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ABSTRACT

The recent success of the lottery ticket hypothesis by Frankle & Carbin (2018) suggests that small,
sparsified neural networks can be trained as long as the network is initialized properly. Several follow-
up discussions on the initialization of the sparsified model have discovered interesting characteristics
such as the necessity of rewinding (Frankle et al. (2019)), importance of sign of the initial weights
(Zhou et al. (2019)), and the transferability of the winning lottery tickets (S. Morcos et al. (2019)). In
contrast, another essential aspect of the winning ticket, structure of the sparsified model, has been little
discussed. To find the lottery ticket, unfortunately, all the prior work still relies on computationally
expensive iterative pruning.
In this work, we conduct an in-depth investigation of the structure of winning lottery tickets. Interest-
ingly, we discover that there exist many lottery tickets that can achieve equally good accuracy much
before the regular training schedule even finishes. We provide insights into the structure of these early
winning tickets with supporting evidence. 1) Under stochastic gradient descent optimization, lottery
ticket emerges when weight magnitude of a model saturates; 2) Pruning before the saturation of a
model causes the loss of capability in learning complex patterns, resulting in the accuracy degradation.
We employ the memorization capacity analysis to quantitatively confirm it, and further explain why
gradual pruning can achieve better accuracy over the one-shot pruning. Based on these insights, we
discover the early winning tickets for various ResNet architectures on both CIFAR10 and ImageNet,
achieving state-of-the-art accuracy at a high pruning rate without expensive iterative pruning. In the
case of ResNet50 on ImageNet, this comes to the winning ticket of 75.31% Top-1 accuracy at 80%
pruning rate in only 22% of the total epochs for iterative pruning.

1 INTRODUCTION

Deep Neural Networks (DNNs) achieve superior accuracy in a wide spectrum of applications through the use of
very large and deep models (Goodfellow et al. (2016)). These high-capacity but complex models, however, pose a
tremendous challenge for their deployment, particularly in resource-constrained edge environments. Over the years,
many techniques have been developed to compress the models to a compact counterpart to alleviate the computational
costs. Among these techniques, pruning less important parameters to obtain a compact sub-network has emerged to be a
popular and efficient approach (Cun et al. (1990); Han et al. (2015)). In search of these sub-networks, new intuitions are
also built up for understanding the DNN working mechanism, one example of which is the recently proposed "lottery
ticket hypothesis" by Frankle & Carbin (2018).

The lottery ticket hypothesis states that, once a sub-network is found to match the accuracy of the original neural
network, the sub-network (i.e., lottery ticket) together with its initialized weights can be trained in isolation and still
achieve accuracy comparable to the original network within a similar number of iterations. This conjecture intrigues
discussions on a series of topics, such as the importance of initialization scheme (Liu et al. (2018), Zhou et al. (2019)),
the role of over-parameterization in training (Frankle et al. (2019)) and even the transferability of the "winning ticket"
(S. Morcos et al. (2019)). However, all these discussions start from the point that the winning ticket has been obtained
after painfully long iterative pruning procedures, which often take up to thousands of epochs. When and how a winning
ticket can be found in the course of pruning procedures has not been studied; most of the prior works use a traditional
way of repeated cycles of pruning and retraining, which makes such study less practical.

In this work, we provide insights to find the winning tickets early. We start with an interesting observation that there
exist many lottery tickets that can achieve equally good accuracy much before the regular training schedule finishes.
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This leads to our in-depth investigation of the weight magnitude; we discover that a model saturates early but not too
early under stochastic gradient descent (SGD) optimization. To understand this characteristic of the winning lottery
tickets, we conjecture that pruning a premature model causes the loss of capability in learning complex patterns, leading
to accuracy degradation. We confirm this conjecture with the empirical evidence as well as the quantitative analysis
based on the memorization capacity. Using this analysis framework, we further provide a reasoning behind the success
of the gradual pruning over the one-shot pruning. Based on these insights, we identify the early winning tickets for
various ResNet architectures on both CIFAR10 and ImageNet, achieving state-of-the-art accuracy at a high pruning
rate without expensive iterative pruning. In the case of ResNet50 on ImageNet, this comes to the winning ticket of
75.31% Top-1 accuracy at 80% pruning rate obtained within only 22% of the total epochs for iterative pruning. This
promising outcome not only sheds light on understanding the optimization behavior of the pruned models but also
enables performance gain for fast training of the pruned models.

2 RELATED WORK

The lottery ticket hypothesis was first proposed in Frankle & Carbin (2018) where the presence of a trainable sub-
network that achieves compelling final accuracy with the inherited initial values for the un-pruned connections is
demonstrated. This paper also argued that the initial weight of the original network is essential for maintaining good
accuracy when the model is sparsified. This claim has been extended to the over-parameterized neural networks on the
larger datasets in Frankle et al. (2019) with the notion of "rewinding"; the authors claim that rewinding of the weights
not to the initial values but to the values after a few epochs can stabilize the accuracy of the winning lottery tickets. As
a follow-up work, Zhou et al. (2019) studied the critical components of the lottery tickets such as zeros, signs and the
super-mask. Also, S. Morcos et al. (2019) investigated the transferability of winning tickets obtained in one dataset
to the network of a similar structure for the other datasets. But none of these focused on the structure of the winning
lottery tickets; it involves several repetitions of the full training schedule for iterative pruning and retraining, often
taking hundreds to thousands of epochs. In this work, we demonstrate that many winning tickets can be found in the
early stage of the baseline training schedule, drastically reducing the computational effort to obtain them.

Most work on the lottery ticket hypothesis, including this work, rely on magnitude-based weight pruning for identifying
unimportant weights to be pruned (usually via global sorting). Such an intuitive method was first proposed in Han et al.
(2015) and became popular. Afterwards, more complex pruning methodologies have been presented to improve pruning
performance, such as having different pruning criteria (Li et al. (2017), Wen et al. (2016), Liu et al. (2017)) or different
pruning granularity (Mao et al. (2017), Molchanov et al. (2019)). While these attempts offer insights on training pruned
models, there is little discussion about the interesting interplay between the pruning criteria and the structure of a model
pruned by it. In this work, we reveal that the pruned structure obtained based on the weight magnitude has tangible
impact on the final accuracy, and further propose a way to quantitatively distinguish good structures for pruning.

There have been various strategies to apply pruning to the neural networks. Iterative pruning by Han et al. (2015)
involves several repetition of pruning (with gradual increase of the pruning rate) and retraining. One can increase the
repetition cycles arbitrarily large to achieve good accuracy at high pruning rate; Frankle & Carbin (2018) employed
iterative pruning with hundreds to thousands of pruning epochs to match the baseline accuracy for the challenging
neural networks. On the other hand, gradual pruning introduced by Zhu & Gupta (2017) determines the pruning rate
and frequency via a polynomial equation as a function of the starting and ending epochs as well as the target pruning
rate. Although it provides a systematic pruning schedule, there is lack of discussion about when to start the gradual
pruning. Lastly, Lee et al. (2018) proposes a method of pruning weights at initialization. This method takes most
advantage in performance since a pruned model can be obtained without any expensive retraining procedures. However,
its effectiveness has not been demonstrated for the challenging neural networks on large datasets such as ImageNet. In
contrast, we propose a mechanism to identify the winning lottery ticket early in the course of baseline training so that
we can avoid costly iterative pruning while maintaining the baseline accuracy.

3 STRUCTURE OF EARLY WINNING TICKETS

In this section, we extend the lottery ticket hypothesis by Frankle & Carbin (2018); Frankle et al. (2019) to discuss the
early winning tickets. The lottery ticket hypothesis can be summarized as:
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Figure 1: Extended lottery ticket experiments using ResNet20 on CIFAR10. From the baseline ResNet20 training, weight-magnitude
based pruning is applied at different epoch (columns, labeled as s) to obtain the sparsified structure. Each structure is then rewound
to the weights from another epoch (rows, labeled as v), where v=0 indicates rewind to the initial weight. Lottery tickets emerge much
earlier before the full training ends, achieving matching accuracy compared to the conventional winning ticket, i.e., (s=200,v=200).

for a given network of f(x;w0 �m0) with the initial weight w0 and the mask of all ones m0, there exists a winning
lottery ticket mf where |mf |/|m0| = 1 − p% (p is the pruning rate) and training of f(x;wv �mf ) for 0 < v � f
achieves test accuracy comparable to the baseline f(x;wf �m0).

There are two main components of a winning lottery ticket: the sparsified structure mf and the weight that initializes it,
wv . In the previous work, mf has been obtained only after expensive iterative pruning. We characterize the structure of
the early lottery ticket ms where s� f , then propose a strategy for finding it early.

3.1 EXTENDED LOTTERY TICKET EXPLORATION

Frankle et al. (2019) suggests that a lottery ticket found after a baseline training can achieve the accuracy of the baseline
model if it is initialized with the weight of the baseline model after a few epochs, which is called rewinding. We extend
this exploration toward different structures obtained at different epochs of the baseline training (via magnitude-based
weight pruning).

Fig. 1 shows the validation accuracy after retraining of a ResNet20 model on CIFAR10 pruned at different epochs of its
baseline training. The same learning rate schedule of 0.1 reduced by 10x at epoch 120 and 160 is used for both the
baseline training and retraining, and the total number of epochs is 200. The rows (= v) correspond to the different
rewinding epoch, whereas the columns (= s) correspond to the different epoch that we apply one-shot pruning (pruning
rate= 80%). For example, the validation accuracy along the lottery ticket configurations of (s = 200, v = 0 ∼ 200)
resembles the phenomena of "rewinding" observed in Frankle et al. (2019).

Interestingly, Fig. 1 further demonstrates that the winning tickets emerge at much earlier epochs of the baseline
training; the lottery ticket configurations of (s ≥ 100, v ≥ 5) achieve almost the same accuracy as the accuracy of
(s = 200, v = 200). The accuracy then gradually decreases as s ≤ 80. This result implies two important aspects: 1) a
winning ticket can be found in the middle of the baseline training so that one can avoid expensive iterative pruning used
in the prior work, and 2) the winning ticket, however, does not emerge arbitrarily early in the process of training. In the
following sections, we investigate the characteristics of these early winning tickets. In particular, we focus on their
structure, as the weight initialization is not the major factor provided a proper rewinding.

3.2 ANALYSIS ON WEIGHT MAGNITUDE

As the first step of understanding the characteristics of the early winning tickets, we focus on the important quantity of
pruning, weight magnitude. At pruning, we determine the structure of the sparsified model based on the rank of the
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(a) Per-Layer Weight Stdev. (b) Per-Layer Pruning Rate

Figure 2: (a) Change of the standard deviation of weights (Wstd) in each layer during the training of ResNet20 on CIFAR10. In the
beginning of the training, the weights of different layers change in different rate, dominated by the gradient terms. When the training
evolves, weight magnitude is primarily determined by the interplay between learning rate and weight decay, resulting in parallel
movement of Wstd. (b) Change of per-layer pruning rate over the epochs. Due to regular shift of Wstd at the later epochs of training,
the per-layer pruning rate converges to a saturating point, emerging stable structure for pruning.

weight magnitude (via global sorting). Therefore, the change in the weight magnitude during training has large impact
on the lottery ticket structure.

In Fig. 2a, we measure the standard deviation of weight (Wstd) for each layer in the course of training ResNet20 on
CIFAR10 (note: the mean of weight is typically near zero). The same learning rate schedule is used as above. The first
thing to note is that the change in Wstd has strong correlation with the learning rate change. In particular, different
layers show different rate of change in Wstd when the learning rate is 0.1, but from the second learning rate (after epoch
120), all the weights follow a very similar decreasing trend.

This trend in Wstd can be understood via steps of stochastic gradient descent. From the typical setting of weight update
with momentum and weight decay, we have:

vt+1 = mvt + (λwt + wg,t), wt+1 = wt − ηvt+1. (1)

where wt, wg,t and vt are the weight, gradient and momentum at step t, respectively; m is the momentum factor, η is
the learning rate and λ is the weight decay factor. After n steps,

vt+n = mnvt +

n∑
k=1

(mn−kwg,t+k−1) + λ

n∑
k=1

(mn−kwt+k−1), (2)

wt+n = (1− ηλ)nwt − η
n∑
k=1

((1− ηλ)n−k(mvt+k−1 + wg,t+k−1)). (3)

From this derivation, we can see that the two factors determine the mode of change in Wstd. When learning rate is
high, the gradient terms play the major role in weight update. On the other hand, if the gradient activity becomes low,
e.g., when the learning rate is low and the gradients oscillate around zero, we can further simplify Eq. 3. Assume
that mnvt approaches to zero when n is relatively large, wt+k−1 ≈ wt, and

∑n
k=1((1 − ηλ)n−kwg,t+k−1) and∑n

k=1(mn−kwg,t+k−1) approach to zero as the gradients oscillate around zero, we have vt+i ≈ λwt

1−m . Then wt+n is
approximated as,

wt+n ≈ (1− ηλ)nwt − η
n−1∑
i=0

((1− ηλ)i
mλwt
1−m

). (4)

Note that (1− ηλ)n ≈ 1− nηλ since ηλ� 1 and
∑n−1
i=0 ((1− ηλ)i) ≈ n. Thus,

wt+n ≈ (1− nηλ)wt −
nηλmwt
1−m

= (1− nηλ

1−m
)wt. (5)
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In other words, when the gradient activity is low, the change in Wstd is dominated by the both the learning rate and the
weight decay. As an example, in Fig. 2a, Wstd is decreased with the slope following Eq. 5 when learning rate is low;
Wstd of layer 10 is decreased by 1.5e-3 in 782 updates of CIFAR10 (with λ =1e-4 and m = 0.9), confirming the slope
from Eq. 5.

These two modes governing the change of weight magnitude are critical for understanding the behavior of pruning.
In particular, the interplay between learning rate and weight decay causes the per-layer pruning rate to converge after
enough number of epochs. Fig. 2b shows the pseudo per-layer pruning rate, where we just measure the layer-wise
pruning rate without really pruning out the weights in the model, for the same CIFAR10 training experiment. As the
figure shows, the per-layer pruning rates saturate around epoch 100, indicating that pruning before that would select the
weights based on the premature model.

Moreover, although the weight magnitude is an important factor, we discovered that the ranking of individual weight
does not play a critical role in winning lottery tickets. Specifically, we empirically show that there exist many winning
lottery tickets that are vastly different in terms of its sparse structure mv. Fig. 3 shows the hamming distance of the
sparse structure of the lottery tickets at different configuration (s, v). Note that the two distant lottery tickets (e.g.,
(s = 200, v = 100) and (s = 100, v = 100)) show large hamming distance of 0.159 (where x/y = 200/100) while
achieving the equally good accuracy as shown in Fig. 1, indicating that the ranking of the weights itself can not explain
the quality of the structure of the lottery ticket.

Figure 3: The hamming distance of the sparse structure of the lottery tickets at different configuration for ResNet20 on CIFAR10.
x/y denotes the distance between (s = x) and (s = y). A large distance between two lottery tickets with equally good accuracy
suggests the existence of many winning tickets.

3.3 UNDERSTANDING IMPACT OF PRUNED STRUCTURE

The weight magnitude analysis motivates us not to prune a model too early. It is also implied that a distance-based
metric might not reveal the winning structure of the model at different epochs. To understand the early winning
structures, we further investigate the impact of the sparsified structure on the final accuracy. Considering that a highly
pruned network is likely to have limited learning capability, we make a conjecture that the accuracy degradation of a
pruned model is due to the loss of capability for learning complex pattern if pruned too early. Recently, Li et al. (2019)
reveals that the training behavior of a sufficiently over-parameterized model with non-linearity highly depends on the
learning rate schedule, where a model tends to memorize the complex patterns when a small learning rate is applied
while learning simple patterns with a large learning rate. To validate this claim in the context of pruning, we construct
an experiment where a model is pseudo-pruned at every epoch of the baseline training then retrained with large or small
learning rate for just one epoch. For the pseudo-pruned-then-retrained (PPR) model at each baseline epoch, we measure
the validation accuracy recovered from the retraining.

Fig.4 shows the result of this experiment on CIFAR10 ResNet20. When it is retrained with the large retraining learning
rate (= 0.1), in just 1-epoch retraining, the PPR models from all the baseline epochs achieve the accuracy matching
with the baseline accuracy. This indicates that those pruned models maintain the capability of learning the simple
patterns. Whereas, when the small retraining learning rate (= 0.01) is used, the accuracy of the PPR models pruned at
later epochs (epoch 100-200) is higher than the accuracy of the models from earlier epochs (epoch 20-60). This reveals
that the PPR models from different epoch exhibit varying capability of learning complex patterns. In particular, the
accuracy of the PPR models increases until around 100 epoch of the baseline training, then it saturates. Note that this
coincides with the epoch when the early winning tickets emerges in Fig. 1.

Based on this observation, we hypothesize that the models pruned at 100 epoch of the baseline training or later will
preserve the capability of learning complex patterns. To validate this hypothesis, we conducted the memorization test
proposed by Boo et al. (2019), where a model is trained with training data of varying size with the randomized labels.
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Figure 4: The pseudo-pruned-then-retrained (PPR)
models for CIFAR10 ResNet20, which exhibit increas-
ing capability of memorizing the complex patterns over
the epochs. Validation accuracy for the baseline training
and validation accuracy after pruning without retraining
are also included for comparison.

Figure 5: Left: Memorization capacity (i.e., training accu-
racy) of the models pruned at 3 different epochs. The models
pruned at epoch 120 and 200 show almost identical memoriza-
tion capacity, whereas the model pruned at epoch 20 exhibits
lower memorization capacity. Right: Memorization capacity of
models pruned at different epochs (training data size = 15000).

A model has "high memorization capacity" if it achieves high training accuracy for a large data size. Fig. 5 (left) shows
the training accuracy of the models pruned at different epochs, measured from 10 independent simulations (the average
capacity shown as solid lines, and min and max shown as the shaded regions). As the training data size increases,
the memorization capacity decreases. The model pruned too early (i.e., at epoch 20) suffers higher degradation in the
memorization capacity compared to the models pruned at later epochs (i.e., at epochs 120 or 200). Also, Fig. 5 (right)
shows that those models pruned at later than 100 epochs (i.e., the early winning tickets) exhibit similar memorization
capacity. This result not only confirms our conjecture on the impact of pruned structure to the capability of learning
complex patterns, but also leads us to employ the PPR accuracy check as a computationally reasonable heuristic to
discover the early winning tickets.

3.4 UNDERSTANDING GRADUAL PRUNING

Gradual pruning is a popular pruning approach that applies pruning gradually over a period of training. For example,
gradual pruning proposed by Zhu & Gupta (2017) provides a systematic way to schedule iterative pruning as follows:

st = sf + (si − sf )

(
1− t− t0

n∆t

)3

, (6)

where sf and si are the final and initial sparsity, and t is the time when pruning is applied. Eq. 6 determines how much
sparsity is applied at a certain time step t. But it is still a user-hyper-parameter to decide when t0 or how often ∆t apply
pruning. Based on the insights we discussed in the previous section, we explain why gradual pruning helps to obtain
better lottery tickets.

The reasoning behind the gradual pruning is that the model can be changed graciously if the pruning is applied gradually.
In terms of the early winning ticket analysis, there are two factors playing the critical role: 1) by applying low pruning
rate in the beginning, the structure found at that pruning level can preserve the memorization capacity better, 2) once
pruning is applied, the remaining weights of the pruned model is updated via SGD, granting a chance for the pruned
model to adopt its weights toward better accuracy. Thanks to these two factors, a structure with better memorization
capacity can be found when the increased pruning rate is applied next time.

Table 1 confirms this explanation using the CIFAR10 ResNet20 example. In this experiment, we perform the memoriza-
tion test for the 4-step gradual pruning as well as four 1-step pruning at the corresponding epoch for comparison. The
gap in memorization capacity is maintained across the different epochs, demonstrating that the memorization capacity
is maintained thanks to the gradual application of pruning and the evolution of weights after pruning. This suggests a
strategy for gradual pruning where 1) we can use gradual pruning to reduce the loss of capability in learning complex
patterns, and 2) by applying a smaller pruning rate in the beginning, we can start pruning early and finding the winning
lottery tickets faster. The benefit of this strategy combining gradual pruning with the early winning tickets will be
demonstrated in Sec. 4.
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Table 1: Memorization capacity (i.e., train accuracy) comparison between 1-shot and 4-shot pruning.

Epoch 120 160 200 240 Unit

Pruning rate 40 60 70 80 %

1-shot pruning 79.72 66.88 59.81 50.46 %

4-shot gradual pruning 79.72 68.83 61.21 51.45 %

4 EXPERIMENTS: FINDING WINNING TICKET EARLY

In this section, we demonstrate our strategy of finding the early winning tickets over popular neural networks on
CIFAR10 and ImageNet. The detail experimental setup is described in Appendix A. We perform the lottery ticket
experiments of Sec. 3.1 for both one-shot and gradual pruning with the pruning rate of 80%.We also conduct the PPR
accuracy check of Sec. 3.3 to predict from which epoch the early winning ticket can be found. By comparing the two
results, we demonstrate that the proposed heuristic for finding early winning tickets works robustly across the networks
and the datasets. Furthermore, we showcase our gradual pruning strategy by comparing the performance in terms of the
accuracy and the required pruning epochs with the existing lottery ticket approaches.

4.1 EXPERIMENTS ON CIFAR10

Table 2 summarizes the lottery ticket experiments of ResNet20 and ResNet56 on CIFAR10 dataset. In case of one-shot
pruning, the winning tickets can be found from epoch 100. In case of gradual pruning, the gradual pruning schedule
can start from epoch 75 (which is earlier than the one-shot pruning). Note that the gradual pruning can achieve better
accuracy as it can preserve higher memorization capacity as discussed in Sec. 3.4. Fig. 6a shows the pseudo-pruning
curve that highlights the presence of the winning tickets from the epoch around 100, which is consistent with the results
of the lottery ticket experiment in Table 2.

(a) ResNet56 on CIFAR10 (b) ResNet18 on ImageNet

Figure 6: The results of PPR accuracy check (retraining learning rate=0.01) for (a) ResNet56 on CIFAR10 (sampled at every epoch)
and (b) ResNet18 on ImageNet (sampled every 5 epochs).

4.2 EXPERIMENTS ON IMAGENET

Table 3 summarizes the lottery ticket experiments on ImageNet dataset, and the predicted results of the early winning
tickets from the pseudo-pruning are shown in Fig. 6b. Similar to the CIFAR10 experiments, the results of the lottery
ticket experiment matches with the results from the PPR accuracy check (which indicates epoch 45 for early winning
tickets), demonstrating the robust behavior of the proposed strategy of finding the early winning tickets. Furthermore,
the gradual pruning at the early winning tickets achieves the accuracy near to the baseline (ResNet18: baseline=69.7%
vs ours=69.24%, ResNet50: baseline=75.7% vs ours=75.31%), showcasing the superior quality of the winning tickets
discovered by the proposed gradual pruning strategy.
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Table 2: One-shot and gradual pruning at different epochs for ResNet20 and ResNet56 on CIFAR10. To clarify
randomness effect, the average accuracy (%) over 10 different runs is reported.

One-Shot 20 60 100 120 160 200

ResNet20 90.01 (±0.07) 91.20 (±0.28) 91.49 (±0.27) 91.37 (±0.24) 91.63 (±0.19) 91.63 (±0.21)
ResNet56 92.94 (±0.28) 93.60 (±0.18) 94.07 (±0.16) 94.24 (±0.19) 94.29 (±0.17) 94.34 (±0.14)

Gradual 25-75 50-100 75-125 100-150 125-175 150-200

ResNet20 91.43 (±0.37) 91.56 (±0.28) 91.78 (±0.26) 91.87 (±0.17) 91.84 (±0.32) 91.83 (±0.08)
ResNet56 93.34 (±0.19) 93.89 (±0.12) 94.03 (±0.29) 94.25 (±0.19) 94.15 (±0.17) 94.24 (±0.27)

Table 3: One-shot and gradual pruning for ResNet18 and ResNet50 on ImageNet.

One-Shot Pruning 0 15 30 45 60 75 90

ResNet18 Top-1 Acc. (%) 64.89 66.53 67.30 68.32 68.79 68.98 69.03
ResNet50 Top-1 Acc. (%) 71.65 73.11 73.71 74.51 74.90 74.92 75.03

Gradual Pruning 0-30 10-40 20-50 30-60 40-70 50-80 60-90

ResNet18 Top-1 Acc. (%) 66.11 67.31 68.31 68.64 69.24 69.06 69.18
ResNet50 Top-1 Acc. (%) 72.90 73.72 74.54 74.92 75.26 75.31 74.94

4.3 PERFORMANCE GAIN FROM EARLY WINNING TICKET

To demonstrate the performance gain from our gradual pruning strategy, the pruning results of the proposed algorithm
(GP + EWT) and the previous implementation of iterative pruning (IP) along with the winning ticket (WT) of Frankle &
Carbin (2018) are shown for the ResNet variants on CIFAR10 and ImageNet in Table 4. Our GP+EWT algorithm
consistently achieves high pruning rate with the number of pruning epochs even lower than the regular retraining epochs
for all the models, i.e., 80% pruning with negligible accuracy degradation on ResNet50 for ImageNet. In contrast, the
iterative pruning approach (IP+WT) achieves the similar accuracy at the cost of more than 4.5× increase in the total
training epochs.

5 CONCLUSION

In this work, we investigate the structure of the winning lottery ticket, which leads to the computationally efficient
discovery of the winning lottery tickets. Based on a careful analysis of the characteristics of the structure of the winning
lottery tickets, we proposed a computationally reasonable heuristic to identify when the early lottery tickets emerge.
Furthermore, we proposed a gradual pruning strategy incorporating the early lottery ticket analysis to achieve high
accuracy at large pruning rate. This results in the state-of-the-art accuracy on ResNet50 for 80% pruning only within
22% of the total epochs for iterative pruning.

Table 4: Performance gain by our gradual pruning strategy on CIFAR-10 and ImageNet.

ResNet20 (CIFAR-10) ResNet18 (ImageNet) ResNet50 (ImageNet)
PR∗ / acc.∆† / epochs PR / acc.∆ / epochs PR / acc.∆ / epoch

GP + EWT 80.0 / -0.20 / 150+200∗∗ 80.0 / -0.56 / 70+90 80.0 / -0.4 / 80+90

IP + WT 82.2 / 0.00 / 1600 - / - / - 79.0 / 0.0 / 720Frankle et al. (2019)
GP: gradual pruning, IP: iterative method, EWT: early winning ticket, WT: winning ticket
∗: pruning rate (PR). ∗∗: number of pruning epochs + regular retraining epochs
†: the delta of accuracy is measured against the baseline accuracy. Bold: highlight of comparison
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Table 5: Memorization capacity comparison for different group size.

Group size 1 2 4 8 16 32 64

Mem. Cap 60.3 60.4 59.4 59.1 58.5 55.0 52.4

A EXPERIMENTAL SETUP

A.1 EXPERIMENTS ON CIFAR10

We try to find the winning tickets early for ResNet20 (baseline accuracy: 92.5%) and ResNet56 (baseline accuracy:
94.25%) on CIFAR10 dataset. All the baseline models are trained using SGD optimizer with momentum (m =0.9) and
weight decay (λ =1e-4) for 200 epochs. The initial learning rate for the first 120 epochs is 0.1 and decrease to 0.1×
every 40 epochs. For the lottery ticket experiments, the retraining schedule is the same as the baseline learning rate
schedule. Following convention, we do not prune the first and the last layers of the ResNets.

A.2 EXPERIMENTS ON IMAGENET

We further try to find the winning tickets early for ResNet18 (baseline accuracy: 69.7%) and ResNet50 (baseline
accuracy: 75.7%) on ImageNet dataset. All the baseline models are trained using SGD optimizer with momentum
(m =0.9) and weight decay (λ =1e-4) for 90 epochs. The initial learning rate for the first 30 epochs is 0.1 and decrease
to 0.1× every 30 epochs. For the lottery ticket experiments, the retraining schedule is the same as the baseline learning
rate schedule. Following convention, we do not prune the first and the last layers of the ResNets.

Figure 7: Structured pruning with variable group size. We consider a group of weights along the channel dimension with a varying
group-size (gs). In case of gs=1, it is the same as the element-wise pruning.

B DISCUSSION

B.1 IMPACT OF STRUCTURED SPARSITY ON LOTTERY TICKET HYPOTHESIS

In this section, we expand our scope of analysis on the characteristics of the early winning tickets toward the sparsity
obtained via structured pruning. Structured pruning is a popular method that prunes weights by a group. For example,
Liu et al. (2017) proposes channel-pruning, where a group consists of weights along each channel. The main motivation
of looking at the structured sparsity is that there is a significant discrepancy in the best pruning rate we can achieve
between the element-wise pruning (i.e., group-size=1) and the structured pruning (i.e., group-size=channel). For
example, on CIFAR10-VGG19, the element-wise pruning achieves 95% of pruning rate whereas the channel-pruning
achieves 70% of pruning rate for the same level of accuracy (Liu et al. (2018)). Although such discrepancy has been
observed for quite a while, there is no in-depth investigation to understand why. To find out the reasoning behind it, we
analyze the impact of structured sparsity with varying group sizes in the context of the lottery ticket hypothesis, as
illustrated in Fig.7.

First, we revisit the extended lottery ticket experiments of Fig. 1 while applying group sparsity along the channel
dimension (instead of pruning individual weights). Fig. 8 shows the results when the group size (gs) is 8. Comparing
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Figure 8: Revisiting the extended lottery ticket experiments of Fig. 1, but with the group size (gs) of 8. As before, (s, v) stands for
(epoch drawing the sparse structure, epoch for rewinding). In contrast to Fig. 1, the winning tickets found when gs=1 (green color in
Fig. 1) disappear as the group size becomes 8.

Figure 9: Impact of structured sparsity on the saturation of pruning accuracy. The x-axis corresponds to the epoch when the model
is 80% pruned. The dotted lines correspond to the moving average of the accuracy to show trends. The larger the group size, the later
the accuracy of the pruned models converges at.

it with Fig. 1, there are two notable points; 1) there is > 1% accuracy degradation when the group size is increased
from 1 to 8, and 2) when gs = 8, the trend that the tickets drawn at epochs s > 100 achieve the higher accuracy
disappears (as highlighted with a red rectangle in the figure). (Note that the two figures achieve the similar accuracy
when s < 60 (colored in yellow), but the tickets with high accuracy (colored in green) can only be seen in Fig. 1.) The
former observation makes sense as the more regularization on the sparse weight structure would result in the lower
accuracy. But the latter observation is quite surprising; it seems that a distinct behavior of the lottery ticket hypothesis
(i.e., the opportunity of finding winning tickets given a proper initialization) is disrupted as a group structure is asserted
on the sparsity.

We can find a clue on this disrupted behavior by employing the memorization capacity analysis. Table 5 shows the results
of memorization capacity experiments on CIFAR10-ResNet20 with an increasing group size gs = {1, 2, 4, 8, 16, 32, 64}.
The memorization capacity degrades significantly as the group size increases. Intuitively, by asserting a large group
size, the model’s expressivity is degraded and it becomes harder to learn the complex patterns, leading to accuracy loss.
Note that we had a similar observation when the tickets are drawn too early (cf.,s < 60 in Fig. 1). From this, we can
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hypothesize that the winning tickets disappear as the memorization capacity is degraded, which can be observed when
the tickets are drawn too early or the group sparsity is forced.

Fig. 9 further demonstrates the impact of structured sparsity on the saturation of pruning accuracy. For different group
sizes, the figure shows the accuracy of CIFAR10-ResNet20 80% pruned at varying epochs. It can be observed that the
models with the larger group size not only achieve the lower accuracy but also converge at earlier epochs. (E.g., the
knee points for gs = 1 and gs = 16 are around 90 and 50 epochs, respectively.) This experimental result supports our
claim that the larger group size enforced in the sparse structure results in the earlier convergence of the pruned models
that misses the winning tickets.

Figure 10: Mode connectivity: Lottery tickets of ImageNet-ResNet50 and CIFAR10-ResNet20 drawn from different epochs are
linearly interpolated, then the accuracy is measured for each interpolation coefficient. It can be observed that only the early winning
tickets are connected to the winning tickets (drawn at the end of training, i.e., epoch 90 for ImageNet and epoch 200 for CIFAR10).

B.2 MODE CONNECTIVITY OF EARLY WINNING TICKETS

Mode connectivity is a phenomenon that SGD solutions are connected through paths of approximately equal loss
(Draxler et al. (2018)). It provides the perspective of how well the models trained via a proposed method can generalize.
In the context of early winning tickets, we for the first time reveal that the lottery tickets drawn early based on PPR are
indeed connected from the one obtained by IMP, whereas the tickets chosen too early do not.

For the mode connectivity experiments, we draw three lottery tickets - one drawn too early (i.e., a premature ticket, PT),
one drawn based on PPR (i.e., an early winning ticket, EWT), and one at the end of the training schedule (i.e., a winning
ticket, WT). Note that all the tickets are trained from the same initial weights and with the same retraining schedule.
Then we linearly interpolate PT and EWT with WT, and plot the test error for different interpolation coefficient (from 0
to 1).

Fig. 10 shows the results of the mode connectivity experiments for ImageNet and CIFAR10. For both datasets, the
linearly interpolated models between PT and WT depict a barrier, indicating that PT and WT are disconnected. Whereas,
the linearly interpolated models between EWT and WT show consistently low test error. Note that such linear mode
connectivity is observed even when 1) the weights are sparse (i.e., 80% pruning rate) and 2) the mask distance is large
(cf., Fig. 3). This intriguing observation counters some observations of prior work; Draxler et al. (2018) claims that it
takes a careful search (instead of a simple linear interpolation) to find a pass connecting the modes, and the existence of
such a non-linear pass requires enough number of parameters. Our novel observation of early lottery tickets provide a
new aspect of sparse model training; the sparse structures mature early in the training, and they converge to a flat local
minimum even if its shape is vastly distant. A deeper investigation about the sparse structure of the lottery tickets and
the mode connectivity is an interesting future research topic.

C EARLY WINNING TICKET ALGORITHMS

In this section, we describe the detail algorithms for finding early winning tickets via one-shot and gradual pruning.
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Algorithm 1: Early Winning Ticket Identification with One-Shot Pruning
Require: Initial weights θ0, learning rate schedule LS := {η(n)}, n = 0, 1, ..., N − 1, pruning ratio p, PPR

accuracy checking period TPPR, PPR accuracy saturation detection threshold kPPR, PPR retraining learning rate
ηPPR;

Initialize model with θ0, t = 0;
Step 1: Early winning ticket (EWT) identification by tracking PPR accuracy
for i = 0; i < N ; i++ do

Train the model with learning rate η(i) for one epoch;
if i % TPPR = 0 then

Save a copy of the model and optimization state;
Prune p% of the model parameters and create a mask mPPR,t;
Train the pruned model θi ◦mPPR for one epoch and obtain the test accuracy AccPPR,t;
Restore the model and optimization state with the saved copy;
if AccPPR,t′ <= AccPPR,t′−1 for t′ = t, t− 1, ..., t− kPPR + 1 then

Set the model parameters to θi ◦mPPR,t;
break;

end
t++;

end
end
Step 2: Retraining EWT with the same LS
for i = 0; i < N ; i++ do

Train the pruned model with learning rate η(i) for one epoch;
end

Algorithm 2: Early Winning Ticket Identification with Gradual Pruning
Require: Initial weights θ0, learning rate schedule LS := {η(n)}, n = 0, 1, ..., N − 1, pruning ratio p, PPR

accuracy checking period TPPR, PPR accuracy saturation detection threshold kPPR, PPR retraining learning rate
ηPPR, gradual pruning period Tgr;

Initialize model with θ0, t = 0;
Step 1: Early winning ticket (EWT) identification by tracking PPR accuracy
for i = 0; i < N ; i++ do

Train the model with learning rate η(i) for one epoch;
if i % TPPR = 0 then

Save a copy of the model and optimization state;
Prune p% of the model parameters and create a mask mPPR,t;
Train the pruned model θi ◦mPPR for one epoch and obtain the test accuracy AccPPR,t;
Restore the model and optimization state with the saved copy;
if AccPPR,t′ <= AccPPR,t′−1 for t′ = t, t− 1, ..., t− kPPR + 1 then

break;
end
t++;

end
end
Step 2: Gradual Pruning to refine the EWT structure
for i = 0; i < Tgr; i++ do

Prune model gradually toward the pruning ratio p according to Eq. (6) and create a mask mgr,i;
Train the pruned model θgr,i ◦mgr,i for one epoch;

end
Step 3: Retraining EWT with the same LS
for i = 0; i < N ; i++ do

Train the pruned model with learning rate η(i) for one epoch;
end
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