
Under review as a conference paper at ICLR 2019

NEURAL RANDOM PROJECTIONS FOR LANGUAGE
MODELLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural network-based language models deal with data sparsity problems by map-
ping the large discrete space of words into a smaller continuous space of real-
valued vectors. By learning distributed vector representations for words, each
training sample informs the neural network model about a combinatorial number
of other patterns. In this paper, we exploit the sparsity in natural language even
further by encoding each unique input word using a fixed sparse random repre-
sentation. These sparse codes are then projected onto a smaller embedding space
which allows for the encoding of word occurrences from a possibly unknown
vocabulary, along with the creation of more compact language models using a
reduced number of parameters. We investigate the properties of our encoding
mechanism empirically, by evaluating its performance on the widely used Penn
Treebank corpus. We show that guaranteeing approximately equidistant vector
representations for unique discrete inputs is enough to provide the neural network
model with enough information to learn –and make use– of distributed represen-
tations for these inputs.

1 INTRODUCTION

Representation learning is integral to a wide range of tasks from Language Modelling (LM) to
speech recognition, or machine translation. Better language models frequently lead to improved
performance on underlying downstream tasks, which makes LM valuable in itself. The goal of
LM is to model the joint probability distribution of words in a text corpus. Models are trained by
maximising the probability of a word given all the previous words in the training dataset:

P (w1, . . . , wN) =

N∏
i=1

P (wi|hi),

where wi is the current word and ci = (w1, · · · , wi−1) is the current word history or context.
A Markov assumption is usually used as approximation: instead of using the full word history as
context, the probability of observing the ith wordwi is approximated by the probability of observing
it in a shortened context of n−1 preceding words. To train a language model under this assumption,
a sliding window (wi, ci) of size n is applied sequentially across the textual data. Each window is
also commonly referred to as n-gram.

Neural Network Language Models (NNLM) (Bengio et al., 2003) deal with both data sparseness
and generalisation problems, by using neural networks to model the probability distribution for a
word given its context, as a smooth function of learned real-valued vector representations for each
word. Neural networks thus learn a conditional probability function P (wi|ci; θF , θL), where θF is
a set of parameters representing the vector representations for each word and θL parameterises the
log-probabilities of each word based on those learned features. A softmax function is then applied
to these log-probabilities to produce a categorical probability distribution over the next word given
its context. The resulting probability estimates are smooth functions of the continuous word vector
representations, and so, a small change in such vector representations results in a small change in
the probability estimation.

Energy-based models provide a different perspective on statistical language modelling. Energy-
based models such as (Mnih & Hinton, 2007) use neural networks to capture dependencies between

1

Under review as a conference paper at ICLR 2019

variables by associating a scalar energy score to each output configuration. The key difference
from the previously referred approach to NNLM, is that instead of trying to probability of a target
word directly, the models predict the distributed representation for the target word (embedding) and
attribute an energy score to the output configuration of the model based on how close the prediction
is from the actual representation for the target word.

In this paper, we describe an encoding mechanism that can be used with neural network probabilistic
language models to encode each word without using a predetermined vocabulary of size |V |. Each
unique word is encoded using a fixed sparse k− dimensional random vector with k � |V |. These
random features are designed so that the inner products of the original feature space is approximately
preserved (Achlioptas, 2003). Critically, we show that we can achieve results comparable to the
typical NNLM, without learning a unique embedding vector for each word.

2 BACKGROUND AND RELATED WORK

One cornerstone of neural-network-based models is the notion of distributed representation. In a
distributed representation, each entity is represented as a combination of multiple factors. Learning
distributed representations of concepts as patterns of activity in a neural network has been object of
study in (Hinton, 1986). The mapping between unique concept ids and respective vector representa-
tions has been later referred to as embeddings. The idea of using embeddings in language modelling
is explored in the early work or Bengio et al. (Bengio et al., 2003). This and similar approaches,
encode input words using a 1-of-V encoding scheme, where each word is represented by its unique
index. The size of the embedding space is thus proportional to the size of the vocabulary, making
neural language modelling computationally taxing for large vocabularies.

One straightforward method to deal with large vocabularies in LM, is to consider character or
subword-level modelling instead of words as the input units such as the work in (Kim et al., 2016).
Another motivation behind this approach, is the fact that word-based models often fail to capture
regularities in many inflectional and agglutinative languages. In this paper we focus on word-based
modelling, but the proposed encoding mechanism can be incorporated in models that use for exam-
ple morphemes instead of words as inputs.

Another difficulty with building neural language models lies in the fact that outputting probability
distributions require explicit normalisation: we need to consider the output probabilities for all words
in the vocabulary to compute log-likelihood gradients. Solutions to this problem include structuring
the vocabulary into a tree, speeding-up word probability computations (Morin & Bengio, 2005),
or approximating the log-likelihood gradient using approaches like Noise Constrastive Estimation
(NCE) (Mnih & Teh, 2012). In order to analyse the predictive capability of our proposed models,
we will use fully normalised models. This means we are still dependent on a known vocabulary to
train the model. The normalisation requirements can be alleviated using techniques such as the ones
previously mentioned, but, this will be the subject for future explorations.

Exploiting low-dimensional representations for structures in high-dimensional problems has become
a highly active area of research in machine learning, signal processing, and statistics. In summary,
the goal is to use a low-dimensional model of relevant data in order to achieve, better prediction,
compression, or estimation compared to more complex ”black-box” approaches to deal with high-
dimensional spaces (Hegde et al., 2016). In particular, we are interested in the compression aspect
of these approaches. Usually, exploiting low-dimensional structure comes at a cost: incorporating
structural constraints into a statistical estimation procedure often results in a challenging algorithmic
problem but neural network models have been notoriously successful at dealing with these kind of
constraints.

The use of random projections as a dimensionality reduction tool has been extensively studied be-
fore, especially in the context of approximate matrix factorisation –the reader can refer to (Halko
et al., 2011) for a more in depth review of this technique. The basic idea of random projections as
dimensionality reduction technique comes from the work of Johnson and Lindenstrauss, in which
it was shown that the pairwise distances among a collection of N points in an Euclidean space
are approximately maintained when the points are mapped randomly to an Euclidean space of di-
mension O(logN). In other words, random embeddings preserve Euclidean geometry (Johnson &
Lindenstrauss, 1984).

2

Under review as a conference paper at ICLR 2019

Random projections have also been used in multiple machine learning problems as a way to speed-
up computationally expensive methods. Examples include the use of random mappings to accelerate
the training of kernel machines (Rahimi & Recht, 2008). In (Papadimitriou et al., 2000), random
projections are used as a first step for Latent Semantic Analysis (LSA), which is essentially a matrix
factorisation of word co-occurrence counts. A similar approach is followed in (Kaski, 1998): a
random mapping projection is applied to document vectors to reduce their dimensionality before an
unsupervised clustering algorithm is applied these vectors. The random mappings we use in this
paper, are motivated by the work in (Achlioptas, 2003), which showed that a random projection
matrix can be constructed incrementally using a simple sparse ternary distribution.

In this paper, we focus on exploring simple feedforward neural network architectures instead of
more complex and large recurrent neural network models such as (Jozefowicz et al., 2016). This
will allow us to iterate quickly on experiments, and better understanding the effects of random
projections on network performance. As a starting point to build a baseline model, we chose an
architecture similar to (Bengio et al., 2003) along with the the energy-based formulation in (Mnih
& Hinton, 2007). We chose this approach because it gives us one of the simplest forms of a neural
language model. Furthermore, in the future, the implementation of log-likelihood approximations
such as NCE becomes straightforward under this formulation.

3 MODEL DESCRIPTION

This section describes our baseline neural language model, along with our alternative formulation
using a random projection encoding. The main idea behind the baseline model is to use a neural
network to learn lower-dimensional representations for words, while learning a discrete probability
distribution of words, similarly to (Bengio et al., 2003; Mnih & Hinton, 2007). While the baseline
model uses a 1-of-V vector to represent each input word, and a |V |×m embedding projection layer;
the neural random projection model encodes each word using a random sparse k − dimensional
vector and k ×m embedding layer.

3.1 RANDOM INPUT ENCODING

The distributed representations or embeddings in our model are k ×m subspace, with k << |V |.
A representation for each word as learned by the neural network is the linear combination of (s ×
m)-dimensional basis where s is the number of non-zero entries for each vector. Each unique word
is assigned a randomly generated sparse ternary vector we refer to as random index vector. Random
indices are sampled from the following distribution with mean 0 and variance 1:

ri =

{
+1 with probability α/2
0 with probability 1− α
−1 with probability α/2

(1)

where α is the proportion of non-zero entries in the random index vector. While similar to the
distribution proposed in (Achlioptas, 2003; Kanerva et al., 2000), we use very sparse random vectors
and no scaling factor. Since the input space is an orthogonal unit matrix, the inner product between
any two random vectors (ri, rj) is expected to be concentrated at 0. The motivation for this is to
make any discrete input indistinguishable from any other input in terms of distance between them.
We will use s to refer to number of non-zero entries for randomly generated index vectors. This
means that for s = 2 we have exactly one entry with value 1, one with value−1 and all the rest have
value 0. Figure 1 shows the distribution of inner products between randomly generated vectors with
different numbers of non-zero entries.

3.2 BASELINE MODEL

In order to assess the performance of our added random projection module, we build a baseline
model without random projections. The architecture for this model is based in the one in (Bengio
et al., 2003) but instead of predicting the probability of each word directly we use the energy-based
definition from Mnih’s work (Mnih & Hinton, 2007). The baseline model learns to predict the

3

Under review as a conference paper at ICLR 2019

−4 0 4

non−zero entries

2

8

16

32

64

(a)

−5 0 5

k

4000

3000

2000

1000

(b)

Figure 1: Inner product distribution for different number of non-zero entries s ∈ {2, 8, 16, 32, 64}
and k = 1000 (1a), and different random index dimensions k aggregated by s (1b).

feature vector (embedding) for a target word along with a probability distribution for all the known
words conditioned on the learned feature vectors of the input context words.

The baseline language model in figure converts each word into a vector of real-valued features using
a feature lookup table F . The goal is to learn a set of feature vectors in F that are good at predicting
the feature vector for the target word wn. Each word in a context of size n− 1 is converted to n− 1
m-dimensional feature vectors that are then concatenated into a (n − 1) ×m vector and passed to
the next layer h that applies a non-linear transformation:

hj = σ (Whf + bh) (2)

where f is a vector of n− 1 concatenated feature vectors, b is a bias for the layer h and σ is a non-
linear transformation (e.g. sigmoid, hyperbolic tangent, or rectifier linear unit (ReLU)). We found
ReLU units f(x) = max(0, x) to perform well and at an increased training speed, so we use this
transformation in our models. The result of the non-linear transformation in h is then passed to a
linear layer ŷ that predicts the feature vector f̂n for the target word wn as follows:

ŷn =Wŷh+ bŷ (3)

The energy function E is defined as the dot product between the predicted feature vector f̂n, and the
actual current feature vector for the target word fn:

En = f̂Tn fn (4)

To obtain a word probability distribution in the network output, the predicted feature vector is com-
pared to the feature vectors of all the words in the known dictionary by computing the energy value
(equation 4) for each word. This results in a set of similarity scores which are exponentiated and
normalised to obtain the predicted distribution for the next word:

P (wn|w1 : n− 1) =
exp(En)∑|V |
j exp(Ej)

(5)

The described baseline model can be though of as a typical feedforward model as defined in (Bengio
et al., 2003) with an added linear layer ŷ with dimension m. Furthermore, instead of using two dif-
ferent sets of embeddings to encode context words and compute the word probability distributions,
we learn a single set of feature vectors F that are shared between input and output layers to compute
the energy values.

4

Under review as a conference paper at ICLR 2019

3.3 MODEL WITH RANDOM PROJECTIONS

We incorporate our random projection encoding into the previously defined energy-based neural
network language model following the formulation in (Mnih & Hinton, 2007). We chose this for-
mulation because it allows us to use maximum-likelihood training and evaluate our contribution in
terms of perplexity. This makes it easier to compare it to other approaches that use the same intrin-
sic measure of model performance. It is well known that computing the normalisation constant (the
denominator in equation 5) is expensive, but we are working with relatively simple models, so we
compute this anyway.

Having defined the baseline model, we now extend it with a random projection lookup layer. The
overview of the resulting architecture can be seen in figure 2.

w1

w2

wn -1

r1

r2

rn - 1

∑

∑

∑

...

h ŷ

σ

f1

f2

fn-1

En

wn ∑

fn
^

rn

R

L
o
o
k
u
p

fn

x

F

L
o
o
k
u
p

Figure 2: Neural random projection feedforward energy model.

The NRP model uses random index lookup table that generates a new random index for each new
word that it encounters. Tho get the feature representation for a given word wi we multiply its
k − dimensional random index by the k ×m feature matrix F . The resulting vector representation
for a word wi is given by the sum of all the feature vectors extracted for each non-zero entry in the
random index. Only the rows corresponding to the non-zero entries are modified during training
for each input sample. This adds to the computational complexity of the first layer since we are no
longer selecting a single feature vector for each word, but it is still quite efficient since the random
indices are sparse. All models sare trained using a maximum likelihood criterion:

L =
1

T

∑
t

logP (wt, wt − 1, . . . , wt − n+ 1; θ) (6)

Where θ is the set of parameters learned by the neural network in order to maximise a corpus
likelihood.

4 EXPERIMENTAL SETUP

We evaluate our models using a subset of the Penn Treebank corpus, more specifically, the portion
containing articles from the Wall Street Journal. We use a commonly used set-up for this corpus,
with pre-processing as in (Mikolov et al., 2011), resulting in a corpus with approximately 1 million
tokens (words) and a vocabulary of size |V | = 10K unique words The dataset is divided as follows:
sections 0-20 were used as training data (930K tokens), sections 21-22 as validation data (74K
tokens) and 23-24 as test data (82K tokens). All words outside the 10K vocabulary were mapped to a
single token< unk >. We train the models by dividing the PTB corpus into n-gram samples (sliding
windows) of size n. All the models reported use 5-grams. To speed up training and evaluation, we
batch the samples in mini-batches of size 128 and the training set is randomised prior to batching.
Furthermore, in these experiments the n-grams do not cross sentence boundaries.

We train the models by using the cross entropy loss function and evaluate and compare the models
based on their perplexity score:

PPL = exp

(
− 1

N

∑
w1:n

logP (wn|w1:n−1)

)
(7)

5

Under review as a conference paper at ICLR 2019

●

●

●

●

●

●
●

●
● ●

● ●
● ●

● ●
● ● ●

baseline
140

160

175

200

225

250

275

300

325

350

375

400

420

2500 5000 7500 10000

RI dimension (k)

A
vg

. P
er

pl
ex

ity

embedding dim.
● 128

256

512

1024

(a)

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●baseline150

250

350

450

550

650

750

850

950

1050

1150

1250

2500 5000 7500 10000

RI dimension (k)

A
vg

. P
er

pl
ex

ity non−zero values
●● {−1,+1} s = {2,8,16}

{+1} s = {1}

{+1} s = {2,8,16}

(b)

Figure 3: Average test perplexity for multiple embedding sizes m ∈ {128, 256, 512, 1024} and
number of hidden units set to h = 256: (3a) results aggregated by number of non-zero entries s ∈
{2, 8, 16}; (3b.) comparison between ternary random index vectors {+1, 0, 1}, binary random index
vectors, and random index vectors with single entry {+1} using an embedding size of m = 128.

where the sum is performed over all the n-gram windows of size n. We train our models using
Stochastic Gradient Descent (SGD) without momentum. In early experiments, we found that in our
setting, SGD produced overall better models and generalised better than other adaptive optimisation
procedures. We use a step-wise learning rate annealing: the learning rate is kept fixed during a
single epoch, and multiplied by 0.5 every time the validation perplexity increases at the end of a
training epoch. If the validation perplexity does not improve, we keep repeating the process until
3 epochs (patience parameter) have passed without improvement (early stop). We consider that the
model converges when it stops improving and the patience parameter reaches 0

We used Rectifying Linear Units (ReLU) units (He et al., 2015) as non-linear activations for the
hidden layers. Notwithstanding their good performance, ReLU units caused gradients explode easily
during training. To mitigate this, we added local gradient norm clipping to the value 1.0.

Dropout regularisation (Srivastava et al., 2014) is applied to all weights including the feature lookup
(embeddings). In early experiments, we used a small dropout probability of 0.05 following the
methodology in (Pham et al., 2016). We later found higher dropout probability values to give us
better performance, when used in conjunction with larger embedding and hidden layer sizes.

All network weights are initialised randomly on a range [−0.01, 0.01] in a random uniform fashion.
Bias values are initialised with 0. We found it beneficial to initialise the non-linear layers with the
procedure described in (He et al., 2015).

5 EXPERIMENTAL RESULTS

Initial experiments explored the effects of different random index (RI) configurations in the model
perplexity scores (less is better). In these first experiments, we use a single hidden layer of size h =
256, while the dropout probability is fixed to 0.05. We span three different parameters: embedding
size m ∈ {128, 256, 512, 1024}, RI dimension k ∈ [1000, 10000], and the number of non-zero
entries in the random projections s ∈ {2, 8, 16}.
Figure 3a shows the results for the average test perplexity scores aggregated by the number of non-
zero entries in the RIs. The perplexity score follows an exponential decay as the RI dimension
k increases. From k >= 5000, the perplexity values converge to an approximate range PPL ≈
[170, 180]. Subsequently, we found out that a more aggressive regularisation improves both the NRP
and baseline models. Curiously, but perhaps not surprisingly, the relationship between random index
dimension k and perplexity scores seems to resemble the relationship between random projection
dimension dimension and distance error bounds, for the random projection method described in
(Johnson & Lindenstrauss, 1984).

6

Under review as a conference paper at ICLR 2019

●

●

●

●

●

●

●

●

k = 5000

h dim. = 256

k = 5000

h dim. = 512

k = 7500

h dim. = 256

k = 7500

h dim. = 512

256 512 256 512 256 512 256 512

130

140

150

160

m dim.

P
er

pl
ex

ity dropout prob.

0.25

0.4

(a) perplexity distribution

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ●

baseline100

200

300

400

500

2500 5000 7500 10000

RI dimension (k)

A
vg

. P
er

pl
ex

ity

model
●

●

baseline

nrp

(b) average test perplexity

Figure 4: (4a) Distribution of test perplexities for NRP model with h ∈ {256, 512} and dropout
p ∈ {0.25, 0.4}; (4b) average test perplexity for best NRP and baseline configurations (table 1) with
m = h = 512 and dropout p = 0.4 for multiple values of k.

In another experiment, we looked at whether or not there was a difference in performance between
NRP models using ternary random indices (with values ∈ {−1, 0, 1}), and models using binary
random indices (with values ∈ {0, 1}). We also wanted to find if redundancy (having more non-zero
entries) is key to the NRP model performance. To answer this second question, we tested models
that used random indices with a single non-zero value. In this setting, different words can share the
same feature vector. This increased collision chance is problematic as we can see in figure 3b, where
we shows the results for this experiment. As expected, having a single non-zero positive entry s = 1
yields worse results than any other configuration because the any collision between random indices
makes so that the network cannot distinguish features of the colliding words.

Having just two non-zero entries s >= 2 is enough to improve the model performance in terms
of perplexity. It seems that using binary and ternary random indices yields similar results, with
binary indices displaying an increased variance for lower values of random index dimension k. We
think this increase in variance is due to the fact that lower-dimensional binary random indices have
a higher probability of collisions and thus disambiguation becomes harder to perform. As for why
the results are similar, we should note that the near-orthogonality properties of random indices are
still maintained whether one uses binary or ternary representations. Moreover, the feature layer (or
embeddings) is itself initialised with symmetric random weights, having equally distributed positive
and negative values, so the symmetry of the input space should not impact on the model performance
too much for larger dimensions.

5.1 MODELS WITH BETTER REGULARISATION

After additional testing and fine-tuning, we found models with a better performance using a higher
dropout probability along with larger hidden layer and embedding sizes (see figure 4a and table
1). We should mention that even with half the embedding parameters (using random indices of
dimension k = 5k to encode a vocabulary of 10k words), we get reasonably good models with
test perplexities of 145 to 150 using only, 1.6 to 1.9 million parameters. We can compare this with
the test perplexity scores of 109 to 149, obtained on the same dataset in (Pham et al., 2016) with
similar models and 4.5 million parameters. The comparison is not really fair in this case because
the authors use larger n-gram windows, but we can still see that our baseline yields reasonably good
results. This makes our relatively simple language model, a good starting point to study the effect
of random projections in this particular task.

Additional tests showed that we cannot go much further with dropout probabilities, so we use a value
of 0.4, since it yielded the best results for both the baseline and the models using random projection
encoding. One weakness in our methodology is that hyper-parameter exploration was done based on
grid search and intuition about model behaviour –mostly because each model run is very expensive
even for our simple architectures. In future work this methodological aspect will be improved by
replacing grid search by a more appropriate method such as Bayesian Optimisation.

7

Under review as a conference paper at ICLR 2019

Finally, we analyse the behaviour of the NRP model when varying the random projection dimension
k, and compare it with the best baseline found. The results can be seen in figure 4b. As with our early
experiments, the perplexity decays exponentially with the increase of the random index dimension k.
One key difference is that this decay is much more accentuated and model test perplexity converges
to values closer to the baseline. In summary, random projections seem to be a viable technique
to build models with comparable predictive power, with a much lower number of parameters and
without the necessity of a priori knowledge of the dimension of the lexicon to be used. Proper
regularisation and model size tuning was key to achieve good results. NRP models are also more
sensitive to hyper-parameter values and layer sizes than the baseline model. This was expected,
since the problem of estimating distributed representations using a compressed input is considerably
harder than using dedicated feature vectors for each unique input.

Table 1: Average test perplexity and epochs for best baseline and NRP models with multiple values
of random index/input vector dimension k embedding sizem,hidden units h and dropout probability
drop. The number of non-zero entries in the random projections is set fo 4. #p is the approximate
number of trainable parameters in millions.

PPL Epoch
k m h #p drop Avg. SD Avg. SD
7, 500 256 256 2.2 .25 136 0.5 22 1.3

.40 140 1.9 26 2.9
512 2.5 .25 132 0.3 21 0.8

.40 133 1.6 24 2.3
512 256 4.4 .25 137 0.8 21 0.8

.40 137 0.8 24 1.7
512 5.1 .25 137 0.8 18 1.8

.40 129 1.2 23 1.5
baseline
10, 000 512 512 6.4 .40 118 0.4 22 1.3

6 CONCLUSION AND FUTURE WORK

We investigated the potential of using random projections as an encoder for neural network models
for language modelling. We showed that using random projections allows us to obtain perplexity
scores comparable to a model that uses an 1-of-V encoding, while reducing the number of necessary
trainable parameters. Our goal is not to find the best possible neural language model, but to show
that we can achieve viable results with random projections and a reduced embedding space. We also
introduced a simple and reproducible baseline on the small, but widely used Penn Treebank dataset,
with qualitatively comparable results with the existing literature. Our baseline model combined
the energy-based principles from the work in (Mnih & Hinton, 2007) with the simple feedforward
architecture proposed in (Bengio et al., 2003), using a more recent regularisation technique (dropout
(Srivastava et al., 2014)) and activation units (ReLU).

Understanding how model performance is bounded by inner product distortion errors caused by ran-
dom projections still warrants further investigations. Nevertheless, one exciting future direction, is
to study the feasibility of using log-likelihood approximation techniques (such as Noise Constrastive
Estimation (NCE)) to models using random projections, eliminating the need for a known vocab-
ulary completely from density estimation problems. This would allow us to trade an acceptable
amount of error for the capacity of training models in an incremental fashion.

8

Under review as a conference paper at ICLR 2019

REFERENCES

Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary
coins. Journal of computer and System Sciences, 66(4):671–687, 2003.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A neural probabilistic
language model. The Journal of Machine Learning Research, 3:1137–1155, 2003.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53
(2):217–288, 2011.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of IEEE ICCV-15, pp. 1026–
1034, 2015. doi: 10.1109/ICCV.2015.123.

Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. Fast recovery from a union of subspaces. In
Advances in Neural Information Processing Systems, pp. 4394–4402, 2016.

Geoffrey E Hinton. Learning distributed representations of concepts. In Proceedings of the eighth
annual conference of the cognitive science society, volume 1, pp. 12, 1986.

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189):1, 1984.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring the
Limits of Language Modeling. arXiv preprint arXiv:1602.02410, 2016.

Pentti Kanerva, Jan Kristofersson, and Anders Holst. Random indexing of text samples for latent
semantic analysis. In Proceedings of the 22nd annual conference of the cognitive science society,
2000.

Samuel Kaski. Dimensionality reduction by random mapping: fast similarity computation for clus-
tering. In Neural Networks Proceedings, volume 1, pp. 413–418, May 1998.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. Character-aware neural language
models. In AAAI, 2016.

Tomáš Mikolov, Anoop Deoras, Stefan Kombrink, Lukáš Burget, and Jan Černockỳ. Empirical
evaluation and combination of advanced language modeling techniques. In INTERSPEECH-11,
2011.

Andriy Mnih and Geoffrey Hinton. Three new graphical models for statistical language modelling.
In Proceedings of ICML-07, pp. 641–648, 2007.

Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural probabilistic
language models. arXiv preprint arXiv:1206.6426, 2012. URL http://arxiv.org/abs/
1206.6426.

Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. In
Proceedings of the international workshop on artificial intelligence and statistics, pp. 246–252,
2005.

Christos H Papadimitriou, Prabhakar Raghavan, Hisao Tamaki, and Santosh Vempala. Latent se-
mantic indexing: A probabilistic analysis. Journal of Computer and System Sciences, 61(2):
217–235, 2000.

Ngoc-Quan Pham, German Kruszewski, and Gemma Boleda. Convolutional Neural Network Lan-
guage Models. In EMNLP, pp. 1153–1162, 2016.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances in
neural information processing systems, pp. 1177–1184, 2008.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15:1929–1958, 2014.

9

http://arxiv.org/abs/1206.6426
http://arxiv.org/abs/1206.6426

	Introduction
	Background and Related Work
	Model Description
	Random Input Encoding
	Baseline Model
	Model with random projections

	Experimental Setup
	Experimental Results
	Models with better regularisation

	Conclusion and future work

