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ABSTRACT

This work proposes a closed loop, uncertainty-driven adaptive sampling frame-
work (CLUDAS) for accelerating magnetic resonance imaging (MRI) via deep
Bayesian inversion. By closed loop, we mean that our samples adapt in real-time
to the incoming data. To our knowledge, we demonstrate the first generative adver-
sarial network (GAN) based framework for posterior estimation over a continuum
sampling rates of an inverse problem. We use this estimator to drive the sampling
for accelerated MRI. Our numerical evidence demonstrates that the variance es-
timate strongly correlates with the expected mean squared error (MSE) improve-
ment for different acceleration rates even with few posterior samples. Moreover,
the resulting masks bring improvements to the state-of-the-art fixed and active
mask designing approaches across MSE, posterior variance and structural similar-
ity metric on real undersampled MRI scans.

1 INTRODUCTION

Myriad of applications in control, data processing, and learning—from platform navigation to data
mining and from channel estimation to compressive sensing (CS)—involve a linear projection of
signals or data points into lower-dimensional space. In this dimensionality reduction, the measure-
ment or the sensing matrix determines how much information we acquire per measurement, the
ensuing computational ease of processing (since algorithms use the sensing matrix and its adjoint as
subroutines), and the recovery guarantees.

In a resource constrained setting, these utilities create a Pareto trade-off wherein improving one
worsens another. To impact all these fronts simultaneously, adaptive sensing (or sequential exper-
imental design, active learning, etc.) aims to close the loop between the data acquisition and the
inference, for instance, by exploiting information collected in past samples to adjust the future sam-
pling process. While adaptive procedures promise great improvements over non-adaptive methods,
they are too computationally demanding for real-time online response.

In the context of magnetic resonance imaging (MRI), the dimensionality reduction process (i.e.,
undersampling in the Fourier domain, often referred to as k-space) directly correlates with patient
comfort, as it results in shorter scanning times. For the last decade, approaches motivated by com-
pressed sensing have enabled successful reconstruction from highly accelerated (i.e., subsampled)
data (see Lustig et al. (2007); Ravishankar & Bresler (2011b); Lingala & Jacob (2013); Otazo et al.
(2015); Jin et al. (2016) and references therein). While compressed sensing prescribed fully random
sampling (Candès et al., 2006; Donoho, 2006) for recovery, most CS-inspired approaches to MRI
departed from this paradigm and relied on the heuristics of variable-density sampling (VDS) (Lustig
et al., 2007).

There, the sampling pattern (or mask) is picked at random from a probability distribution that rea-
sonably imitates the energy distribution in Fourier space, whereas fully random sampling of the
Fourier space ignores this important structure in the signal, which leads to practically poor results
(Lustig et al., 2008). VDS appears as a heuristic middle ground for a sampling pattern to incorpo-
rate the structure of energy distribution in Fourier space, while preserving the benefits of incoherent
sampling. In VDS, the probability distribution considered has traditionally been parametric (Lustig
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et al., 2007; Chauffert et al., 2014; Boyer et al., 2016) or constructed from data (Knoll et al., 2011;
Vellagoundar & Machireddy, 2015; Bahadir et al., 2019).

The CS-inspired methods shift the burden from acquisition to reconstruction, as most of these meth-
ods are iterative, preventing online reconstruction of accelerated data. This slow reconstruction
rendered the problem of optimizing Fourier space sampling prohibitively expensive, so little work
was devoted to general method of designing sampling patterns for generic sampling methods (Gözcü
et al., 2018).

In recent years, deep learning applied to MRI enabled high quality reconstruction for unprecedented
acceleration rates (Wang et al., 2016; Schlemper et al., 2017; Hammernik et al., 2018), as well
as near-online reconstruction times. This also led to a freshly renewed interest in the problem of
optimizing the Fourier space sampling pattern (Bahadir et al., 2019; Weiss et al., 2019; Sherry et al.,
2019; Jin et al., 2019; Zhang et al., 2019), although most of the research energy is still focused on
developing more efficient reconstruction methods.

In its current stage, deep learning applied to MRI suffers from three main drawbacks: (i) as men-
tioned, most of the research energy has been devoted to more efficient reconstruction methods,
despite recent results showing that the sampling masks used have a significant effect on the quality
of reconstruction (Gözcü et al., 2018; Gözcü et al., 2019), (ii) assessing the reliability of the predic-
tion of a reconstructed image is difficult for a clinician, due to the black-box nature of deep learning
methods and (iii) the commonly used metrics for assessing the quality of the reconstruction (e.g.
MSE, PSNR, SSIM) do not align with what clinicians see as valuable (Cheng et al., 2019).

A recent work of Adler & Öktem (2018) successfully demonstrated that a conditional Wasserstein
GAN (cWGAN) (Arjovsky et al., 2017) can be used to learn the posterior distribution of images
given undersampled measurements in a tractable fashion while only relying on samples from the
joint distribution. This result provides a key opportunity to address all three drawbacks in the context
of MRI by using the posterior variance of the reconstruction as an uncertainty estimate, which is a
more natural criterion for image quality.

To this end, we show that a conditional WGAN can be trained on a continuum of inverse problems
on various sampling rates, yielding an estimator of the posterior variance in the Fourier domain that
can be used to drive the whole sampling process in a closed loop fashion. Despite the model being
trained only for reconstruction and not sampling, the resulting variance estimator can reliably be
used to guide a closed loop sampling procedure, thus providing patient-adapted sampling masks.

In particular, we demonstrate that the generated masks that minimize the uncertainty estimates in
an online fashion reach similar reconstruction MSE as compared to the state-of-the-art fixed-mask
approaches like Gözcü et al. (2018); Gözcü et al. (2019). While these approaches explicitly focus on
minimizing MSE, we show that CLUDAS naturally outperforms them in terms of key visual metrics
such as SSIM (Wang et al., 2004) without being trained on these metrics.

In addition, we investigate the reliability of our estimator in a wide range of undersampling regimes
and show that even when using a few samples from the cWGAN posterior, the variance estimate is
reliable enough to be used to drive the design of the mask. This makes it feasible to use CLUDAS in
a closed loop adaptive setting, where our approach is competitive with an approach using an MSE-
oracle on the testing set (which is not feasible on real problem without the ground truth available),
and also beats strong open loop adaptive baselines while being easier to train and easier to apply.

Contributions.

• We show how to train a cWGAN to generate posterior samples across a continuum of
sampling rates; We solve in a Bayesian fashion not only a single inverse problem, but a
continuum of inverse problems.
• We demonstrate the first posterior-based mask design method for MRI.
• We propose to use the variance of the posterior distribution of images given measurements

as quality metric for mask performance.
• We show that despite the network being trained as a reconstruction method and not as a

sampling method, our adaptive approach CLUDAS is competitive in both settings and a
strong contender for being used in active settings as it matches computationally expensive
state-of-the-art approaches.
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Implications. We contend that our uncertainty driven sampling framework can extend to many
similar problems where one wants to reduce acquisition times, such as atomic force microscopy
(Abramovitch et al., 2007), transmission electron microscopy (Kovarik et al., 2016), or trajectory
optimization for ultrasound acquisitions (Malinen et al., 2005). Our results open the door of lever-
aging Bayesian experimental design methods for designing adaptive sampling patterns in clinical
settings and beyond.

Related works. We especially want to highlight the work of Zhang et al. (2019), which bears several
similarities with our method. It is important to note that their approach is not generative, as they only
have point estimates of the mean and some learned uncertainty metric. Moreover, they assume the
reconstructed image to be normally distributed with a diagonal covariance, a practically unrealistic
assumption, which is not required in Adler & Öktem (2018).

2 NOTATION AND PROBLEM SETTING

Notation. Throughout this paper, we will refer to vectors as boldface lowercase letters e,x,y, and
assume that they correspond to N × N images that are vectorized to a p dimensional space. In
particular, we will assume that these vectors belong to some appropriately defined spaces X ,Y ⊆
Cp. We use vectors in Cp as MR images are inherently complex. Boldface uppercase letters X,Y
will in general refer to random variables (formally, they are random vectors), with the exception of
F and Pω which will respectively refer to the discrete Fourier transform operator and the sampling
operator, that will be defined below. Finally, we will use ω ∈ O = {0, 1}p to be a p dimensional
binary vector, and we will refer to it interchangeably as a sampling, subsampling or undersampling
pattern/mask. Finally, we will refer to the distribution of a random variable X as PX, and extend
the nottation to conditioned random variables such as PX|y ≡ PX|Y=y .

Problem setting. An inverse problem is the task of recovering the ground truth x ∈ X from
measurements y ∈ Y . In the case of MRI, we consider the following acquisition model

yω = PωFx + e, (1)

where yω ∈ Y corresponds to the measurements obtained with a given sampling mask ω and where
the sampling operator (Pω)ii = 1 if i ∈ ω, 0 otherwise. ω ⊆ [p] := {1, . . . , p} is a set containing
the sampled locations. Note that while the ground truth x is an image living in the image space X ,
the measurements yω live in the Fourier space. The Fourier space is often referred to as k-space in
the MRI literature.

In this paper, we restrict ourselves to the setting where ω is composed of lines in the Fourier space,
also known as Cartesian sampling in the MRI literature1, and usually constrained by a maximal
number n of lines that can be acquired. F denotes the Fourier transform, x ∈ X is the ground truth
image and e ∈ Y is a white additive noise. Without loss of generality, neglecting basic sampling
effects, such as magnetic field inhomogeneity and spin relaxation, we assume e = 0 in the sequel.

As we will be working in a Bayesian framework, we define a random variable X ∼ PX from which
ground truth, complete measurements are generated, distributed according to the unknown prior
PX. From this we also define the distribution PYω

as well as the joint distribution PX,Yω
and the

posterior PX|Yω
, where Yω = PωFX.The posterior is especially of interest as for a fixed yω ∈ Y ,

PX|yω
(short for PX|Yω=yω ) represents the probability distribution of ground truths that are likely

to have generated the observed data yω with a given mask ω.

3 BACKGROUND

3.1 MASK DESIGN IN MRI

Fixed masks. The overwhelming majority of data-driven mask design approaches work in an open
loop fashion: the sampling mask is built using training data and kept fixed at inference time. Even

1This kind of structured acquisition originates from physical considerations and has the benefit of being
easily implementable in practice.
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the VDS paradigm, that prescribes sampling a mask at random from a parametric distribution, uses
a fixed mask that is tuned in an ad-hoc fashion when applied clinically (Jaspan et al., 2015).

Formally, we consider a training set of original data {xi}mi=1 that are assumed to originate from an
unknown prior distribution PX. We are constrained to a maximal sampling budget n and want to
find a mask that minimizes a given loss function ` (e.g. MSE, SSIM) on these training samples.

The abstract problem of our interest then can be written as follows
min
ω∈A

EX∼PX
[`(X,Y = PωFX)] . (2)

whereA denotes the constrained set of masks ω that are made of lines (cf. section ) and that respect
the maximal sampling budget, i.e. |ω| ≤ n (here, | · | denotes the cardinality of the set ω). Formally,
let us define S as a set of subsets of {1, . . . , p} that contains the N possible lines given a vectorized
image of dimension p = N2. A is defined as

A := {ω ⊆ [p] : ω =
⋃
v∈S v, S ⊆ S, |ω| ≤ n},

which means that ω is constructed as a union of the elements v of a subset S of all possible lines
S, with the additional constraint that the overall mask will respect the sampling budget n. However,
the finite amount of samples requires to solve the empirical risk minimization version of Equation 2,
namely minω∈A 1

m

∑m
i=1 `(xi,y = PωFxi). Given that m is large enough and that the training

and testing data do originate from PX, statistical learning theory guarantees that a mask performing
well on the training set will adequately generalize.

In the literature, two trends are noticeable. A first body of works focused on constructing a good
distribution from which to sample Ravishankar & Bresler (2011a); Vellagoundar & Machireddy
(2015); Bahadir et al. (2019); Sherry et al. (2019). Other approaches tried to directly design a fixed
sampling mask that performs well on training data (Seeger et al., 2010; Gözcü et al., 2018; Gözcü
et al., 2019; Haldar & Kim, 2019). More recent approaches tried to jointly train the mask with a
deep network Weiss et al. (2019); Bahadir et al. (2019).

Adaptive masks. Until the re-birth of deep learning, most reconstruction methods relying on CS
suffered from long reconstruction times, due to their iterative nature. However, recent works leverag-
ing the online reconstruction speed of deep learning achieved mask designs in a closed loop fashion,
i.e., developing algorithms that could be used in an online fashion to adapt to patients.

For a fixed, unknown data x, the adaptive approach aims at leveraging the information from the
already measured frequencies to guide what should be acquired next. Instead of a fixed mask ω, we
are building up partial masks ωt as union of individual Fourier space lines vt, with ω = ωT being
the largest mask satisfying |ωT | ≤ n. The optimization now happens at runtime as a multistage
problem which has to choose each new element vt such that

min
vt|v0,...,vt−1

`(x,yωT
= PωT

Fx; ωT =
⋃T
i=1vi), (3)

that is, we want to take at each time step t the sample that will allow us to get the lowest final error,
but being constrained by our previous acquisitions and the fact that we cannot look into the future
to know where we should sample. The problem requires developing an online sampling method that
uses the partial information yωt at each t to decide on its next action.

Two approaches have been proposed for this problem in the literature. Jin et al. (2019) took a
self-supervised learning approach, where a sampling network learns to imitate a Monte-Carlo tree
search method and predicts vt|v0, . . . , vt−1 for all t. Zhang et al. (2019) leveraged adversarial
training to jointly train a reconstruction algorithm and an evaluator that gives scores to the quality of
reconstructed lines in Fourier space. The sampling procedure simply iteratively added to the mask
the lines with the lowest reconstruction score.

Other types of sampling. While our work here focuses on Cartesian sampling, which is by far the
most widely used trajectory in MRI (Lustig et al., 2007), many other physically feasible trajectories
have been investigated over the years for accelerated MRI. Radial trajectories have mainly been
used in the context of dynamic MRI (Zhang et al., 2010a; Feng et al., 2014), and non-structured
trajectories have also been explored and validated on real acquisitions (Lazarus et al., 2017). In
particular, we note that some CS-based methods have shown online reconstruction times in the
context of dynamic MRI (Zhang et al., 2010b) using radial trajectories, but such trajectories are
rarely used in the context of static MRI.
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4 METHODOLOGY

4.1 DEEP BAYESIAN INVERSION

In (Adler & Öktem, 2018), the authors propose a framework to estimate the posterior distribution
PX|Y, i.e., the distribution of original images x that are likely to have generated the observed data
y. They formulate the problem as finding a parametrized generator Gθ∗ : Y → PX that allows
to minimize the Wasserstein distance with the unknown posterior PX|Y over all the observations,
namely minimizing

min
θ∈Θ

EY∼PY

[
W(PX|Y,Gθ(Y))

]
. (4)

Here, PX is the space of probability measures on X . As this approach in not tractable in practice,
they show that Equation 4 can equivalently be formulated as

min
θ∈Θ

{
max
φ∈Φ

E(X,Y)∼PX,Y

Z∼η

[
Dφ(X,Y)−Dφ(Gθ(Z,Y),Y)

]}
(5)

After finding the optimal parameters (θ∗, φ∗), the conditional generator G(z,y) : X × Y → X
approximates the posterior distribution PX|y and different values of z yield different samples from
PX|y.

Note that Adler & Öktem (2018) applies this method to reconstruction data from ultra-low dose 3D
helical computed tomography (CT). This differs from MRI in several regards, but it is significant in
our case that we can generate different instances of Equation 4 by selecting different ω in Equation 1.
Minimizing Equation 4 without giving ω explicitely would amount to generating a posterior distri-
bution from data y acquired when using any possible mask ω sampled from a random vector Ω with
a possibly unknown distribution. This is why the approach of (Adler & Öktem, 2018) minimizes
over the distance for observation in Equation 4 and mask designs approaches consider minimization
over original data (cf., equation 2).

Uncertainty estimation. Once the generator has been trained, we can sample from Gθ∗(Z,yω)
which approximates PX|yω

. Let {x̂i = Gθ∗(zi,yω)}ns
i=1 be samples of the posterior PX|yω

, where
zi are iid samples from Z and ns and the number of samples taken. Then, as in (Adler & Öktem,
2018), the ground truth image x can be estimated by the empirical point-wise mean of these samples,
namely x̄ = 1

ns

∑ns

i=1 x̂i. The corresponding empirical point-wise variance can be defined σ̄2 =
1

ns−1

∑ns

i=1 |x̂i − x̄|2, where | · | denotes the modulus.

Equally, one can estimate the ground truth Fourier spectrum Fx using the empirical average es-
timator Fx̄. The empirical point-wise variance in the Fourier space can be obtained as σ̄2

F =
1

ns−1

∑ns

i=1 |Fx̂i − Fx̄|2. This feature is specific to generative models, as getting samples from
PX|yω

allows to transform these to a different domain, enabling to have simultaneous variance es-
timates in both the image and Fourier spaces. This is not possible with methods that only provide
point-wise estimates of the mean and the variance in image space, such as the one used by Zhang
et al. (2019) or the direct estimation of Adler & Öktem (2018).

4.2 UNCERTAINTY DRIVEN SAMPLING

Due to the ability of constructing estimates of both the spatial and Fourier space pixel-wise vari-
ances of PX|yω

, the approach of (Adler & Öktem, 2018) can be leveraged to produce both fixed
and adaptive sampling patterns by acquiring the frequencies with the highest empirical pixel-wise
variance in the Fourier domain. As we constrained ourselves to acquiring full lines in the Fourier
domain, we will consider the total estimated variance in the Fourier space along the i-th line vi ∈ S
and define

u1D
i (yω) =

∑
j∈vi

σ̄2
F,j(yω). (6)

Note that u1D
i (yω) ∈ RN contains the variances of the N possible lines in the Fourier domain. We

will refer to u1D(yω) as the aggregated variance (along the x-dimension in Figure TODO).
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Fixed sampling. Using the aggregated variance as a loss function, we can reformulate Equation 2
as

min
ω∈A

EX∼PX

[∑
i

u1D
i (Yω = PωFX)

]
(7)

where samples {xi}ms=1 are obtained from an unknown prior distribution PX, and Yω contains
partial information on X through the model 1.

In practice, as PX is not available, one seeks to solve the empirical risk minimization (ERM)
minω∈A 1

m

∑m
s=1

[∑
i u

1D
i (yω,s = PωFxs)

]
. The aggregated point-wise variance of the posterior

can be seen as a cost that one seeks to minimize on a training set, and consequently, can it can
replace traditional cost functions such as the `2-norm in most fixed sampling optimization method.

Adaptive sampling. Ideally, we aim at making a series of sampling decisions v1, . . . , vT to mini-
mize the total final uncertainty for a given ground truth image x once our sampling budget n lines
is spent, i.e., for each t,

min
vt|v0,...,vt−1

N∑
i=1

u1D
i (yωT

) , (8)

where ωT =
⋃T
t=1 vt. Due to causality, we do not have access to this final posterior, or even the

posterior of the mask which will result from choosing the next innovation vt. We can only make use
of the partial observations yωt

corresponding to the partial masks ωt =
⋃t−1
i=1 vt up to the time step

t. We choose to adopt a greedy approach to approximately solve

min
vt∈S

∑
i

u1D
i (yωt∪vt) at each time step t (9)

by simply choosing as vt the line i with the largest aggregated variance u1D
i . The overall flow is

then: at each time t, (i) observe yωt
, (ii) select the line vt = vi∗ ,where i∗ = argmaxi u

1D
i (yωt

),
(iii) update ωt+1 = ωt ∪ vt and (iv) iterate until the cardinality constraint is met.

As no assumptions are made on the underlying distribution of the posterior, this application is only
made possible by leveraging a generative framework that can estimate the posterior at all sampling
rates considered for widely different mask designs. It is rendered tractable by the fact that even
two samples from the posterior allow to construct an empirical variance estimate that can efficiently
drive the sampling procedure.

5 IMPLEMENTATION

Training data. The data set used in the first three experiments (subsections) below consists of a
proprietary dataset of 2D T1-weighted brain scans. In our experiments, we use 100 slices of sizes
256×256 from five such subjects, 20 per subject. Three subjects (60 slices) were used for training
the network, two subjects (30 slices) for testing. The data were then massively augmented with both
rigid transformations and elastic deformations to counter overfitting as our dataset is very small,
following the recommendations of (Ronneberger et al., 2015; Schlemper et al., 2018). Exact details
on the dataset and augmentation methods used can be found in Appendix A.1.

Architecture For posterior sampling, we used the same discriminator architecture as described in
(Adler & Öktem, 2018). For the conditional generator, we used the cascading network of (Schlemper
et al., 2018), where the data-consistency layer enforced perfect consistency. Perfect data consistency
means that at the end of each block, one replaces the reconstructed value with the corresponding
measured value in the Fourier space. This ensures that the reconstruction is consistent with the ob-
servations where measurements were acquired. We used 3 CNN blocks, where each block contained
5 convolutional layers followed by ReLu.

As our data are complex, we split the real and imaginary part as two channels and add two channels
of Gaussian white noise to the conditional generator.

Training. We use the same loss as in (Adler & Öktem, 2018). The loss is reproduced in Ap-
pendix A.4 for completeness. We use Adam (Kingma & Ba, 2014) with β1 = 0.5, β2 = 0.9, and
learning rate 2 · 10−4 as in Adler & Öktem (2018) although we do not use noisy linear cosine decay
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out of simplicity. The model is trained for 6 · 105 backpropagations, which was chosen adhoc to
account for the fact there are combinatorial numbers of masks being observed for each image (our
reference point Adler & Öktem (2018) uses 5 · 104 for a larger dataset).. For every 5 iterations, the
generator was trained once and the discriminator was trained four times. In order to allow calculating
the posterior throughout the sampling process, we generate observations of subsampled images at
various rates by randomly generating horizontal Cartesian masks for sampling rates ∈ [0.025, 0.5],
as described in detail in Appendix A.2.

Metrics. We will use mean squared-error (MSE), structural similarity (SSIM) (Wang et al., 2004)
as well as the posterior variance for comparisons. MSE and SSIM are computed between the re-
constructed image and the corresponding original, ground truth image. The posterior variance is
estimated through the a pixel-wise empirical variance estimate, and is averaged on the whole image
to produce a single scalar. This metric does not require a reference.

6 EXPERIMENTS

Throughout our experiments, we use the empirical mean obtained from two posterior samples, as
well as the corresponding empirical standard deviation. We show exhaustively in appendix B that
while using 10 samples from the posterior improves the quality of reconstruction, it is sufficient to
use the variance estimate from 2 posterior samples in the CLUDAS method.

6.1 CONSISTENCY OF THE UNCERTAINTY ESTIMATE

As can be Figure 1, the average MSE correlates well with the average posterior variance, both in
image space and in Fourier space, which suggests that the posterior variance could serve as an ap-
proximate MSE oracle. While training was only performed in the image domain, the generated
samples have consistency both in Fourier and in image space, showing that the uncertainty-based
approach does provide meaningful information on the error in the reconstruction. The consistency
in Fourier space is crucial for the sampling procedure, as our sampling method leverages the vari-
ance estimates in Fourier space, while the consistency in image space gives valuable information to
interpret the reconstructed data, which are important for clinicians.
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Figure 1: Image (left) (resp. Fourier (right)) space MSE against image (resp. Fourier) space empirical posterior
variance constructed with 2 and 50 posterior samples respectively. The coordinate of each point is given by the
image (resp. Fourier) space MSE averaged over a reconstructed image and the pixel-wise image (resp. Fourier)
space posterior variance averaged over this reconstructed image. The black lines represent the location obtained
by averaging over a sampling rate over the whole testing set, with steps of 2.5% sampling rate. The light red
and blue lines are the example of a trajectory for a given image of the testing set when increasing the sampling
rate.

6.2 RECONSTRUCTION QUALITY

In order to assess the reconstruction obtained by the adaptive masks, we define a closed loop oracle
MSE driven adaptive sampling method (CLOMDAS), which leverages MSE instead of uncertainty
at inference time. While CLOMDAS is not feasible in practice, it remains an interesting baseline
showing how the mask design could be improved by having access to the actual MSE at testing time.
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Figure 2 shows how the CLUDAS method compares against the CLOMDAS method on a sample
from the testing set. CLUDAS is competitive with CLOMDAS at every sampling rate considered,
even without having access to any oracle information. This behaviour is consistently observed on
the whole testing set, as shown in Tables 1 below.
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Figure 2: Comparison of reconstruction quality and variance estimation quality for CLUDAS (U-masks),
as well as the CLOMDAS (MSE-masks), for different sampling rates. The zoomed-in data are taken at the
location highlighted by the yellow square on the upper-right image. The MSE-/U-masks show the evolution of
the masks with increasing sampling rate (x-axis). The data are averaged on 2 testing samples

6.3 COMPARISON WITH OTHER METHODS

We compare out method to the following

• Learning based compressed sensing (LBC) (Gözcü et al., 2018; Sanchez et al., 2019):
This method incrementally builds up ω by computing an expected improvement of a loss `
at each step. This expected improvement is simply obtained by searching which line will
add the largest improvement at the next step, and once it has been found, it is permanently
added to the mask. Then, the algorithm proceeds until the cardinality constraint |ω| = n is
met. When trained with MSE, we will refer to the method as LBC-M, and when trained to
minimize variance, we will refer to it as LBC-V

• Vellagoundar & Machireddy (2015): This method proposed the simple heuristic ap-
proach of (i) constructing a PDF from a training data and (ii) sampling at random from
the obtained PDF. Our implementation used the spectrum of the whole averaged training
set for the PDF.

We were not able to compare our method to the closed loop method of Zhang et al. (2019), since
their code is not being publicly available at the time of writing.

When comparing the performance of reconstruction of different mask designing methods on the
modified generator of Adler and Öktem, we observe that the heuristic baseline of Vellagoundar &
Machireddy (2015) performs significantly worse at any sampling rate and for any metric. This is
not surprising, as this method simply samples art random from a constructed PDF. Comparing the
variations of the LBC methods, we notice that increasing the number of averaged samples during
the training phase of the mask is translated into a uniform improvment of the performance for any
sampling rate. This is more exhaustively discussed in Appendix B . Focusing on the LBC methods
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Metric MSE ×103 Variance ×103 SSIM
Sampling rate 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3

Vellagoundar (2) 3.73 1.34 0.47 1.12 0.59 0.30 0.67 0.80 0.87
LBC-V(2) 2.69 0.76 0.36 0.8 0.44 0.25 0.74 0.83 0.88
LBC-V(10) 1.68 0.55 0.32 0.65 0.36 0.22 0.77 0.86 0.89
LBC-M(2) 1.64 0.51 0.28 0.70 0.35 0.20 0.76 0.87 0.91
LBC-M(10) 1.43 0.50 0.28 0.63 0.34 0.20 0.79 0.87 0.91
CLUDAS(2) (Ours) 1.5 0.51 0.26 0.58 0.32 0.19 0.80 0.89 0.92
CLOMDAS(2) 1.39 0.49 0.26 0.61 0.34 0.21 0.81 0.90 0.93

Table 1: MSE scaled by 103, posterior variance scaled by 103 and SSIM on test data for different undersampling
rates and mask design algorithms. The reconstruction is computed as the average of 2 samples. The lowest
value (highetst for SSIM) for each undersampling rate is in blue. The value in parentheses corresponds to the
number of samples used to compute the average.

trained with 10 posterior sample averaging, we see that the LBC-M method outperforms the LBC-V
method. It is worth noting that the LBC-M uses the full ground truth to build its mask, while the
LBC-V method only leverages the variance estimation in Fourier domain. This again highlight the
reliability of the uncertainty as a mask designing technique. This conclusion is also supported by the
CLUDAS approach remaining competitive with the CLOMDAS one, which is infeasible in practice,
due to requiring oracle MSE calls at test time. Note also that our method does not require the heavy
computational burden of generating the sampling mask ahead of time, and can immediately be used
on-the-fly after training.

LBC-V LBC-M
2

sa
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es

10
sa

m
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es

Figure 3: Comparison of fixed masks
obtained by the learning-based method
of Gözcü et al. (2018). The horizontal
axis shows the mask growing as ele-
ments are iteratively added to it.

The CLUDAS method is the most effective at reducing pos-
terior variance, even if LBC-M(10) and CLOMDAS(2) are
close runner-ups. More surprisingly, our CLUDAS method is
found to yield the best SSIM performance, a metric designed
to match the human perception of quality better than MSE.

7 DISCUSSION AND FUTURE WORKS

Posterior distribution for a continuum of sampling rates.
Successfully modelling the continuum of sampling rates stems
from the fact the these inverse problems depend on each other
in a highly structured and regular fashion. This enabled us
to successfully demonstrate for the first time that a principled
Bayesian approach for a closed loop mask optimization with
rigorous variance estimates is feasible.

Generically trained generative reconstruction method. The
current generative model was trained in a generic fashion and
not specifically to optimize the quality of masks designed
through it. The ability for designing masks stems purely from
training it as a rigorous Bayesian modelling of the continuum
of inverse problems. This allows the posterior to be conditioned on incrementally collected informa-
tion in a closed loop fashion. However, our method could easily be incorporated in a reinforcement
learning-based framework aimed at jointly training reconstruction and sampling such as Jin et al.
(2019). This would give the best of both worlds, giving principled uncertainty estimates to the RL
sampler, moving beyond greedy sampling and possibly speeding up the training of the reconstruc-
tion method by focusing on regions with less reliable varaince estimates instead of using masks
sampled from distributions as in this work.

Limitations of the posterior estimation. We leveraged the approach of Adler & Öktem (2018),
which is the first of its kind to allow to construct a posterior estimator from samples of the joint
distribution. While it works well empirically, the authors did not provide any analysis or guarantees
on how well the generator captures the tails of the posterior distribution. Our observations suggest
that unusual images, i.e. far away from the mean of the learned distribution might not be accurately
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captured, i.e. the estimated variance is lower than expected. This could be due to the limited training
data available, but might also an artifact of the cWGAN approach which tends to struggle with
capturing weaker modes of their distributions. Specifically, the problematic examples might be an
indication that while the loss shown in eq. (11) avoids mode collapse, there might still be some
”mode deflation” leading to the network underestimating the diversity of the data distribution.

Adaptive vs fixed sampling. Adaptive and fixed sampling methods both have advantages and lim-
itations from a practical perspective. The main advantages of a fixed mask approach lie in the ease
of deployment of the obtained mask, as it simply needs to be programmed into a scanner. We also
have a simple generalization bound of the obtained mask, relying on a simple application of Hoeffd-
ing’s inequality. In contrast, adaptive methods are currently difficult to deploy it on scanners, as it
would require hardware capable of running a neural network guiding the sampling procedure. They
are also harder to train and currently lack rigorous reliability guarantees. However, if successfully
trained and deployed they avoid rigid assumptions about the problem and are able to incorporate
partial data into the acquisition process, which in turn leads to an improved performance. In this
work, we found that using the adaptive method also increased robustness to the noise in the quality
criterion used to drive the mask

Reliability guarantees beyond the variance estimate presented in this work (i.e. quantifying the
uncertainty of the uncertainty estimate) are an important future direction of research.

Extensions to the current model. We showed that it is possible to use the uncertainty estimate to
design fixed masks as in LBC-V, for settings where we are only interested in using the posterior
variance as a natural criterion for reconstruction quality, e.g. masks for MRI systems where incor-
porating a neural network at scanning time is not feasible. In this setting, there are low hanging
fruits for improving the method by making use of the available ground truth information, i.e. jointly
using posterior variance with other metrics which require a ground truth.
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A IMPLEMENTATION DETAILS

A.1 TRAINING DATA

The data set used in all experiments consists of 2D T1-weighted brain scans of seven healthy sub-
jects, which were scanned with a FLASH pulse sequence and a 12-channel receive-only head coil.
In our experiments, we use 20 slices of sizes 256×256 from five such subjects, for a total of 100
slices. We use three subjects (60 slices) for training, two subjects (40 slices) for testing. Data from
individual coils was processed via a complex linear combination, where coil sensitivities were esti-
mated from an 8×8 central calibration region of Fourier space Bydder et al. (2002). The acquisition
used a field of view (FOV) of 220×220 mm2 and a resolution of 0.9× 0.7 mm2. The slice thickness
was 4.0 mm. The imaging protocol comprised a flip angle of 70◦, a TR/TE of 250.0/2.46 ms, with
a scan time of 2 minutes and 10 seconds. Following the recommendations of (Ronneberger et al.,
2015; Schlemper et al., 2018), we then massively augmented the dataset to counter overfitting.

We apply both rigid transformations and elastic deformations. Specifically, at training time, each
image was dynamically augmented with a randomly applied translation of ±6 pixels along x- and
y-axes, rotations of [0, 2π), reflection along the x-axis with 50% probability. We also apply elastic
deformations using the implementation in Simard et al. (2003) with α ∈ [0, 40] and σ ∈ [5, 8].

A.2 GENERATING OBSERVATIONS AT VARIOUS RATES OF SUBSAMPLING

We also dynamically generate horizontal Cartesian masks from sampling rates ∈ [0.025, 0.5] by
randomly selecting lines following suitably deformed Gaussians (see fig. 4).

Original Gaussian Rescale Sample center Final renormalization

Figure 4: Gaussian mask design used during training. We start with a plain Gaussian, rescale it to ensure
selection in the tails,always sample the 4 highest energy lines in the center of the Fourier space, and finally
renormalize and follow the modified Gaussian to sample the remaining lines.

This generation of training masks is biased towards the lower end of the frequency spectrum, and
also does not consider extreme acceleration rates beyond 0.025. Ideally, one would use fully ran-
dom subsampling across the whole range of subsampling rates, ensuring equally reliable variance
estimates. In practice, extreme acceleration rates are unlikely to be used and most of the information
is found in the lower frequencies, meaning these would almost surely be selected first. The present
method represents a reasonable tradeoff between generalization across frequencies and training time.

A.3 ARCHITECTURE

For posterior sampling, we used the same discriminator architecture as described in (Adler & Öktem,
2018). For the conditional generator, we used the cascading network of (Schlemper et al., 2018),
where the data-consistency layer enforced perfect consistency. We used 3 CNN blocks, where each
block contained 5 convolutional layers followed by ReLu.

As our data are complex, we split the real and imaginary part as two channels and add two channels
of Gaussian white noise to the conditional generator. This also means that the discriminator of
(Adler & Öktem, 2018) needs to be adapted to 6 input channels instead of 3.
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A.4 LOSS FUNCTION

The conditional WGAN must have its discriminator and generator trained alternatively, and Adler
and Öktem proposed a novel discriminator loss that empirically avoids mode collapse. This discrim-
inator takes three inputs instead of two in Equation 5, and is the one that we use in practice in the
experiments. The general GAN loss reads

LW (θ, φ) =E(X,Y)∼PX,Y

Z1,Z2∼η

[
Dφ

(
Gθ(Z1,Y),Gθ(Z2,Y), y

)
−Dφ

(
1

2

(
Dφ(Gθ(Z1,Y),X,Y

)
+Dφ

(
X, Gθ(Z2,Y),Y

)))] (10)

Then, for a fixed θ, the discriminator loss can be formulated as

LD(φ) = LW (θ, φ) + 10Lgrad(θ, φ) + 10−3Ldrift(θ, φ) + 10−4 ‖ φ ‖2 (11)

where, Lgrad is the gradient penalty term for the 1-Lipschitz constraint introduced in Gulrajani et al.
(2017). The drift loss is used to stabilize training, to prevent the discriminator from being shifted
to large values, as its performance is invariant to constant shifts. If the discriminator has a large
constant, the overall loss (11) will not be influenced by the constant, so the drift loss penalizes large
the expected squared norm of the discriminator.

For the generator, given a fixed φ, the loss is defined as

LG(θ) = −E(X,Y)∼PX,Y

Z1,Z2∼η
[Dφ

(
Gθ(Z1,Y), Gθ(Z2,Y),Y

)
] + 10−4‖θ‖2. (12)

We refer the reader the Appendix D.3 of (Adler & Öktem, 2018) for the full discussion on the loss
function.

B GREEDY VS. ADAPTIVE

As can be seen in Figure 7, in the fixed mask (greedy) setting we require ten samples from the
posterior before the uncertainty estimation yields competitive masks, while in the adaptive setting
two samples suffice. The reason for this can be understood from considering the decision process
and information flow of each algorithm, visualized in fig. 5. The adaptive algorithm uses only a
single uncertainty estimate to make a decision, as it aggregates the estimate for each candidate u1D

i
line in the Fourier space from a single pointwise uncertainty estimate. Due to the online nature of the
sampling, if this estimate overshot or undershot, the algorithm will receive immediate feedback and
can so revert to the mean, making it robust against a noisy estimator. In contrast to this, the greedy
algorithm a) requires a separate uncertainty estimate for each candidate (since we want to look into
the future and choose the candidate line which yielded the greatest improvement) and b) is performed
on the training set only and then fixed. This means there is a good chance for a noisy estimator to
spike in the uncertainty estimate and give the illusion of large improvements in uncertainty during
the precomputation of the mask, and no way to compensate for mistakes at test time. This means we
need a much more reliable estimator, increasing the number of posterior samples required.
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past current

cand1

cand2

cand3

CLUDAS acquisition decision (closed loop)

past current

cand1

cand2

cand3

LBC sampling decision (open loop)

loss  evaluation to take decision

Figure 5: The adaptive sampling method (left) uses the loss heuristic ` (MSE, uncertainty) on currently ob-
served information prior to the observation and then choosing based on this. In contrast to this, the greedy
method wants to use the largest expected improvement in ` and so has to evaluate it in each possible future,
effectively deciding a posteriori based on which yielded the actual greatest improvement.

C ADDITIONAL RESULTS

C.1 EFFECT OF INCREASING THE NUMBER OF SAMPLES IN THE AVERAGE

Comparing adaptive baselines with 10 averaged samples in Figure 6, we see that the posterior vari-
ance magnitude is not affected by the increase in the number of samples, while MSE is simply
shifted almost uniformly for each data. While the larger number of samples might affect how the
variance is distributed on the image, it does not affect too much the variance obtained out of the
sampling procedure.

Tables 2, 3 and 4 show the second experiment reproduced with averages computed with 10 posterior
samples. The results are consistent with those of Section 6.3.
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Figure 6: MSE (left) and image posterior variance (right) averaged over the whole testing set for different
adaptive methods, average respectively on 2 and 10 samples from the posterior distribution.

C.2 SUPPLEMENTARY RESULTS

Figure 7 shows the performance across all sampling rates of the methods considered in the main
paper.
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Sampling rate 0.05 0.1 0.15 0.2 0.25 0.3

Vellagoundar (10) 10.39 3.30 1.68 1.34 0.70 0.47
LBC-V (2) 8.98 3.48 1.63 1.00 0.58 0.34
LBC-V (10) 4.96 2.15 1.00 0.54 0.38 0.27
LBC-M (2) 4.26 1.45 0.76 0.43 0.3 0.23
LBC-M (10) 4.44 1.26 0.68 0.42 0.29 0.23
CLUDAS (10) 3.8 1.34 0.78 0.43 0.29 0.22
CLUDAS (10) 3.29 1.18 0.65 0.41 0.29 0.22

Table 2: MSE scaled by 103 on test data for different undersampling rates and mask design algorithms. The
reconstruction is computed as the average of 10 samples. The lowest MSE for each undersampling rate is in
bold.

Sampling rate 0.05 0.1 0.15 0.2 0.25 0.3

Vellagoundar (10) 0.55 0.70 0.77 0.82 0.86 0.89
LBC-V(2) 0.55 0.7 0.78 0.82 0.86 0.89
LBC-V(10) 0.66 0.76 0.83 0.87 0.88 0.9
LBC-M(2) 0.66 0.79 0.84 0.89 0.91 0.92
LBC-M(10) 0.67 0.81 0.85 0.88 0.91 0.92
CLUDAS(10) 0.69 0.82 0.87 0.90 0.92 0.93
CLOMDAS(10) 0.71 0.83 0.88 0.91 0.93 0.94

Table 3: SSIM on test data for different undersampling rates and mask design algorithms. The reconstruction
is computed as the average of 10 samples. The highest SSIM for each undersampling rate is in bold.

Sampling rate 0.05 0.1 0.15 0.2 0.25 0.3

Vellagoundar (10) 1.60 1.11 0.81 0.58 0.41 0.30
LBC-V(2) 1.47 0.95 0.68 0.54 0.40 0.27
LBC-V(10) 1.02 0.74 0.54 0.38 0.30 0.22
LBC-M(2) 1.20 0.70 0.51 0.35 0.25 0.20
LBC-M(10) 1.12 0.63 0.45 0.34 0.25 0.20
CLUDAS(10) 0.90 0.58 0.42 0.32 0.24 0.19
CLOMDAS(10) 0.98 0.62 0.46 0.34 0.27 0.21

Table 4: Estimated posterior variance scaled by 103 on test data for different undersampling rates and mask
design algorithms. The reconstruction is computed as the average of 10 samples. The lowest estimated variance
for each undersampling rate is in bold.
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Figure 7: Performance of baselines for all sampling rates considered for MSE, SSIM and Posterior variance
for (a) 2 averaged samples, (b) 10 averaged samples. The results are averaged across the whole testing set and
several runs of each method was done to get error bars.
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