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ABSTRACT

Over the last few years exciting work in deep generative models has produced mod-
els able to suggest new organic molecules by generating strings, trees, and graphs
representing their structure. While such models are able to generate molecules
with desirable properties, their utility in practice is limited due to the difficulty in
knowing how to synthesize these molecules. We therefore propose a new molecule
generation model, mirroring a more realistic real-world process, where reactants
are selected and combined to form more complex molecules. More specifically,
our generative model proposes a bag of initial reactants (selected from a pool
of commercially-available molecules) and uses a reaction model to predict how
they react together to generate new molecules. Modeling the entire process of
constructing a molecule during generation offers a number of advantages. First, we
show that such a model has the ability to generate a wide, diverse set of valid and
unique molecules due to the useful inductive biases of modeling reactions. Second,
modeling synthesis routes rather than final molecules offers practical advantages
to chemists who are not only interested in new molecules but also suggestions
on stable and safe synthetic routes. Third, we demonstrate the capabilities of our
model to also solve one-step retrosynthesis problems, predicting a set of reactants
that can produce a target product.

1 INTRODUCTION

The ability of machine learning to generate structured objects has progressed dramatically in the
last few years. One particularly successful example of this is the flurry of developments devoted
to generating realistic molecules (Gómez-Bombarelli et al., 2018; Segler et al., 2017; Kusner et al.,
2017; Dai et al., 2018; Simonovsky and Komodakis, 2018; De Cao and Kipf, 2018; Jin et al., 2018;
Liu et al., 2018; You et al., 2018). These models have been shown to be extremely effective at finding
molecules with desirable properties: drug-like molecules (Gómez-Bombarelli et al., 2018), biological
target activity (Segler et al., 2017), and soluble molecules (De Cao and Kipf, 2018).

However, these improvements in molecule searching come at a cost: these methods do not describe
how to synthesize such molecules, a prerequisite for experimental testing. While traditional methods
such as virtual screening (Shoichet, 2004) do provide this information, these methods are based on
taking a fixed set of molecular fragments and enumerating their combinations using hand-crafted
bonding rules. Thus they create very conservative sets of molecules, often with poorer values of
properties of interest due to a lack of exploration and focus.

In this paper we propose a generative model (Figure 1) that is able to generate molecules, while
describing how to make such molecules from a set of commonly-available reactant molecules. Our
model first generates a set of reactant molecules, and then maps them to a predicted product molecule
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Figure 1: We approach the generation of molecules through a multistage process mirroring how
complex molecules are created in practice, with suitable reactants first being found which react
together to create a final molecule.

via a reaction prediction model. This mimics closely the real-world process of designing new
molecules. Our model also allows one to simultaneously search for better molecules and describe
how such molecules can be made.

We show that our model: 1. Improves extrapolation away from the training data; 2. Addresses
practical synthesis concerns such as reaction stability and toxicity; and 3. Allows us to propose new
reactants for given target molecules that may be more practical to manage.

2 BACKGROUND

We start with an overview of traditional computational techniques to discover novel molecules with
desirable properties. We then review recent work in machine learning (ML) that seeks to automate
parts of this process. We then point out aspects of molecule discovery we believe deserve much more
attention from the ML community. We end by laying out our contributions to address these concerns.

2.1 VIRTUAL SCREENING

To discover new molecules with certain properties, one popular technique that is used is called virtual
screening (Shoichet, 2004; Pyzer-Knapp et al., 2015). Virtual screening works by: (a) constructing
a library of molecules by enumerating all combinations of an initial set of building blocks that are
merged via virtual chemical reactions, (b) for each molecule calculating properties of interest (or
proxies of these properties) via simulations or prediction models, (c) filtering the most interesting
molecules to synthesize in the lab.

While virtual screening is general, it has an important downside: The number of molecules that can
be practically enumerated and screened (∈ [107, 1010]) is small compared to the combinatorially
large space of possible drug-like compounds (∈ [1023, 10100]) (van Hilten et al., 2019).

2.2 THE MOLECULAR SEARCH PROBLEM

To address this problem, one idea is to replace this full enumeration with a search algorithm; an
idea called de novo-design (Schneider and Schneider, 2016). Specifically, instead of generating a
large set of molecules with small variations, try to search for molecules with particular properties,
recompute these properties for the newfound molecules, and search again. We call this the molecular
search problem. Early work on the molecular search problem used genetic algorithms, ant-colony
optimization, or other discrete search techniques to make local changes to molecules, or steer
enumeration of fragment combinations (Schneider and Schneider, 2016; Schneider, 2013; Hartenfeller
and Schneider, 2011). While more directed than library-generation, these approaches still explored
locally, limiting the diversity of discovered molecules.

The first work to apply current ML techniques to this problem was Gómez-Bombarelli et al. (2018)
(in an earlier 2016 preprint with the same name). Their idea was to search by learning a mapping
from molecular space to continuous space and back. With this mapping the discrete search problem is
transformed into a continuous search problem. Now it is possible to leverage well-studied optimization
techniques to do search: local search can be done via gradient descent and global search via Bayesian
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Figure 2: Different approaches for representing the caffeine molecule. From the left we have: (1) a
molecular graph representation, the blue digits represent atom mapped numbers given to each atom.
(2) A canonical SMILES string representation, (3) The adjacency matrix and node list representation.
Note the adjacency matrix is symmetric. The node list may also more information such as charge.

optimization (Snoek et al., 2012; Gardner et al., 2014). For such a mapping, the authors chose
to represent molecules as SMILES strings (Weininger, 1988) and leverage advances in generative
models for text (Bowman et al., 2016) to learn a character variational autoencoder (CVAE) (Kingma
and Welling, 2014). Alongside this work, Segler et al. (2017) trained recurrent neural networks
(RNNs) to take properties as input and output SMILES strings with these properties, with molecule
search being done using reinforcement learning (RL).

In Search of Molecular Validity. However, the SMILES representation is very brittle. Individual
atoms and bonds are represented as characters, and if individual characters are changed or swapped,
it may no longer represent any molecule (called an invalid molecule). Thus, the CVAE, which
mapped continuous space to individual SMILES characters, often produced invalid molecules (in
one experiment Kusner et al. (2017) sampling from the continuous space produced valid molecules
only 0.7% of the time). To address this validity problem Kusner et al. (2017) proposed to instead
represent molecules as parse trees from a context-free grammar. They then designed a generative
model, called the grammar variational autoencoder (GVAE), to map back and forth from parse trees
to continuous space. While this addresses certain problems, there are also non-context-free aspects of
SMILES strings that went unmodeled. Dai et al. (2018) therefore extended this approach to attribute
grammars which significantly improved the validity. In an independent line of work, work based on
RL have sought to directly improve molecular validity during training (Guimaraes et al., 2017; Janz
et al., 2018).

Instead of outputting SMILES strings or parse trees, multiple recent works have proposed to map
continuous space to a graph representation of molecules (see Figure 2 for an overview of how you can
represent a molecule in different ways). Simonovsky and Komodakis (2018); De Cao and Kipf (2018)
describe a VAE and a generative adversarial network (GAN) that map directly to the adjacency matrix
of a molecular graph. Li et al. (2018) proposed a mapping that builds a molecular graph node-by-node.
However none of these approaches solved the validity problem completely. To guarantee molecular
validity, Jin et al. (2018); Liu et al. (2018); You et al. (2018) construct molecular graphs iteratively
and ensure at each step that the generated graphs are chemically valid.

Search by Sequential Improvement. Another parallel line of work called Matched Molecular
Pair Analysis (MMPA) (Griffen et al., 2011; Dalke et al., 2018) tries to learn an ‘improvement
function’: given an initial molecule, this function outputs an ‘improved’ one with better properties. It
does so by taking a dataset of pairs of molecules, where the second molecule is similar to the first but
with better properties. Recently, Jin et al. (2019) have leveraged state-of-the-art advances in machine
translation (Zhao et al., 2018) to extend the work of Jin et al. (2018) to learn such an improvement
function. They show their method outperforms the works of Jin et al. (2018); You et al. (2018).

2.3 THE MOLECULAR RECIPE PROBLEM

Crucially, all of the works in the previous section solving the molecular search problem focus
purely on optimizing molecules towards desirable properties. They do not address how practical
these molecules are to make. In practice, the primary limiting factor on making molecules is whether
they can be made out of readily-available starting molecules. Virtual screening addressed this concern
by combining molecular fragments using bonding rules to only generate practical molecules, albeit
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with poorer optimization performance. However, in an effort to better solve the molecular search
problem, the above works in machine learning tabled these concerns.

To address this concern is to address the molecular recipe problem: what molecules are we able
to make given a set of readily-available starting molecules? So far this problem has been addressed
independently of the molecular search problem through synthesis planning, where the target molecule
is recursively deconstructed into increasingly simpler building blocks via formally reversed chemical
reactions (Segler et al., 2018). To obtain the molecule in the lab, this plan is executed in the forward
direction starting with an initial set of building blocks, similar to a cooking recipe. For this purpose,
synthesis planning relies on reaction predictors: models that predict how reactant molecules produce
a product molecule. More recently, novel ML models have been designed for reaction prediction
(Wei et al., 2016; Segler and Waller, 2017; Jin et al., 2017; Schwaller et al., 2018a; Bradshaw et al.,
2019; Coley et al., 2019b; Schwaller et al., 2018b). However, even if such methods were used on the
molecules found by current generative models, there is no guarantee that the reactants necessary to
produce these molecules would be obtainable themselves.

2.4 THIS WORK

In this paper, we propose to address both the molecular search problem and the molecular recipe
problem jointly. To do so, we propose a generative model over molecules using a two-step mapping:
First, a mapping from continuous space to a set of known, reliable, easy-to-obtain reactant molecules.
Second a mapping from this set of reactant molecules to a final product molecule, based on a reaction
prediction model (Wei et al., 2016; Segler and Waller, 2017; Jin et al., 2017; Schwaller et al., 2018b;
Bradshaw et al., 2019). Thus our generative model not only generates molecules, but also reaction
plans that describe how to generate these molecules from available reactants. Not only does this
address the molecular recipe problem, the learned continuous space can also be used for search.
Compared to previous work, here we are searching for new molecules using chemical reactions.

Concretely, we argue that our model has several advantages over the current deep generative models
of molecules reviewed in the previous section:

Better extrapolation properties Generating molecules through graph editing operations, represent-
ing reactions, gives us strong inductive biases which we hope will allow us to extrapolate
further away from any training dataset.

Validity of generated molecules Naive generation of molecular smiles strings or graphs can lead to
molecules that are invalid. Although the syntactic validity can be fixed by using masking
(Kusner et al., 2017; Liu et al., 2018), the molecules generated can often still be semantically
invalid. We hope that instead our model, by generating molecules from chemically stable
reactants by means of reactions, proposes more semantically valid molecules.

Provide synthesis routes Proposed molecules from other methods can often not be evaluated in
practice, as chemists do not know how to synthesize them. As a byproduct of our model we
suggest synthetic routes, which could have useful, practical value.

We introduce our model in the next section, and show in the following section how it addresses both
the molecule search and recipe problems.

3 MODEL

In this section we describe our model. We define the set of all possible valid molecular graphs as G,
with an individual graph g ∈ G representing the atoms of a molecule as its nodes, and the type of
bonds between these atoms (we consider single, double and triple bonds) as its edge types. The set of
common reactant molecules, easily procurable by a chemist, which we want to act as building blocks
for any final molecule is a subset of this,R ⊂ G.

As discussed in the previous section (and shown in Figure 1) our generative model for molecules
consists of the composition of two parts: (1) a decoder from a continuous latent space, z ∈ Rm,
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to a bag (ie multiset1) of easily procurable reactants, x ⊂ R; (2) a reaction predictor model that
transforms this bag of molecules into a multiset of product molecules y ⊂ G.

The benefit of this approach is that for step (2) we can pick from several existing reaction predictor
models, including recently proposed methods that have used ML techniques (Kayala et al., 2011;
Segler and Waller, 2017; Schwaller et al., 2018b; Bradshaw et al., 2019; Coley et al., 2019a). In this
work we use the Molecular Transformer of Schwaller et al. (2018b), as it has recently been shown to
provide state-of-the-art performance in this task (Schwaller et al., 2018b, Table 4).

This leaves us with the task of (1), learning a way to decode to (and encode from) a bag of reac-
tants, using a parameterized encoder q(z|x) and decoder p(x|z). We call this co-occurance model
MOLECULE CHEF, and by moving around in the latent space we can select using MOLECULE CHEF
different “bags of reactants”.

Again there are several viable options of how to learn MOLECULE CHEF. For instance one could
choose to use a VAE for this task (Kingma and Welling, 2014; Rezende et al., 2014). However, when
paired with a complex decoder these models are often difficult to train (Bowman et al., 2016; Alemi
et al., 2018), such that much of the previous work for generating graphs has has tuned down the
KL regularization term in these models (Liu et al., 2018; Kusner et al., 2017). We therefore instead
propose using the WAE objective (Tolstikhin et al., 2018), which involves minimizing:

L =Ex∼DEq(z|x) [c(x, p(x|z))]
+ λD (Ex∼D [q(z|x)] , p(z))

where c is cost function, that enforces the reconstructed bag to be similar to the encoded one, and D
is a divergence measure which forces the marginalised distribution of all encodings to match the prior
on the latent space, which is weighted in relative importance by λ. Following Tolstikhin et al. (2018)
we use the maximum mean discrepancy (MMD) divergence measure, with λ = 10 and a standard
normal prior over the latents. We choose c so that this first term matches the reconstruction term we
would obtain in a VAE, i.e. with c(x, z) = − log p(x|z). This means that the objective only differs
from a VAE in the second, regularisation term, such that we are not trying to match each encoding to
the prior but instead the marginalised distribution over all datapoints. Empirically, we find that this
trains well and does not suffer from the same local optimum issues as the VAE.

3.1 ENCODER AND DECODER

We can now begin describing the structure of our encoder and decoder. In these functions it is often
convenient to work with n-dimensional vector embeddings of graphs, mg ∈ Rn. Again we are faced
with a series of possible alternative ways to compute these embeddings. For instance, we could ignore
the structure of the molecule and learn embeddings for each, or use fixed molecular fingerprints,
such as Morgan Fingerprints (Morgan, 1965). We instead choose to use deep graph neural networks
(Merkwirth and Lengauer, 2005; Duvenaud et al., 2015; Battaglia et al., 2018) that can produce
graph-isomorphic representations of graphs.

Deep graph neural networks have been shown to perform well on a variety of tasks involving
small organic molecules, and their advantages compared to the previously mentioned alternative
approaches are that (1) they take the structure of the graph into account and (2) they can learn which
characteristics are important when forming higher level representations. In particular in this work
we use 4 layer Gated Graph Neural Networks (GGNN) (Li et al., 2016). These can compute higher
level representations for each node, which are combined by a weighted sum, to form a graph level
representation that is invariant to the order of the nodes, in an operation referred to as an aggregation
transformation (Johnson, 2017, §3).

Encoder The structure of MOLECULE CHEF’s encoder, q(z|x), is shown in Figure 3. For the ith
data point the embedder is faced with encoding the multi-set of reactants xi = {xi1, xi2, · · · }. It first
computes the representation of each graph using the GGNN, before summing these representations to
get a representation that is invariant to the order of the multiset. A feed forward network is then used
to parameterize the mean and variance of a Gaussian distribution over z.

1Note how we allow molecules to be present multiple times as reactants in our reaction, although practically
many reactions only have one instance of a particular reactant.
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Figure 3: The encoder of our MOLECULE CHEF. This maps from a multiset of reactants to a
distribution over latent space. There are three main steps: (1) the reactants molecules are embedded
into a continuous space by using Gated Graph Neural Networks (GGNN) (Li et al., 2016) to form
molecule embeddings; (2) the molecule embeddings of all the reactants in the multiset are summed to
form one order-invariant embedding for the whole multiset; (3) this is then used as input to a single
hidden layer neural network which parameterizes an independent Gaussian distribution over each
dimension of z.

Algorithm 1 MOLECULE CHEF’s Decoder

Require: zi (latent space sample), GGNN (for embedding molecules), RNN (recurrent neural
network),R (pool of easy-to-obtain reactant molecules), s (learnt “halt” embedding), A (matrix
that projects the size of the latent space to the size of RNN’s hidden space)
h0 ← Azi {The latent input is projected to the same space as the RNN’s hidden layer.}
m0 ← 0 {Start symbol}
for t = 1 to Tmax do
ht ← RNN(mt−1,ht−1)
B← STACK([GGNN(g) for all g inR] + [s])
logits← htB

T

xt ∼ softmax(logits)
if xt = HALT then

break {If the logit corresponding to the halt embedding is selected then we stop early}
else
mt ← GGNN(xt)

end if
end for
return x1, x2, · · ·

Decoder The decoder, p(x|z), maps from the latent space to a multiset of reactant molecules. These
reactants are typically small molecules, which means we could fit a deep generative model which
produces them from scratch. However, to better mimic the process of selecting reactant molecules
from an easily obtainable set, we instead restrict the output of the decoder to pick the molecules from
a fixed set of reactants molecules,R.

This happens in a sequential process using a recurrent neural network (RNN), with the full process
described in Algorithm 1 and illustrated in Figure 4. The latent vector, z is used to parametrize the
initial hidden layer of the RNN. The selected reactants are fed back in as inputs to the RNN at the
next generation stage. Whilst training we randomly sample the ordering of the reactants, and use
teacher forcing.

3.2 ADDING A PREDICTIVE PENALTY LOSS TO THE LATENT SPACE

As discussed in section 2.2 we are interested in using and evaluating our model’s performance in the
molecular search problem, that is using the learnt latent space to find new molecules with desirable
properties. In reality we would wish to measure some complex chemical property that can only be
measured experimentally. However, as a surrogate for this, following (Gómez-Bombarelli et al.,
2018), we optimize instead for the QED score of a molecule, w, as a deterministic mapping from
molecules to this score, y 7→ w, exists in the popular chemo-informatics toolkit RDKit (RDKit,
online). This score gives a Quantitative Estimate of Drug-likeness (Bickerton et al., 2012).
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Figure 4: MOLECULE CHEF’s decoder. The decoder generates the multiset of reactants in sequence
through calls to a RNN. At each step the model picks either one reactant from the pool or to halt,
finishing the sequence. The latent vector, z, is used to parameterize the initial hidden layer of the
RNN. Reactants that are selected are fed back into the RNN on the next step. The reactant bag formed
is later fed through a reaction predictor to form a final product.

To this end, in a similar manner to Liu et al. (2018, §4.3) & Jin et al. (2018, §3.3), we simultaneously
train a 2 hidden layer property predictor NN. This network tries to predict the QED property, w,
of the final product y from the latent encoding of the associated bag of reactants. The use of this
property predictor network for local optimization is described in Section 4.2.

4 EVALUATION

In this section we evaluate MOLECULE CHEF in (1) its ability to generate a diverse set of valid
molecules; (2) how useful its learnt latent space is when optimizing product molecules for some
property; and (3) whether by training a regressor back from product molecules to the latent space,
MOLECULE CHEF can be used as part of a setup to perform retrosynthesis.

In order to train our model we need a dataset of reactant bags. For this we use the USPTO dataset
(Lowe, 2012), processed and cleaned up by Jin et al. (2017). We further use a subset of reactions
exhibiting linear electron flow topologies (Herges, 1994), so the reactants can interact in simple
ways. We filter out reagents, molecules that form context under which the reaction occurs but do not
contribute atoms to the final products, by following the approach of Schwaller et al. (2018a, §3.1).

We wish to use as possible reactant molecules only popular molecules that a chemist would have easy
access to. To this end, we filter our dataset so that each reaction only contains reactants that occur at
least 15 times across different reactions in the original larger dataset. This leaves us with a dataset of
21928 unique reactant bags (and corresponding products). In total there are 3180 unique reactants.

4.1 GENERATION

Model Name Validity Uniqueness Novelty

MOLECULE CHEF + MT 99.0 91.7 87.1

LSTM (Segler et al., 2017) 88.6 89.8 72.9
CVAE (Gómez-Bombarelli et al., 2018) 4.3 72.7 93.5
GVAE (Kusner et al., 2017) 5.0 85.7 100.0

Table 1: Table showing the validity, uniqueness and novelty (all as %) of the products/or molecules
generated from decoding from 20k random samples from the prior p(z). MT stands for the Molecular
Transformer (Schwaller et al., 2018b).

We begin by analysing our model using the metrics favored by previous work (Jin et al., 2018; Liu
et al., 2018; Li et al., 2018; Kusner et al., 2017). In particular, we look at validity (how many of the
molecules generated by the model can be parsed by RDKit), uniqueness (how many different distinct
molecules we sample, conditioned on them being valid) and novelty (what percentage of the valid
molecules do not appear in the training set).
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the reactants that create a particular product.

For the baselines we consider the character VAE (Gómez-Bombarelli et al., 2018), the grammar VAE
(Kusner et al., 2017), and a stacked LSTM generator with no latent space (Segler et al., 2017). The
training set is our 3180 unique reactants, and the associated products from the reactions these partake
in (even though MOLECULE CHEF has not seen the latter during training, the reaction predictor has).
Note how in total the training set is far smaller in size (<30k molecules) compared to the reaction
datasets commonly used in other works assessing generative models of graphs, such as ZINC (Irwin
et al., 2012), which has 250k molecules.

Computing the validity, uniqueness and novelty for the output of MOLECULE CHEF coupled with a
reaction predictor is not as straightforward. This is because this model can output multiple molecules
for one location in latent space, reflecting the fact that chemical reactions can form more than one
product. We therefore instead define validity as requiring that at least one of the molecules in the
bag of products can be parsed by RDKit. For a bag of products to be unique we require it to have at
least one valid molecule that the model has not generated before in any of the previously seen bags.
Finally, for computing novelty we require that the valid molecules not be present in the same training
set we use for the baseline generative models.

The results are shown in Table 1. As MOLECULE CHEF decodes to a bag made up from a predefined
set of molecules, those reactants going into the reaction predictor are valid. The validity of the final
product is not 100%, as the reaction predictor can make non-valid edits to these molecules, but we
see that in a high number of cases the products are valid too.

4.2 LOCAL OPTIMIZATION

As discussed in Section 3.2, when training MOLECULE CHEF we simultaneously trained a property
predictor network, that tries to learn a function from the latent space of MOLECULE CHEF to the
QED score of the final product. In this section we look at using the gradient information obtainable
from this property network to do local optimization to find a molecule created from our reactant pool
that has a high QED score.

We evaluate the local optimization of molecular properties by taking 250 bags of reactants, encoding
them into the latent space of MOLECULE CHEF, and then repeatedly moving in the latent space using
the gradient direction of the property predictor until we have decoded ten different reactant bags. As a
comparison we consider instead moving in a random walk until we have also decoded to ten different
reaction bags. In Figure 5 we look at the distribution of the best QED score found in considering
these ten reactant bags, and how this compared to the QEDs started with.
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When looking at individual optimization runs, we see that the QEDs vary a lot between different
products even if made with similar reactants. However, Figure 5 shows that overall the distribution
of the final best found QED scores is improved when purposefully optimizing for this. This is
encouraging as it gives evidence of the utility of these models for the molecular search problem.
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Figure 7: Random walk in latent space. See text for details.

4.3 RETROSYNTHESIS

A unique feature of our approach is that we learn a decoder from latent space to a bag of reactants.
This gives us the ability to do retrosynthesis by training a model learning a mapping from products to
their associated reactants’ representation in latent space and using this in addition to MOLECULE
CHEF’s decoder to generate a bag of reactants. This process is highlighted in Figure 6.

Although retrosynthesis is a difficult task, with often multiple possible ways to create the same
product and with current state-of-the-art approaches built using large reaction databases and able
to deal with multiple reactions (Segler et al., 2018), we believe that our model could open up new
interesting and exciting approaches to this task. We therefore train a small network based on the same
graph neural network structure used for MOLECULE CHEF followed by four fully connected layers
to regress from products to latent space.

Cl

S

N

SH

Cl

OH

N

OH

N

OH

Cl

N

Cl

O

N

N

USPTO Dataset

reactants products predicted reactants predicted product

Figure 8: An example of performing one-shot retrosynthesis prediction using a trained regressor
from products to latent space. This reactant-product pair has not been seen in the training set of
MOLECULE CHEF. Further examples are shown in the appendix.

A few examples of the predicted reactants corresponding to products that MOLECULE CHEF has not
seen in training before, but which can be made in one step from the pre-defined possible reactants,
are shown in Figure 8 and the appendix. We see that often this approach, although not always able to
suggest the correct whole reactant bag, chooses similar reactants that on reaction produce similar
structures to the original product we were trying to synthesize. While we would not expect this
approach to retrosynthesis to be competitive with complex planning tools, we think this provides a
promising new approach, which could be used to identify bags of reactants that produce molecules
similar to a desired target molecule. In practice, it would be valuable to be pointed directly to
molecules with similar properties to a target molecules if they are easier to make than the target, since
it is the properties of the molecules, and not the actual molecules themselves that we are after.

4.4 QUALITATIVE QUALITY OF SAMPLES

In Figure 7 we show molecules generated from a random walk starting from the encoding of a
particular molecule (shown in the left-most column). We compare the CVAE, GVAE, and MOLECULE
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CHEF (for MOLECULE CHEF we encode the reactant bag known to generate the same molecule). We
showed all generated molecules to a domain expert and asked them to evaluate their properties in
terms of their stability, toxicity, oxidizing power, corrosiveness. Many molecules produced by the
CVAE and GVAE show undesirable features, unlike the molecules generated by MOLECULE CHEF.

5 DISCUSSION

In this work, we have introduced MOLECULE CHEF a model that generates synthesizable molecules.
By constructing molecules through selecting reactants and running chemical reactions, while perform-
ing optimization in continuous latent space, we can combine the strengths of previous VAE-based
models and classical discrete de-novo design algorithms based on virtual reactions.
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variational autoencoders. In Věra Kůrková, Yannis Manolopoulos, Barbara Hammer, Lazaros
Iliadis, and Ilias Maglogiannis, editors, Artificial Neural Networks and Machine Learning – ICANN
2018, pages 412–422, Cham, 2018. Springer International Publishing. ISBN 978-3-030-01418-6.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in neural information processing systems, pages 2951–2959,
2012.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasserstein auto-encoders.
In ICLR, 2018.

Niek van Hilten, Florent Chevillard, and Peter Kolb. Virtual compound libraries in computer-assisted
drug discovery. Journal of chemical information and modeling, 2019.

Jennifer N Wei, David Duvenaud, and Alán Aspuru-Guzik. Neural networks for the prediction of
organic chemistry reactions. ACS central science, 2(10):725–732, 2016.

David Weininger. SMILES, a chemical language and information system. 1. introduction to method-
ology and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Jiaxuan You, Bowen Liu, Rex Ying, Vijay Pande, and Jure Leskovec. Graph convolutional policy net-
work for goal-directed molecular graph generation. In Advances in Neural Information Processing
Systems, 2018.

Junbo Jake Zhao, Yoon Kim, Kelly Zhang, Alexander M Rush, and Yann LeCun. Adversarially
regularized autoencoders. In ICML, 2018.

12

http://www.rdkit.org


Published as a workshop paper at ICLR 2019

A APPENDIX

A.1 FURTHER RANDOM WALK EXAMPLE
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Figure 9: Another example random walk in latent space.

A.2 FURTHER RETROSYTHESIS EXAMPLES
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Figure 10: Further examples of the predicted reactants associated with a given product for product
molecules not in MOLECULE CHEF’s training dataset.
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Junction Tree
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Figure 11: Approaches of previous methods for creating graphs describing molecules. From left to
right we have GraphVAE (Simonovsky and Komodakis, 2018), Constrained Graph VAE (CGVAE)
(Liu et al., 2018) and the Junction Tree VAE (JT-VAE) (Jin et al., 2018). Note that some of the steps
shown in the diagram can be further broken down. For instance the CGVAE creates the adjacency
matrix rows in a series of steps, each one creating one non-zero entry. Likewise, the JT-VAE creates
the initial tree in an iterative process.
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