no library describe a
comprehensive experimental environment specialized for stochastic optimization algorithms.

2 Software architecture

The software architecture of SGDLibrary follows a typical module-based architecture, which sep-
arates problem descriptor and optimization solver. To use the library, the user selects one problem
descriptor of interest and no less than one optimization solvers to be compared.

Problem descriptor: The problem descriptor, denoted as problem, specifies the problem of in-
terest with respect to w, noted as w in the library. This is implemented by MATLAB classdef.
The user does nothing other than calling a problem definition function. Each problem definition
includes the functions necessary for solvers as summarized in Table 1. The built-in problems in-
clude, for example, ℓ2-norm regularized multidimensional linear regression, ℓ2-norm regularized
linear SVM, ℓ2-norm regularized LR, ℓ2-norm regularized softmax classification (multinomial LR),
ℓ1-norm multidimensional linear regression, and ℓ1-norm LR. The problem descriptor provides addi-
tional specific functions. For example, the LR problem includes the prediction and the classification
accuracy calculation functions.

Table 1: Supported class functions (methods) of problem descriptor.

No. Class functions (methods). Mandatory
(i) calculate (full) cost function f(w). ✓
(ii) calculate mini-batch stochastic derivative v=1/|S|∇fi∈S(w) for the set of samples S. ✓
(iii) calculate stochastic Hessian. ✓
(iv) calculate stochastic Hessian-vector product for a vector v. ✓
(v) problem-specific functions. (e.g., classification accuracy calculation in LR problem.)

Optimization solver: Once a solver function is called with one selected problem descriptor
problem as the first argument, an optimization solver solves the optimization problem by calling
corresponding functions via problem such as the stochastic gradient calculation function. Examples
of the supported optimization solvers in the library are listed in categorized groups as in Table 2.
The solver function also receives optional parameters as the second argument, which forms a struct,
designated as options in the library. It contains elements such as the maximum number of epochs,
the batch size, and the step-size algorithm with an initial step-size. Finally, the solver function re-
turns to the caller the final solution w and rich statistical information, such as a record of the cost
function values, the optimality gap, the processing time, and the number of gradient calculations.

Others: SGDLibrary accommodates a user-defined step-size algorithm. This accommodation
is achieved by setting as options.stepsizefun=@my_stepsize_alg, which is delivered to
solvers. Additionally, when the regularizer R(w) in the minimization problem (1) is a non-
smooth regularizer such as the ℓ1-norm regularizer ∥w∥1, the solver calls the proximal oper-
ator as problem.prox(w,stepsize), which is the wrapper function defined in each prob-
lem. The ℓ1-norm regularized LR problem, for example, calls the soft-threshold function as
w = prox(w,stepsize)=soft_thresh(w,stepsize*lambda), where stepsize is the step-
size η and lambda is the regularization parameter λ > 0 in (1).

2

Table 2: Supported stochastic optimization algorithms.

Category Algorithm
SGD method Vanila SGD [2], SGD-CM (classical momentum), SGD-CM-NAG (Nesterov’s

accelerated gradient) [5], AdaGrad [6], RMSProp [7], AdaDelta [8], Adam [9],
AdaMax [9]

Variance reduction (VR) SVRG [10], SAG [11], SAGA [12], SARAH [13], SARAH-Plus [13]
Second-order (SO)
method

SQN [14], oBFGS-Inf [15], oLBFGS-Lim [15, 16], Reg-oBFGS-Inf [17],
Damp-oBFGS-Inf [18], IQN [19]

SO with VR method SVRG-SQN [20], SVRG-LBFGS [21], SS-SVRG [21]
Sub-sampled Hessian
method

SCR (Sub-sampled cubic regularization) [22], Sub-sampled TR (trust region)
[23, 24]

Other method BB-SGD [25], SVRG-BB [26]

3 Tour of the SGDLibrary: Softmax classification problem

We embark on a tour of SGDLibrary exemplifying the ℓ2-norm regularized softmax classification
problem. The code for this problem is in Listing 1.

1 % generate 100 samples of dimension 3, class 5 and std 0.15 for

softmax regression

2 d = multiclass_data_generator (100 ,3 ,5 ,0.15);

3 % define softmax regression problem

4 problem = softmax_regression(d.x_tr ,d.y_tr ,d.x_te ,d.y_te ,5 ,0.001);

5 % execute solvers

6 options.w_init = d.w_init; % set initial value

7 options.step_init = 0.0001; % set initial stepsize

8 options.verbose = 1; % set verbose mode

9 [w_sgd , info_sgd] = sgd(problem , options); % perform SGD solver

10 [w_svrg , info_svrg] = svrg(problem , options); % perform SVRG solver

11 % display cost vs. number of gradient evaluations

12 display_graph(’grad_calc_count ’,’cost’,{’SGD’,’SVRG’},...

13 {w_sgd ,w_svrg},{info_sgd ,info_svrg });

Listing 1: Demonstration code for ℓ2-norm regularized softmax classification problem.

First, we generate train/test datasets d using multiclass_data_generator(), where the input
feature vector is with 100 samples and 3 dimension. The number of classes is 5. The softmax classi-
fication problem is defined by calling softmax_regression(), which internally contains the func-
tions for cost value and the gradient. This is stored in problem. Then, we execute solvers, i.e., SGD
and SVRG, by calling solver functions, i.e., sgd() and svrg() with problem and options after
setting some options into the options struct. They return the final solutions of {w_sgd,w_svrg}
and the statistical information {info_sgd,info_svrg}. Finally, display_graph() visualizes
the behavior of the cost function values in terms of the number of gradient evaluations. Illustra-
tive results additionally including Adam and IQN are presented in Figure 1, which are generated
by display_graph(), and display_classification_result() specialized for classification
problems. Thus, SGDLibrary provides rich visualization tools as well.

(a) Cost function value (b) Optimality gap (b) Classification result

Figure 1: Results of ℓ2-norm regularized softmax classification problem.

3

References
[1] H. Kasai. SGDLibrary: A MATLAB library for stochastic gradient optimization algorithms. J. Mach.

Learn. Res., 18(215):1–5, 2018.

[2] H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical Statistics,
pages 400–407, 1951.

[3] L. Bottou. Online algorithm and stochastic approximations. In David Saad, editor, On-Line Learning in
Neural Networks. Cambridge University Press, 1998.

[4] J. Nocedal and Wright S.J. Numerical Optimization. Springer, New York, USA, 2006.

[5] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and momentum in
deep learning. In ICML, 2013.

[6] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. J. Mach. Learn. Res., 12:2121–2159, 2011.

[7] G. Tieleman, T. Hinton. Lecture 6.5 - RMSProp. Technical report, COURSERA: Neural Networks for
Machine Learning, 2012.

[8] M. D. Zeiler. Adadelta: An adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

[9] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

[10] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction.
In NIPS, 2013.

[11] N. L. Roux, M. Schmidt, and F. R. Bach. A stochastic gradient method with an exponential convergence
rate for finite training sets. In NIPS, 2012.

[12] A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with support for
non-strongly convex composite objectives. In NIPS, 2014.

[13] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takac. SARAH: A novel method for machine learning
problems using stochastic recursive gradient. In ICML, 2017.

[14] A. Bordes, L. Bottou, and P. Callinari. SGD-QN: Careful quasi-Newton stochastic gradient descent. J.
Mach. Learn. Res., 10:1737–1754, 2009.

[15] N. N. Schraudolph, J. Yu, and S. Gunter. A stochastic quasi-Newton method for online convex optimiza-
tion. In AISTATS, 2007.

[16] A. Mokhtari and A. Ribeiro. Global convergence of online limited memory BFGS. J. Mach. Learn. Res.,
16:3151–3181, 2015.

[17] A. Mokhtari and A. Ribeiro. RES: Regularized stochastic BFGS algorithm. IEEE Trans. on Signal
Process., 62(23):6089–6104, 2014.

[18] X. Wang, S. Ma, D. Goldfarb, and W. Liu. Stochastic quasi-Newton methods for nonconvex stochastic
optimization. SIAM J. Optim., 27(2):927–956, 2017.

[19] A. Mokhtari, M. Eizen, and A. Ribeiro. An incremental quasi-Newton method with a local superlinear
convergence rate. In ICASSP, 2017.

[20] P. Moritz, R. Nishihara, and M. I. Jordan. A linearly-convergent stochastic L-BFGS algorithm. In AIS-
TATS, 2016.

[21] R. Kolte, M. Erdogdu, and A. Ozgur. Accelerating SVRG via second-order information. In OPT2015,
2015.

[22] J. M. Kohler and A. Lucchi. Sub-sampled cubic regularization for non-convex optimization. In ICML,
2017.

[23] P. Xu, F. Roosta-Khorasani, and M. W. Mahoney. Newton-type methods for non-convex optimization
under inexact hessian information. arXiv preprint arXiv:1708.07164, 2017.

[24] Z. Yao, P. Xu, F. Roosta-Khorasani, and M. W. Mahoney. Inexact non-convex Newton-type methods.
arXiv preprint arXiv:1802.06925, 2018.

[25] S. De, A. Yadav, D. Jacobs, and T. Goldstein. Automated inference with adaptive batches. In AISTATS,
2017.

[26] C. Tan, S. Ma, Y. Dai, and Y. Qian. Barzilai-Borwein step size for stochastic gradient descent. In NIPS,
2016.

4

	Introduction
	Software architecture
	Tour of the SGDLibrary: Softmax classification problem

