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ABSTRACT

Pre-trained Deep Convolutional Neural Network (CNN) features have popularly
been used as full-reference perceptual quality features for CNN based image
quality assessment, super-resolution, image restoration and a variety of image-
to-image translation problems. In this paper, to get more insight, we link basic
human visual perception to characteristics of learned deep CNN representations
as a novel and first attempt to interpret them. We characterize the frequency and
orientation tuning of channels in trained image classification deep CNNs (e.g.,
VGG-16) by applying grating stimuli of different spatial frequencies and orienta-
tions as input. We observe that the behavior of CNN channels as spatial frequency
and orientation selective filters can be used to link basic human visual perception
models to their characteristics. Doing so, we develop a theory to get more in-
sight into deep CNN representations as perceptual quality features. We conclude
that sensitivity to spatial frequencies that have lower contrast masking thresholds
in human visual perception and a definite and strong orientation selectivity are
important attributes of deep CNN channels that deliver better perceptual quality
features.

1 INTRODUCTION

Quantifying human perception of image quality has been a subject of significant research for quite
some time. Full-reference objective metrics such as the PSNR (Peak Signal to Noise Ratio) and
SSIM (Structural Similarity Index) (Wang et al.| (2004)), being fair metrics of distortion between
two images, are not a satisfactory metrics to measure differences in perceptual quality. Considering
the recent interest in the applications of deep CNNs in perception-oriented problems such as super-
resolution, image-restoration, frame-interpolation and style-transfer etc, research into effective loss
metrics that quantify perceptual quality and help train CNNSs in delivering better perceptual quality
has become paramount.

The perceptual loss proposed by Johnson et al.| (2016)) was one of the first to demonstrate how ef-
fective the feature representations of pre-trained image classification CNNs could be as features of
full-reference perceptual quality, especially when incorporated into loss functions for image restora-
tion. The perceptual loss is now popularly adopted in many image restoration problems such as
super-resolution, style transfer, denoising etc. (Ledig et al.| (2017),;Wang et al.| (2018))|Gatys et al.
(2016)). |Zhang et al.| (2018) and |Blau & Michaeli| (2018) further demonstrate how effective deep
CNN representations can be as features of perceptual quality, but without any analysis into their
characteristics. More recently, Mechrez et al.| (2018) proposed a variation of the perceptual loss
called the contextual loss, which still employs deep CNN features as perceptual quality features
but uses an approximation of the KL-divergence to quantify distance. The contextual loss has been
demonstrated to be quite effective in maintaining natural image statistics during SISR (Single-Image
Super-Resolution). The recent PIRM Super-Resolution Challenge Report (Blau et al.|(2018)) clearly
iterates that the perceptual loss and the contextual loss are the most widely used loss functions for
CNN based perceptual image Super-Resolution.

Nevertheless, like most applications of deep learning, there has been little or no effort to understand
and interpret the role of deep CNN representations as effective perceptual quality features. This
is quite understandable, as it is difficult to find a direction to approach this problem from. Neural
networks are non-linear, which makes a tractable analysis tricky. Furthermore, human perception of
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quality is also something that is still not understood completely. Most of our basic understanding
of human visual perception of quality is in the frequency domain, with models such as the Contrast
Sensitivity Function (CSF) (de Faria et al.| (1998)). To make a connection between deep CNN
features and human perception, it is important to realize that deep CNN channels are essentially
complex spatial frequency and orientation selective filters.

We stimulate pre-trained image classification CNNs with sinusoidal grating stimuli, record the re-
sponse in the form of mean activation of each channel as function of spatial frequency/orientation of
input grating, thus quantifying the frequency and orientation selectivity of different channels. This
approach makes it significantly easier to establish a connection between perception models such
as the CSF with learned deep feature representations. We hypothesize that two attributes are im-
portant for deep CNN channels that are good perceptual quality features. The attributes are based
on visual masking in human visual perception, which refers to human ability to perceive distor-
tions and contrast in visual stimulus. The first attribute is sensitivity to spatial frequencies at which
there is minimal contrast masking in human visual perception (Nadenau et al.| (2000)), making the
CNN channel sensitive to highly perceivable distortions. The second attribute being a definite and
strong orientation selectivity, which helps the channel respond better to image regions with less pat-
tern complexity, where there is less masking for distortions from a perceptual standpoint (Wu et al.
(2017)).

We verify our hypothesis by designing an Objective Quality Assessment (OQA) experiment (Sheikh
et al.| (2006)). OQA experiments correlate the performance of any quality metric with human per-
ception of quality, which is an accepted and standard experimental technique. We group the set of
channels in different CNN layers into subsets on the basis of our hypothesis and demonstrate that
the group which has channels with our described attributes, delivers a much better as a set of per-
ceptual quality features. We repeat our experiment across multiple layers of many pre-trained image
classification networks such as the VGG-16 (Simonyan & Zisserman| (2014)), AlexNet (Krizhevsky
& Hinton|(2012)), ShuffleNet (Zhang et al.[(2017)) and SqueezeNet (landola et al.| (2017)).

2 DEEP CNN REPRESENTATIONS AS PERCEPTUAL QUALITY FEATURES

The main motivation behind using pre-trained image classification deep CNN representations as
perceptual quality features is that instead of a distance measure between two images being a good
FR metric, computing distance after non-linear transformation of images into a high dimensional
manifold, might result in a better perceptual quality measure. The high dimensional manifold in this
case is the manifold of pre-trained CNN features. The general form for the perceptual loss (Johnson
et al.|(2016)) is given by Eq. (1)

M
1
b= m,; 19 (Lout) — D%, (Zer) I3 M

Where *®F * is the feature map corresponding to the *m*"’ channel in the "k layer which as "M’

number of total channels with feature map dimensions H-W’. As mentioned before, applying pre-
trained deep CNN representations as perceptual quality features has proven to be quite effective in
FR-IQA methods (Bosse et al.| (2017)), image restoration (Wang et al.| (2018)) and style transfer
(Gatys et al|(2016)) problems, as iterated by Blau et al.| (2018)).

However, little else is known of the ability and characteristics of deep CNN representations as per-
ceptual quality features. In this work, using basic human perception models, we aim to get more
insight into the role of pre-trained deep representations as perceptual quality features.

3 PROBLEM FORMULATION

Section. 2 iterates the motivation and wide spread use of pre-trained deep CNN representations
as features of full-reference perceptual quality. However, there has been no effort to explain and
interpret the role of deep representations as perceptual features. We consider a CNN convolution
layer as collection of channels which deliver perceptual quality features. For example, the relu3_2
layer of the VGG-16 has 256 channels. Are all of the channels equally effective in delivering good
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Figure 1: Experimental Setup. The network is stimulated by gratings of varying spatial frequency.
The responses of different feature maps are recorded as activation vs spatial frequency data. To
quantify orientation tuning, the network is stimulated by gratings of fixed spatial frequency and
varying orientations to record mean activation vs orientation data.

perceptual quality features? Are some channels better than others and if so, what attributes make
them better?

The problem in question is important in explaining the role of deep CNN representations as percep-
tual quality features, but it is somewhat difficult to approach because of the ’black-box’ nature of
neural networks. In section. 4.1, we will introduce a methodology to quantify the spatial frequency
and orientation tuning of channels in pre-trained CNNs. Using this formulation, we will interpret
and explain deep CNN features as perceptual quality features by making use of basic human visual
perception models, which rely on spatial frequency and orientation characteristics of input stimuli.
In essence, the formulation in Section. 4.1 will act as a bridge to link attributes of deep representa-
tions and basic visual perception.
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Figure 2: Characterizing spatial frequency and orientation tuning in channels across different layers
of the pre-trained VGG-16.



Under review as a conference paper at ICLR 2020

4 A PSYCHOVISUAL APPROACH

4.1 FREQUENCY/ORIENTATION TUNING QUANTIFICATION

Our experimental method is inspired by the grating stimulus experiments used by neuro-scientists to
study human visual perception characteristics (Kulikowski et al.| (1982)). We aim to quantify both
the spatial frequency and orientation tuning of different channels in the pre-trained CNN.

To quantify the spatial frequency tuning, we generate concentric sinusoidal gratings of a fixed con-
trast and varying spatial frequencies (cycles per degree), use them to stimulate pre-trained image
classification CNNs and record the responses of the feature maps in the form of mean activation ver-
sus spatial frequency for each channel. Fig. 1 illustrates the overall scheme of measuring the spatial
frequency responses of channels in various convolution layers of the trained VGG-16 network. The
reason we are using a concentric pattern is to eliminate the factor of orientation selectivity from this
part of the analysis. Some concentric grating stimulus patterns are shown as input to the trained
VGG-16 network in Fig. 2.(a).

To quantify orientation selectivity at low contrast masking thresholds, we stimulate the pre-trained
network with linear pattern sinusoidal gratings with different orientations. The gratings have a fixed
spatial frequency, which corresponds to the peak of the Contrast Sensitivity Function (CSF). Some
sample grating patterns are shown in Fig. 1. Sample observations of orientation selectivity for
channels in different layers of the pre-trained VGG-16 are shown in Fig. 2.(b).

4.2 VISUAL FREQUENCY SENSITIVITY

In this section, we will use the spatial frequency selectivity quantification in section. 4.1 to intro-
duce the concept of visual frequency sensitivity. Human perception of images is largely dependent
on attributes of input stimulus. A significant proportion of neuro-science research advocates the
role of the early visual cortex as a spatial frequency analyzer (Maffei & Fiorentini| (1973)). Hu-
man perception characteristics are dependent on spatial frequency and one of the most significant
models that quantifies this characteristic is called the Contrast Sensitivity Function (CSF). The CSF
depicts human ability to perceive contrast changes as a function of spatial frequency. The spatial
frequencies where the CSF has a higher value, correspond to lower contrast masking thresholds in
perception (ease in perceiving distortions and contrast changes). In essence, this corresponds to a
higher probability of perceiving distortions at high CSF valued spatial frequencies.

Considering the presented analysis on the spatial frequency selective behavior of deep feature maps.
Our hypothesis is that the deep representations that are more sensitive to high CSF valued spatial
frequencies, can be better features of perceptual quality. Fig. 3 plots mean activation of two channels
versus spatial frequency of the input grating. Feature Map-2 can be seen to have a higher sensitivity
compared to Feature Map-1 at high CSF valued spatial frequencies, making Feature Map-2 more
sensitive to distortions corresponding to low contrast masking threshold regions in input images.

We model this attribute quantitatively as p; defined in Eq. 2

dak,
plk,m) = 3 CSF( f).‘a—f 2)

where 'k’ is the index for the convolution layer, *m’ is the feature map index in each convolution
layer, ’CSF” is the contrast sensitivity function (CSF), ’a’ is the mean activation of the feature map
and ’f” is the spatial frequency in cycles per degree. 11 quantifies the average sensitivity of a CNN
channel weighted by the CSF over different spatial frequencies. The channels having higher 1
values should deliver better perceptual features according to our hypothesis, because they can be
more sensitive to visually perceivable distortions in input images.

4.3  ORIENTATION SELECTIVITY

In addition to the underlying spatial frequency, orientation also plays an important part in human per-
ception of visual stimulus. Neuro-science research indicates that the HVS (Human Visual System)
is highly adapted to extract repeated patterns for visual content representation (Wu et al.| (2017)).
The complexity of a visual pattern has an effect in its perception. If a pattern is regular, the visual
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Figure 3: Two different feature maps may have different sensitivities to important visual frequencies.

masking for such a pattern is weak, and distortions are easily perceivable. For complex and irregular
image patches, the visual system presents a stronger masking effect.

We have quantified orientation selectivity of different channels in a pre-trained image classification
CNN (VGG-16) in Fig. 2.(b). We observe that a significant proportion of channels show a definite
orientation selective tuning, such as the ones represented in Fig. 2(b)(a), Fig. 2(b)(b), Fig. 2(b)(j)
etc. There channels should in theory be more sensitive in responding to simple patterns. However,
quite a few channels show weaker orientation sensitivity such as the ones represented in Fig. 2(b)(c),
Fig. 2(b)(k), Fig. 2(b)(n) and Fig. 2(b)(0) etc. We hypothesize the channels that show strong and
definite orientation selective tuning, respond better to regular image patterns, which have lower
masking thresholds, making these channels deliver better perceptual quality features.

Suppose that within some layer ’k’, ay® be the mean activation of a feature map corresponding to

channel *m’ to the input grating of orientation 0’. Let the maximum mean activation be a™ =
maxy ay'. We model our orientation selectivity attribute for a channel as o in Eq. (3).

pa(kym) = (g —am)® 3)
0
Considering our hypothesis, channels with higher p2 should deliver relatively better features of
perceptual quality.

4.4 PERCEPTUAL EFFICACY SCORE (PE)

Based on our defined attributes, we devise a quantification for the efficacy of channels in pre-trained
deep CNNss to deliver good features for perceptual quality, called the Perceptual Efficacy (PE). The
perceptual efficacy of a channel with index ’m’ in layer 'k’ is defined as the product of normalized
o and pio.

.ul(k7m) ':LLQ(k7m) 4)
Zm ul(k7 m) : Em /J'Q(k7 m)

PE(k,m) =

5 EXPERIMENTAL SETUP

We devise an experimental methodology to verify our hypotheses that deep CNN representations
that have a higher PE are better perceptual quality features. Let IF;, be the set of all channels within
alayer 'k’ of a pre-trained CNN (e.g VGG-16).

Fp = {®F, @F,..., &%} (5)

We constitute subsets of channels from [Fj, based on the quantification of our proposed attributes
(PE). For example, if there are 128 channels in the relu2_2 layer of the VGG-16, we can group the
top 15% (19 channels) of the total 128 with the highest PE as

H-15 = { &5, 9F, ..., &)} (6)
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Similarly, the bottom 15% channels with the lowest PE can be represented as
L-15 = {®F, ®F,..., &)} (7)

where H-z,L-2 C Fy and € (0,100]. For z = 100, the subsets become the complete set of
channels Fy.

To validate our hypotheses, it is necessary to demonstrate that subsets containing higher PE val-
ued channels deliver better perceptual quality features compared to subsets with lower PE valued
channels.

5.1 OBIJECTIVE QUALITY ASSESSMENT (OQA) TESTS

OQA tests correlate the performance of any quality metric, with human subjective assessment and
perception of quality (Sheikh et al.|(2006)). Human assessment of perceptual image quality is quan-
tified using the Differential Mean Opinion Score (DMOS) over images with varying levels of distor-
tion. DMOS is a quantitative representation of how human observers are able to perceive perceptual
differences between natural and distorted images. Metrics that have higher correlation with DMOS
scores after regression, measured using statistical indicators such as the RMSE (Root Mean Square
Error), LCC (Linear Correlation Coefficient) and the SROCC (Spearman Rank Order Correlation
Coefficient), are regarded as better quality metrics (Sheikh et al.|(2000)) . The higher the correlation
metrics (LCC and SROCC), the better a metric correlates with human ability to perceive perceptual
differences.

In our problem setting, we will use Eq. 1 with the different subsets of channels, as defined in Section
5. We demonstrate that for use with Eq. 1, within different CNN layers, channels having higher
PE, give much better correlation with DMOS compared to channels with lower PE. Essentially,
we demonstrate that CNN channels with our pre-described attributes are indeed better perceptual
quallity features.

We use images and DMOS scores from both the LIVE image quality dataset (Sheikh et al.|(2006))
and multiple distortion dataset (Jayaraman et al.|(2012)) which collectively include images with
Gaussian Blur, JPEG compression, JPEG2000, White Noise as well as images which have been
corrupted with multiple types of distortions (such as white noise, Gaussian blur and camera noise)
simultaneously.

We will repeat our experiment accross multiple layers of several pre-trained image classification
CNNs such as AlexNet, ShuffleNet, SqueezeNet and VGG-16.
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Figure 4: Correlation of metric scores in Eq. 1 with human subjective DMOS for the
*fire2_ReLU _exp2x2’ layer of the SqueezeNet’. It can be seen that the metric in Eq. 1 with the
channel subset H-10 has a much better correlation with DMOS, compared to Eq. 1 with the L-10
subset of channels.
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Table 1: Objective Quality Assessment Test. The correlation of metric scores delivered by Eq. 1
(for different feature subsets) with human subjective assessment of perceptual quality, quantified by
DMOS.

Network | Layer l;:?ture RMSE | LCC | SROCC
F 98366 | 0.8146 | 0.8028

10 1 8.8286 | 0.8538 | 0.8486

ReLU22 1 10— 123114 [ 0.6878 | 0.6806

L90 | 10,5863 [ 0.7813 [ 0.7739

VGG-16 F 98149 | 0.8155 [ 0.8076
2 88183 [ 0.8542 | 0.8476

ReLU4.1 -1 102338 [ 0.7874 [ 0.7363

L80 1 9.8485 [ 0.8141 | 0.8070

F 9.7580 | 0.8179 | 0.8155

10 [ 9.0514 | 0.8419 | 0.8368

ReLUL 10— 128170 [ 0.6553 | 0.6562

AlexNet L-70 | 103186 | 0.7936 | 0.7931
F 88015 | 0.8543 | 0.8605

s 85467 | 0.8637 | 0.8651

RelU4 11 9.8027 [ 0.8122 [ 0.8197

50  19.0607 | 0.8450 | 0.8507

- F 12791 | 0.7468 | 0.7397

pre2 10| 108632 | 0.7679 | 0.7625

R [0 [ 12.6927 [ 06632 | 0.6614

SausereNet Lo L50 | 11.6555 | 0.7264 | 0.7199
q _— F 14191 [ 0.7394 [ 0.7314
Rreem H-5 T1.8710 | 0.7142 | 0.7017

R L5 12.6857 | 0.6637 | 0.6540

p- L-50 | 12.0600 | 0.7063 | 0.6958

F T1.0810 [ 0.7570 | 0.7519

g7 [HEI0 99055 | 08117 | 0.8002

10 | 142431 | 0.5424 | 0.5583

70 | 11.6400 [ 0.7272 [ 0.7232

ShuffieNet F 9.1354 | 0.8425 | 0.8421
Codely [ HEI0 | BBS77 | 08528 | 08477

10 | 115070 [ 0.7346 | 0.7407

70 192306 | 0.8380 | 0.8414

Table 2: 2AFC Similarity Test. How well metric decisions conform with human assessment of
image triplets .

SqueezeNet ResNet18

(fire2_ReLU _exp_3x3) (Res4a_RelU)

F H-10 | L-10 | L-75 | F H-2 L-2 L-80
60.23 | 62.85 | 56.08 | 59.83 | 60.69 | 62.53 | 60.10 | 60.21
VGG-16 AlexNet

(ReLLU3.2) (ReLU4)

F H-5 L-5 L-50 | F H-2 L-2 L-75
59.97 | 60.86 | 58.28 | 59.41 | 64.62 | 63.38 | 61.30 | 62.35
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5.2 2AFC SIMILARITY TESTS

In the 2AFC test, two distorted images are shown to an observer and he/she is asked to rate which
one is closer to the ground truth, in perceptual appearance. This process is repeated for multiple
image triplets and observers per-triplet to construct a data-set called the Berkley-Adobe Perceptual
Patch Similarity Data-set (BAPPS) (Zhang et al.|(2018))). Objective metrics such as the one in Eq.
1 are thereafter evaluated to see how well they conform to the pair-wise human judgment. For
example, in an image triplet, let Xg and x; be two distorted versions of the ground truth image xg
that are shown to 5 human observers, 4 of which judge xg to be closer to xg, as opposed to x; being
closer to xg. If an objective metric evaluates Xg to be closer to the ground truth, it will get an 80%
credit which in the opposite case would be 20%.

The BAPPS data-set contains images with distortions such as super-resolution, frame-interpolation
and deblurring, which do not have subjective DMOS data-sets available online. Therefore, as a
secondary experiment, we perform a 2AFC test on super-resolution, frame-interpolation and video-
deblurred frame images in the BAPPS data-set with Eq. 1 for different channel subsets defined in
Section. 5. In order to verify our hypothesis, we will show that subsets that contain channels with
higher PE, deliver better perceptual quality features.

6 RESULTS AND DISCUSSIONS

Table 1 quantifies the correlation of Eq. 1 with DMOS for different subsets of channels, constructed
on the basis of our described attributes, as explained in Section 5. Table 1 validates our hypothesis
that within a CNN layer, channels which have higher PE (Eq. 4) deliver better perceptual quality
features. It must be reminded that higher LCC and SROCC indicate better correlation of Eq. 1
with human ability to discern perceptual differences (DMOS). It can be observed that very small
proportions (2%-10% of total) of channels with the highest PE, deliver better perceptual quality
features compared to a much higher proportion (50%-90% of total) of channels having lower PE.
Furthermore, in a majority of cases, a small proportion of channels that have our described attributes
(higher PE), perform even better than the complete set of channels in the layer. This implies that our
proposed attributes are indeed important characteristics that make learned deep CNN representations
good perceptual quality features.

Table. 2 shows the results of our secondary 2AFC similarity test on the super-resolution, frame-
interpolation and video-deblurring distorted images in the BAPPS data-set. It can been seen that
yet again, similar to the conclusion in the primary QQA experiment, the subsets with channels
having higher PE are better perceptual quality features compared to even much larger subsets having
channels with lower PE.

7 FUTURE WORK

We have proposed a model to explain and interpret which channels in pre-trained image classification
CNN s deliver better perceptual quality features. The model may be used to improve the use of deep
representations as perceptual quality features by helping in feature selection for IQA methods such
as (Bosse et al.|(2017)) and maybe designing channel attentive mechanism to improve the perceptual
loss (Johnson et al.| (2016)). The model may also be reference for learning better perceptual quality
feature representations which may benefit a wide variety of applications. Furthermore, the model
may be enhanced to include more psychophysical factors such as eccentricity etc. Another possible
application may be CNN-based image compression where prior knowledge of the potential efficacy
of different channels may help efficient perceptual compression of redundant image data.

8 CONCLUSIONS

Deep CNN representations of pre-trained image classifications CNNs have been popularly used as
perceptual quality features for perception orientated applications such as CNN based quality assess-
ment, image/video super-resolution and many image-to-image translation problems. In this paper,
as a novel and first effort, we have linked basic human visual perception models to pre-trained deep
CNN representations in order to explain and interpret them as perceptual quality features. Based on
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masking characteristics in human visual perception, we formulate attributes of channels in different
layers of pre-trained networks, and experimentally demonstrate that the attributes are important char-
acteristics that make some deep CNN representations better perceptual quality features compared to
others.
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A GRATING GENERATION

In this section, we present details behind the generation of sinusoidal gratings of different spatial
frequencies.

The contrast sensitivity function is expressed on the domain of spatial frequency in cycles per degree
(cyc/deg). The cycles per degree express the number of sine cycles captured by the observer per unit
degree of observation. Obviously, the distance of viewing and dimensions of the screen play an
important part in this measurement.

We essentially generate gratings in the computer simulation in cycles per pixel. Let the display
screen being used in the experiment have a height "4’ inches and resolution 7’ pixels per inch. The
optimal viewing distance in psychovisual experiments should satisfy a function called the PVD (42
(2002)). The PVD is a function that expresses the optimal ratio of viewing distance to the height of
the display screen. The optimal viewing distance ’d’ for the screen with height "4’ can be calculated
using the PVD.

The transformation between cycles/degree and cycles/pixel is

cycles  cycles  degrees

®)

pizel  degree pizel
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Where ixels 180
cli)eg/ree T axdxr ©)
Therefore,
cycles  cycles —mxdxr (10)

pizel  degree 180

We have tested with a number of different display systems of SD, 2K and 4K resolutions. Consider-
ing that the PVD takes the viewing angle into account, the changes in the resultant spatial frequencies
of the gratings are small and insignificant. Therefore, it can be concluded that the choice of display
system has a negligible effect on the experiment.

For the generation of grating with fixed spatial frequency and varying orientation, the experimental
setup is the same.

B ADDITIONAL NETWORKS

We demonstrate the validity of our hypothesis for other pre-trained image classification CNNs as
well. These networks include:

e GoogleNet (Szegedy et al.|(2014))
e MobileNet-v2 (Sandler et al.| (2018))
e ResNet-18 (He et al.|(2015))

It can be seen in Table 3 that our hypothesis regarding important attributes is valid for these ad-
ditional CNNs as well. Small proportions of channels (H-(5-10)) with higher PE (Eq. 4) deliver
much better perceptual quality features compared to a much higher proportion of channels with
lower PE (H-(45-80)) and even the complete set of channels in the layer (F). A scatter plot of some
correlations, shown side by side is depicted in Fig. 5.

C ADDITIONAL EXPERIMENT

We have included an additional experiment with the aim to demonstrate that our work and experi-
mental analysis techniques (Objective Quality Experiments) are generalizable to practical imaging
problems. The experiment will be an x4 CNN based super-resolution task. However, a little back-
ground on the perception-distortion trade-off is necessary before proceeding.

C.1 PERCEPTION-DISTORTION TRADE-OFF

It is a known fact that traditional distortion metrics such as PSNR and SSIM are not well correlated
with perceptual quality and the distortion measured by PSNR and SSIM for a degraded image in-
dicates the net deviation from its reference image. Many different images of different perceptual
qualities may have a same distortion with respect given reference. Perceptual quality, on the other
hand, is a no-reference quantification of how natural an image appears (conformity with natural im-
age statistics). This is why objective distortion measures such as PSNR and SSIM do not necessarily
account for perceptual quality. Keeping in view the recent interest in perception-oriented imaging
applications, to quantify no-reference perceptual quality, a combination of the metrics such as NIQE
(Mittal et al.|(2013))) and NRQM (Ma et al.| (2016)) has been used as a perceptual indicator (PI) in
recent works (Blau et al.|(2018)). The lower the Perceptual Index (Eq.11), the better the perceptual
quality of an image.

PI(I) = 3((10 ~ NRQM(I;)) + NIQE(T,,)) an

The work of (Blau & Michaeli (2018))) demonstrates that distortion and perceptual quality are in
a trade-off relation and this trade-off is the correct measure for quantifying the perceptual efficacy
of image restoration algorithms as explained in (Blau et al.[(2018))). Consider Eq.(12), a standard
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Table 3: Objective Quality Assessment Test. The correlation of metric scores delivered by Eq. 1

(for different feature subsets) with human subjective assessment of perceptual quality, quantified by
DMOS.

Network Layer Feature Set | RMSE | LCC SROCC
conv2. F 9.2730 | 0.8370 | 0.8351
ReLU. H-5 9.1360 | 0.8425 | 0.8364
33 L-5 12.6595 | 0.6654 | 0.6674
GoogleNet L-80 9.6636 | 0.8218 | 0.8203
inception._ F 10.2264 | 0.7977 | 0.8061
H-5 9.8592 | 0.8137 | 0.8201
4a-ReLU_
33 L-5 10.8882 | 0.7667 | 0.7750
L-45 10.0326 | 0.8063 | 0.8163
block] F 11.9441 | 0.7099 | 0.7017
expand. H-10 11.6059 | 0.7292 | 0.7256
Rel.U L-10 13.7130 | 0.5884 | 0.5825
MobileNet-v2 L-70 12.7912 | 0.6566 | 0.6505
block3. F 10.1957 | 0.7991 | 0.8063
expand. H-10 9.2423 | 0.8385 | 0.8459
ReLU L-10 13.2810 | 0.6219 | 0.6223
L-70 10.7877 | 0.7716 | 0.7804
F 10.8622 | 0.7680 | 0.7702
Res2a_ H-10 10.0841 | 0.8040 | 0.7898
ReLU L-10 11.6195 | 0.7284 | 0.7339
ResNet-18 L-75 11.2807 | 0.7467 | 0.7549
F 9.1073 | 0.8436 | 0.8611
Res4a_ H-5 9.2559 | 0.8379 | 0.8509
ReLU L-5 10.1132 | 0.8028 | 0.8072
L-75 9.3484 | 0.8344 | 0.8518

loss function for CNN based SR, which is defined as a combination of a pixel-wise loss (/1) and the
perceptual loss (I).
Ly=a-Li+(1-0a)- (12)

Increasing « in Eq.(12) will lead to a decrease in distortion (increasing SSIM), which according to
the perception-distortion trade-off, should result in images with lower perceptual quality (higher PI).
Similarly, decreasing « will give more weight to the perceptual loss, which would result in images
with better perceptual quality (lower PI), but lower SSIM.

C.2 X4 SUPER-RESOLUTION EXPERIMENT SETUP

In this experiment, we have used the well known VDSR (Kim et al| (2016))) network trained on
images from the DIV2K data-set. The network was separately trained on two loss functions. The
first being the standard perceptual loss in Eq.(12) and the second a slight modification (Eq.13) based
on our analysis.

Lpy=a-li+(1—a)-ly (13)
where
1 $ k ||k k 2
bo = T mZ_jl wh 1%, (Tow) — %, (Tar) 3 (14)
and
wk = pa(k,m) (15)

T Y (k,m)
Eq.(13) presents a version of a perceptual loss in which the channels are weighted (Eq.14) as per our
defined visual frequency sensitivity (theoretical importance of a channel based a defined attribute).
If our hypothesis is correct, the loss function in Eq.(13) should be able to perform better com-
pared to Eq.(12) in terms of providing a better perception-distortion trade-off for super-resolution.
The results should consequently serve as an additional experiment to reinforce our hypothesis and
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Figure 5: Correlation of metric scores in Eq. 1 with human subjective DMOS shows that the metric
in Eq. 1 with the channel subset H has a much better correlation with DMOS compared to Eq. 1
with the L subset of channels. Each pair shown side by side is for a different network.

demonstrate the transfer-ability of objective quality assessment experiment conclusions to practical
applications. The results should also demonstrate the ability of an independent attribute as an indi-
cator of the perceptual abilities of pre-trained channels. The results are not be intended to deliver
state of the art results, just to verify the generalization of our analysis to practical problems.
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Figure 6: (Eq. 13) improves the perception-distortion trade-off compared to the perceptual loss (Eq.
12) when used for training with different o settings for an x4 SR with the VDSR on the DIV2K
data-set.

C.3 RESULTS

The ReLU4_2 layer of a pre-trained VGG-16 was used for perceptual loss terms in Eq.(12) and
Eq.(13). The experiment was repeated for different o values to analyze the perception-distortion
trade-off delivered by both loss functions. The SSIM and PI reported in Fig.6 are averaged over all
the 100 images in the test-set.

It can clearly be seen in Fig.6 that L,,, in Eq.(13) improves the perception distortion trade-off com-
pared to L, in Eq.(12). The improvement is evident from the fact that the perception-distortion curve
delivered by L, is higher compared to the one delivered by L,, for various « (different points on the
curve correspond to different « in Eq.(12) and Eq.(13)). Therefore, at the same level of distortion
(SSIM), L, is able to generate images with better perceptual quality compared to L.

The result reinforces the validity of the experimental results presented in the main paper and demon-
strate that they have consequence for practical applications such as super-resolution. The results
of this experiment also iterate the fact that conclusions derived from Objective Quality Assess-
ment(OQA) experiments have a consequence for practical image generation problems.
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