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ABSTRACT

Monte Carlo Tree Search (MCTS) algorithms have achieved great success on
many challenging benchmarks (e.g., Computer Go). However, they generally re-
quire a large number of rollouts, making their applications costly. Furthermore, it
is also extremely challenging to parallelize MCTS due to its inherent sequential
nature: each rollout heavily relies on the statistics (e.g., node visitation counts) es-
timated from previous simulations to achieve an effective exploration-exploitation
tradeoff. In spite of these difficulties, we develop an algorithm, WU-UCT1, to
effectively parallelize MCTS, which achieves linear speedup and exhibits only
limited performance loss with an increasing number of workers. The key idea in
WU-UCT is a set of statistics that we introduce to track the number of on-going yet
incomplete simulation queries (named as unobserved samples). These statistics
are used to modify the UCT tree policy in the selection steps in a principled man-
ner to retain effective exploration-exploitation tradeoff when we parallelize the
most time-consuming expansion and simulation steps. Experiments on a propri-
etary benchmark and the Atari Game benchmark demonstrate the linear speedup
and the superior performance of WU-UCT comparing to existing techniques.

1 INTRODUCTION

Recently, Monte Carlo Tree Search (MCTS) algorithms such as UCT (Kocsis et al., 2006) have
achieved great success in solving many challenging artificial intelligence (AI) benchmarks, includ-
ing video games (Guo et al., 2016) and Go (Silver et al., 2016). However, they rely on a large
number (e.g. millions) of interactions with the environment emulator to construct search trees for
decision-making, which leads to high time complexity (Browne et al., 2012). For this reason, there
has been an increasing demand for parallelizing MCTS over multiple workers. However, paralleliz-
ing MCTS without degrading its performance is difficult (Segal, 2010; Mirsoleimani et al., 2018a;
Chaslot et al., 2008), mainly due to the fact that each MCTS iteration requires information from all
previous iterations to provide effective exploration-exploitation tradeoff. Specifically, parallelizing
MCTS would inevitably obscure these crucial information, and we will show in Section 2.2 that this
loss of information potentially results in a significant performance drop. The key question is there-
fore how to acquire and utilize more available information to mitigate the information loss caused
by parallelization and help the algorithm to achieve better exploration-exploitation tradeoff.

To this end, we propose WU-UCT (Watch the Unovserved in UCT), a novel parallel MCTS algo-
rithm that attains linear speedup with only limited performance loss. This is achieved by a con-
ceptual innovation (Section 3.1) as well as an efficient real system implementation (Section 3.2).
Specifically, the key idea in WU-UCT to overcome the aforementioned challenge is a set of statis-
tics that tracks the number of on-going yet incomplete simulation queries (named as unobserved
samples). We combine these newly devised statistics with the original statistics of observed samples
to modify UCT’s policy in the selection steps in a principled manner, which, as we shall show in
Section 4, effectively retains exploration-exploitation tradeoff during parallelization. Our proposed

1Code is available at https://github.com/liuanji/WU-UCT.
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approach has been successfully deployed in a production system for efficiently and accurately esti-
mating the rate at which users pass levels (termed user pass-rate) in a mobile game “Joy City”, with
the purpose of reducing their design cycles. On this benchmark, we show that WU-UCT achieves
near-optimal linear speedup and superior performance in predicting user pass-rate (Section 5.1). We
further evaluate WU-UCT on the Atari Game benchmark and compare it to state-of-the-art parallel
MCTS algorithms (Section 5.2), which also demonstrate our superior speedup and performance.

2 ON THE DIFFICULTIES OF PARALLELIZING MCTS

We first introduce the MCTS and the UCT algorithms, along with their difficulties in parallelization.

2.1 MONTE CARLO TREE SEARCH AND UPPER CONFIDENCE BOUND FOR TREES (UCT)

We consider the Markov Decision Process (MDP) 〈S,A, R, P, γ〉, where an agent interacts with the
environment in order to maximize a long-term cumulative reward. Specifically, an agent at state
st ∈ S takes an action at ∈ A according to a policy π, so that the MDP transits to the next state
st+1 ∼ P (st+1|st, at) and emits a reward R(st, at).2 The objective of the agent is to learn an
optimal policy π∗ such that the long-term cumulative reward is maximized:

max
π

Eat∼π,st+1∼P

[ ∞∑
t=0

γtR(st, at) |s0=s
]
, (1)

where s ∈ S denotes the initial state and γ ∈ (0, 1] is the discount factor.3 Many reinforcement
learning (RL) algorithms have been developed to solve the above problem (Sutton & Barto, 2018),
including model-free algorithms (Mnih et al., 2013; 2016; Williams, 1992; Konda & Tsitsiklis, 2000;
Schulman et al., 2015; 2017) and model-based algorithms (Nagabandi et al., 2018; Weber et al.,
2017; Bertsekas, 2005; Deisenroth & Rasmussen, 2011). Monte Carlo Tree Search (MCTS) is
a model-based RL algorithm that plans the best action at each time step (Browne et al., 2012).
Specifically, it uses the MDP model (or its sampler) to identify the best action at each time step
by constructing a search tree (Figure 1(a)), where each node s represents a visited state, each edge
from s denotes an action as that can be taken at that state, and the landing node s′ denotes the state
it transits to after taking as. As shown in Figure 1(a), MCTS repeatedly performs four sequential
steps: selection, expansion, simulation and backpropagation. The selection step traverses over the
existing search tree until the leaf node (or other termination conditions are satisfied) by choosing
actions (edges) as at each node s according to a tree policy. One widely used node-selection policy
is the one used in the Upper Confidence bound for Trees (UCT) (Kocsis et al., 2006):

as = argmax
s′∈C(s)

{
Vs′ + β

√
2 logNs
Ns′

}
, (2)

where C(s) denotes the set of all child nodes for s; the first term Vs′ is an estimate for the long-term
cumulative reward that can be received when starting from the state represented by node s′, and the
second term represents the uncertainty (size of the confidence interval) of that estimate. The confi-
dence interval is calculated based on the Upper Confidence Bound (UCB) (Auer et al., 2002; Auer,
2002) usingNs andNs′ , which denote the number of times that the nodes s and s′ have been visited,
respectively. Therefore, the key idea of the UCT policy (2) is to select the best action according to
an optimistic estimation (i.e., the upper confidence bound) of the expected return, which strikes a
balance between the exploitation (first term) and the exploration (second term) with β controlling
their tradeoff. Once the selection process reaches a leaf node of the search tree (or other termina-
tion conditions are met), we will expand the node according to a prior policy by adding a new child
node. Then, in the simulation step, we estimate its value function (cumulative reward) V̂s by running
the environment simulator with a default (simulation) policy. Finally, during backpropagation, we
update the statistics Vs and Ns from the leaf node sT to the root node s0 of the selected path by
recursively performing the following update (i.e., from t = T − 1 to t = 0):

Nst ← Nst + 1, V̂st ← R(st, at) + γV̂st+1
, Vst ←

(
(Nst − 1)Vst + V̂st

)
/Nst , (3)

2In the context of MCTS, the action space A is assumed to be finite and the transition P is assumed to be
deterministic, i.e., the next state st+1 is determined by the current state st and action at.

3We assume certain regularity conditions hold so that the cumulative reward
∑∞

t=0 γ
tR(st, at) is always

bounded (Sutton & Barto, 2018).
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(a) Each (non-parallel) MCTS rollout consists of four sequential steps: selection, expansion, simulation and
backpropagation, where the expansion and the simulation steps are generally most time-consuming.
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Figure 1: MCTS and its parallelization. (a) An overview of MCTS. (b) The ideal parallelization: the
most up-to-date statistics {Vs, Ns} (in chromatic color) are assumed to be available to all workers as
soon as a simulation begins (unrealistic in practice). (c) The key challenge in parallelizing MCTS:
the workers can only access outdated {Vs, Ns} (in gray-color), leading problems like collapse of
exploration. (d) WU-UCT tracks the number of incomplete simulation queries, which is denoted as
Os, and modifies the UCT policy in a principled manner to retain effective exploration-exploitation
tradeoff. It achieves comparable speedup and performance as the ideal parallelization.

where V̂sT is the simulation return of sT ; at denotes the action selected following (2) at state st.

2.2 THE INTRINSIC DIFFICULTIES OF PARALLELIZING MCTS

The above discussion implies that the MCTS algorithm is intrinsically sequential: each selection
step in a new rollout requires the previous rollouts to complete in order to deliver the updated statis-
tics, Vs and Ns, for the UCT tree policy (2). Although this requirement of up-to-date statistics is not
mandatory for implementation, it is in practice intensively required to achieve effective exploration-
exploitation tradeoff (Auer et al., 2002). Specifically, up-to-date statistics best help the UCT tree
policy to identify and prune non-rewarding branches as well as extensively visiting rewarding paths
for additional planning depth. Likewise, to achieve the best possible performance, when multiple
workers are used, it is also important to ensure that each worker uses the most recent statistics (the
colored Vs andNs in Figure 1(b)) in its own selection step. However, this is impossible in paralleliz-
ing MCTS based on the following observations. First, the expansion step and the simulation step
are generally more time-consuming compared to the other two steps, because they involve a large
number of interactions with the environment (or its simulator). Therefore, as exemplified by Figure
1(c), when a worker C initiates a new selection step, the other workers A and B are most likely
still in their simulation or expansion steps. This prevents them from updating the (global) statistics
for other workers like C, which happens at their respective backpropagation steps. Using outdated
statistics (the gray-colored Vs and Ns) at different workers could lead to a significant performance
loss given a fixed target speedup, due to behaviors like collapes of exploration or exploitation fail-
ure, which we shall discuss thoroughly in Section 4. To give an example, Figure 1(c) illustrates the
collapse of exploration, where worker C traverses over the same path as the worker A in its selection
step due to the determinism of (2). Specifically, if the statistics are unchanged between the moments
that worker A and C begin their own selection steps, they will choose the same node according to
(2), which greatly reduces the diversity of exploration. Therefore, the key question that we want to
address in parallelizing MCTS is how to track the correct statistics and modify the UCT policy in a
principled manner, with the hope of retaining effective exploration-exploitation tradeoff at different
workers.
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3 WU-UCT

In this section, we first develop the conceptual idea of our WU-UCT algorithm (Section 3.1), and
then we present a real system implementation using a master-worker architecture (Section 3.2).

3.1 WATCH THE UNOBSERVED SAMPLES IN UCT TREE POLICY

As we pointed out earlier, the key question we want to address in parallelizing MCTS is how to
deliver the most up-to-date statistics {Vs, Ns} to each worker so that they can achieve effective
exploration-exploitation tradeoff in its selection step. This is assumed to be the case in the ideal
parallelization in Figure 1(b). Algorithmically, it is equivalent to the sequential MCTS except that
the rollouts are performed in parallel by different workers. Unfortunately, in practice, the statis-
tics {Vs, Ns} available to each worker are generally outdated because of the slow and incomplete
simulation and expansion steps at the other workers. Specifically, since the estimated value V̂s is
unobservable before simulations complete and workers should not wait for the updated statistics to
proceed, the (partial) loss of statistics {Vs, Ns} is unavoidable. Now the question becomes: is there
an alternative way to addressing the issue? The answer is in the affirmative and is explained below.

Aiming at bridging the gap between naive parallelization and the ideal case, we closely examine
their difference in terms of the availability of statistics. As illustrated by the colors of the statistics,
their only difference in {Vs, Ns} is caused by the on-going simulation process. As suggested by (3),
although Vs can only be updated after a simulation step is completed, the newest Ns information
can actually be available as early as a worker initiates a new rollout. This is the key insight that
we leverage to enable effective parallelization in our WU-UCT algorithm. Motivated by this, we
introduce another quantity, Os, to count the number of rollouts that have been initiated but not yet
completed, which we name as unobserved samples. That is, our new statistics,Os, watch the number
of unobserved samples, and are then used to correct the UCT tree policy (2) into the following form:

as = argmax
s′∈C(s)

{
Vs′ + β

√
2 log(Ns +Os)

Ns′ +Os′

}
. (4)

The intuition of the above modified node-selection policy is that when there are Os workers sim-
ulating (querying) node s, the confidence interval at node s will eventually be shrunk after they
complete. Therefore, adding Os and Os′ to the exploration term considers such a fact beforehand
and let other workers be aware of it. Despite its simple form, (4) provides a principled way to retain
effective exploration-exploitation tradeoff under parallel settings; it corrects the confidence bound
towards better exploration-exploitation tradeoff. As the confidence level is instantly updated (i.e.,
at the beginning of simulation), more recent workers are guaranteed to observe additional statistics,
which prevent them from extensively querying the same node as well as find better nodes for them
to query. For example, when multiple children are in demand for exploration, (4) allows them to
be explored evenly. In contrast, when a node has been sufficiently visited (i.e., large Ns and Ns′ ),
adding Os and Os′ from the unobserved samples have little effect on (4) because the confidence
interval is sufficiently shrunk around Vs′ , allowing extensively exploitation of the best-valued child.

3.2 SYSTEM IMPLEMENTATION USING MASTER-WORKER ARCHITECTURES

We now proceed to explain the system implementation of WU-UCT, where the overall architecture
is shown in Figure 2(a) (see Appendix A for the details). Specifically, we use a master-worker ar-
chitecture to implement the WU-UCT algorithm with the following considerations. First, since the
expansion and the simulation steps are much more time-consuming compared to the selection and
the backpropagation steps, they should be intensively parallelized. In fact, they are relatively easy
to parallelize (e.g., different simulations could be performed independently). Second, as we dis-
cussed earlier, different workers need to access the most up-to-date statistics {Vs, Ns, Os} in order
to achieve successful exploration-exploitation tradeoff. To this end, a centralized architecture for
the selection and backpropagation step is more preferable as it allows adding strict restrictions to
the retrieval and update of the statistics, making them up-to-date. Specifically, we use a central-
ized master process to maintain a global set of statistics (in addition to other data such as game
states), and let it be in charge of the backpropagation step (i.e., updating the global statistics) and
the selection step (i.e., exploiting the global statistics). As shown in Figure 2(a), the master process
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(a) The system architecture that implements WU-UCT.
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(b) Time consumption in the Tap game.
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(c) Time consumption in the Atari games.

Figure 2: Diagram of WU-UCT’s system architecture and its time consumption. (a) the Green
blocks and the task buffers are operated at the master, while the blue blocks are executed by the
workers. (b-c) the breakdown of the time consumption on two game benchmarks (Section 5).

repeatedly performs rollouts until a predefined number of simulations is reached. During each roll-
out, it selects nodes to query, assign expansion and simulation tasks to different workers, and collect
the returned results to update the global statistics. In particular, we use the following incomplete
update and complete update (shown in Figure 2(a)) to track Ns and Os along the traversed path (see
Figure 1(d)):

[incomplete update] Os ← Os + 1, (5)
[complete update] Os ← Os − 1; Ns ← Ns + 1, (6)

where incomplete update is performed before the simulation task starts, allowing the updated statis-
tics to be instantly available globally; complete update is done after the simulation return is available,
resembling the backpropagation step in the sequential algorithm. In addition, Vs is also updated in
the complete update step using (3). Such a clear division of labor between the master and the work-
ers provides sequential selection and backpropagation steps when we parallelize the costly expan-
sion and simulation steps. It ensures up-to-date statistics for all workers by the centralized master
process and achieves linear speedup without much performance degradation (see Section 5 for the
experimental results).

To justify the above rationale of our system design, we perform a set of running time analysis
for our developed WU-UCT system and report the results in Figure 2(b)–(c). We show the time-
consumption for different parts at the master and at the workers. First, we focus exclusively on the
workers. With a close-to-100% occupancy rate for the simulation workers, the simulation step is
fully parallelized. Although the expansion workers are not fully utilized, the expansion step is max-
imumly parallelized since the number of required simulation and expansion tasks is identical. This
suggests the existence of an optimal (task-dependent) ratio between the number of expansion work-
ers and the number of simulation workers that fully parallelize both steps with the least resources
(e.g. memory). Returning to the master process, on both benchmarks, we see a clear dominance
of the time spent on the simulation and the expansion steps even they are both parallelized by 16
workers. This supports our design to parallelize only the simulation and expansion steps. We finally
focus on the communication overhead caused by parallelization. Although more time-consuming
compared to simulation and backpropagation, the communication overhead is negligible compared
to the time used by the expansion and the simulation steps. Other details in our system, such as the
centralized game-state storage, are further discussed in Appendix A.

4 THE BENEFITS OF WATCHING UNOBSERVED SAMPLES

In this section, we discuss the benefits of watching unobserved samples in WU-UCT, and compare
it with several popular parallel MCTS algorithms (Figure 3), including Leaf Parallelization (LeafP),
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Figure 3: Three popular parallel MCTS algorithms. LeafP parallelizes the simulation steps, TreeP
uses virtual loss to encourage exploration, and RootP parallelizes the subtrees of the root node.

Tree Parallelization (TreeP) with virtual loss, and Root Parallelization (RootP).4 LeafP parallelizes
the leaf simulation, which leads to an effective hex game solver (Wang et al., 2018). TreeP with
virtual loss has recently achieved great success in challenging real-world tasks such as Go (Silver
et al., 2016). And RootP parallelizes the subtrees of the root node at different workers and aggregates
the statistics of the subtrees after all the workers complete their simulations (Soejima et al., 2010).

We argue that, by introducing the additional statistics Os, WU-UCT achieves a better exploration-
exploitation tradeoff than the above methods. First, LeafP and TreeP represent two extremes in
such a tradeoff. LeafP lacks diversity in exploration as all its workers are assigned to simulating the
same node, leading to performance drop caused by collapse of exploration in much the same way
as the naive parallelization (see Figure 1(c)). In contrast, although the virtual loss used in TreeP
could encourage exploration diversity, this hard additive penalty could cause exploitatin failure:
workers will be less likely to co-simulating the same node even when they are certain that it is
optimal (Mirsoleimani et al., 2017). RootP tries to avoid these issues by letting workers perform an
independent tree search. However, this reduces the equivalent number of rollouts at each worker,
decreasing the accuracy of the UCT policy (2). Different from the above three approaches, WU-
UCT achieves a much better exploration-exploitation tradeoff in the following manner. It encourages
exploration by usingOs to “penalize” the nodes that have many in-progress simulations. Meanwhile,
it allows multiple workers to exploit the most rewarding node since this “penalty” vanishes when
Ns becomes large (see (4)).

5 EXPERIMENTS

This section evaluates the proposed WU-UCT algorithm on a production system to predict the user
pass-rate of a mobile game (Section 5.1) as well as on the public Atari Game benchmark (Sec-
tion 5.2), aiming at demonstrating the superior performance and near-linear speedup of WU-UCT.

5.1 EXPERIMENTS ON THE “JOY CITY” GAME

Joy City is a level-oriented game with diverse and challenging gameplay. Players tap to eliminate
connected items on the game board. To pass a level, players have to complete certain goals within
a given number of steps.5 The number of steps used to pass a level (termed game step) is the main
performance metric, which differentiates masters from beginners. It is a challenging reinforcement
learning task due to its large number of game-state (over 129×9) and high randomness in the tran-
sition. The goal of the production system is to accurately predict the user pass-rate of different
game-levels, providing useful and fast feedback for game design. Powered by WU-UCT, the system
runs 16× faster while accurately predicting user pass-rate (8.6% MAE). In this subsection, we con-
centrate our analysis on the speedup and performance of WU-UCT using two typical game-levels
(Level-35 and Level-58)6, and refer the readers interested in the user pass-rate prediction system to
Appendix C.

We evaluate WU-UCT with different numbers of expansion and simulation workers (from 1 to 16)
and report the speedup results in Figures 4(a)–(b). For all experiments, we fix the total number of

4We refer the readers to Chaslot et al. (2008) for more details. The pseudo-code of the three algorithms is
given in Appendix B. LeafP: Algorithm 4, TreeP: Algorithm 5, RootP: Algorithm 6.

5We refer it as the tap game below. See Appendix C.1 for more details about the game rules.
6Level-35 is relatively simple, requiring 18 steps for an average player to pass, while Level-58 is relatively

difficult and needs more than 50 steps to solve.
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(a) Speedup (level 35) (b) Speedup (level 58) (c) Performance (level 35) (d) Performance (level 58)

Figure 4: WU-UCT speedup and performance. Results are averaged over 10 runs. WU-
UCT achieves linear speedup with negligible performance loss (measured in game steps).

Table 1: The performance on 15 Atari games. Average episode return (± standard deviation) over 10
trials are reported. The best average scores among parallel algorithms are highlighted in boldface.
The mark * indicates that WU-UCT achieves statistically better performance (p-value < 0.0011
in paired t-test) than TreeP (no mark if both methods perform statistically similar). Similarly, the
marks † and ‡ mean that WU-UCT performs statistically better than LeafP and RootP, respectively.

Environment WU-UCT TreeP LeafP RootP PPO UCT

Alien 5938±1839 4200±1086 4280±1016 5206±282 1850 6820
Boxing 100±0*†‡ 99±0 95±4 98±1 94 100

Breakout 408±21†‡ 390±33 331±45 281±27 274 462
Centipede 1163034±403910*†‡ 439433±207601 162333±69575 184265±104405 4386 652810
Freeway 32±0 32±0 31±1 32±0 32 32
Gravitar 5060±568† 4880±1162 3385±155 4160±1811 737 4900

MsPacman 19804±2232*†‡ 14000±2807 5378±685 7156±583 2096 23021
NameThisGame 29991±1608* 23326±2585 25390±3659 27440±9533 6254 38455

RoadRunner 46720±1359*†‡ 24680±3316 25452±2977 38300±1191 25076 52300
Robotank 101±19 86±13 80±11 78±13 5 82

Qbert 13992±5596 14620±5738 11655±5373 9465±3196 14293 17250
SpaceInvaders 3393±292 2651±828 2435±1159 2543±809 942 3535

Tennis 4±1*†‡ -1±0 -1±0 0±1 -14 5
TimePilot 55130±12474*† 32600±2165 38075±2307 45100±7421 4342 52600
Zaxxon 39085±6838†‡ 39579±3942†‡ 12300±821 13380±769 5008 46800

simulations to 500. First, note that when we have the same number of expansion workers and sim-
ulation workers, WU-UCT achieves linear speedup. Furthermore, Figures 4 also suggest that both
the expansion workers and the simulation workers are crucial, since lowering the number of workers
from either sets decreases the speedup. Besides the near-linear speedup property, WU-UCT suffers
negligible performance loss with the increasing number of workers, as shown in Figures 4(c)–(d).
The standard deviations of the performance (measured in the average game steps) over different
numbers of expansion and simulation workers are only 0.67 and 1.22 for Level-35 and Level-58,
respectively, which are much smaller than their average game steps (12 and 30).

5.2 EXPERIMENTS ON THE ATARI GAME BENCHMARK

We further evaluate WU-UCT on Atari Games (Bellemare et al., 2013), a classical benchmark for
reinforcement learning (RL) and planning algorithms (Guo et al., 2014). The Atari Games are an
ideal testbed for MCTS algorithms for its long planning horizon (several thousand), sparse reward,
and complex game strategy. We compare WU-UCT to three parallel MCTS algorithms discussed
in Section 4: TreeP, LeafP, and RootP (additional experiment results comparing WU-UCT with a
variant of TreeP is provided in Appendix E). We also report the results of sequential UCT (≈ 16×
slower than WU-UCT) and PPO (Schulman et al., 2017) as reference. Generally, the performance
of sequential UCT sets an upper bound for parallel UCT algorithms. PPO is included since we used
a distilled PPO policy network (Hinton et al., 2015; Rusu et al., 2015) as the roll-out policy for all
other algorithms. It is considered as a performance lower bound for both parallel and sequential
UCT algorithms. All experiments are performed with a total of 128 simulation steps, and all parallel
algorithms use 16 workers (see Appendix D for the details).

We first compare the performance, measured by average episode reward, between WU-UCT and the
baselines on 15 Atari games, which is done with 16 simulation workers and 1 expansion worker (for
a fair comparison, since baselines do not parallel the expansion step). Each task is repeated 10 times
with the mean and standard deviation reported in Table 1. Due to the better exploration-exploitation
tradeoff during selection, WU-UCT out-performs all other parallel algorithms in 12 out of 15 tasks.
Pairwise student t-test further show that WU-UCT performs significantly better (adjusted by the
Bonferroni method, p-value < 0.0011) than TreeP, LeafP, and RootP in 7, 9, and 7 tasks, respec-
tively. Next, we examine the influence of the number of simulation workers on the speed and the
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Figure 5: Speed and performance test of our WU-UCT along with three baselines on four Atari
games. All experiments are repeated three times and the mean and standard deviation (for episode
reward only) are reported. For WU-UCT, the number of expansion workers is fixed to be one.

performance. In Figure 5, we compare the average episode return as well as time consumption (per
step) for 4, 8, and 16 simulation workers. The bar plots indicate that WU-UCT experiences little
performance loss with an increasing number of workers, while the baselines exhibit significant per-
formance degradation when heavily parallelized. WU-UCT also achieves the fastest speed compared
to the baselines, thanks to the efficient master-worker architecture (Section 3.2). In conclusion, our
proposed WU-UCT not only out-performs baseline approaches significantly under the same number
of workers but also achieves negligible performance loss with the increasing level of parallelization.

6 RELATED WORK

MCTS Monte Carlo Tree Search is a planning method for optimal decision making in problems
with either deterministic (Silver et al., 2016) or stochastic (Schäfer et al., 2008) environments. It has
made a profound influence on Artificial Intelligence applications (Browne et al., 2012), and has even
been applied to predict and mimic human behavior (van Opheusden et al., 2016). Recently, there
has been a wide range of work combining MCTS and other learning methods, providing mutual
improvements to both methods. For example, Guo et al. (2014) harnesses the power of MCTS to
boost the performance of model-free RL approaches; Shen et al. (2018) bridges the gap between
MCTS and graph-based search, outperforming RL and knowledge base completion baselines.

Parallel MCTS Many approaches have been developed to parallelize MCTS methods, with the
objective being two-fold: achieve near-linear speedup under a large number of workers while main-
taining the algorithm performance. Popular parallelization approaches of MCTS include leaf par-
allelization, root parallelization, and tree parallelization (Chaslot et al., 2008). Leaf parallelization
aims at collecting better statistics by assigning multiple workers to query the same node (Cazenave &
Jouandeau, 2007). However, this comes at the cost of wasting diversity of the tree search. Therefore,
its performance degrades significantly despite the near-ideal speedup with the help of a client-server
network architecture (Kato & Takeuchi, 2010). In root parallelization, multiple search trees are
built and assigned to different workers. Additional work incorporates periodical synchronization of
statistics from different trees, which results in better performance in real-world tasks (Bourki et al.,
2010). However, a case study on Go reveals its inferiority with even a small number of workers
(Soejima et al., 2010). On the other hand, tree parallelization uses multiple workers to traverse, per-
form queries, and update on a shared search tree. It benefits significantly from two techniques. First,
a virtual loss is added to avoid querying the same node by different workers (Chaslot et al., 2008).
This has been adopted in various successful applications of MCTS such as Go (Silver et al., 2016)
and Dou-di-zhu (Whitehouse et al., 2011). Additionally, architecture side improvements such as us-
ing pipeline (Mirsoleimani et al., 2018b) or lock-free structure (Mirsoleimani et al., 2018a) speedup
the algorithm significantly. However, though being able to increase diversity, virtual loss degrades
the performance under even four workers (Mirsoleimani et al., 2017; Bourki et al., 2010). Finally,
the idea of counting the unobserved samples to adjust the confidence interval in arm selection also
appeared in Zhong et al. (2017). However, it mainly focuses on parallelizing the multi-armed thresh-
olding bandit problem (Chen et al., 2014) instead of the tree search problem as we do.

7 CONCLUSION

This paper proposes WU-UCT, a novel parallel MCTS algorithm that addresses the problem of
outdated statistics during parallelization by watching the number of unobserved samples. Based on
the newly devised statistics, it modifies the UCT node-selection policy in a principled manner, which
achieves effective exploration-exploitation tradeoff. Together with our efficiency-oriented system
implementation, WU-UCT achieves near-optimal linear speedup with only limited performance loss
across a wide range of tasks, including a deployed production system and Atari games.
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Jan Schäfer, Michael Buro, and Knut Hartmann. The uct algorithm applied to games with imperfect
information. Diploma, Otto-Von-Guericke Univ. Magdeburg, Magdeburg, Germany, 2008.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard B Segal. On the scalability of parallel uct. In International Conference on Computers and
Games, pp. 36–47. Springer, 2010.

Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, and Jianfeng Gao. M-walk: Learning to
walk over graphs using monte carlo tree search. In Advances in Neural Information Processing
Systems, pp. 6786–6797, 2018.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354, 2017.

Yusuke Soejima, Akihiro Kishimoto, and Osamu Watanabe. Evaluating root parallelization in go.
IEEE Transactions on Computational Intelligence and AI in Games, 2(4):278–287, 2010.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Bas van Opheusden, Zahy Bnaya, Gianni Galbiati, and Wei Ji Ma. Do people think like computers?
In International conference on computers and games, pp. 212–224. Springer, 2016.

Shiqi Wang, Meng Ding, and Shuqin Li. Hex game system based on p-mcts. In 2018 Chinese
Control And Decision Conference (CCDC), pp. 6639–6642. IEEE, 2018.

Théophane Weber, Sébastien Racanière, David P Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yujia
Li, et al. Imagination-augmented agents for deep reinforcement learning. arXiv preprint
arXiv:1707.06203, 2017.

10



Published as a conference paper at ICLR 2020

Daniel Whitehouse, Edward J Powley, and Peter I Cowling. Determinization and information set
monte carlo tree search for the card game dou di zhu. In 2011 IEEE Conference on Computational
Intelligence and Games (CIG’11), pp. 87–94. IEEE, 2011.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Jie Zhong, Yijun Huang, and Ji Liu. Asynchronous parallel empirical variance guided algorithms
for the thresholding bandit problem. arXiv preprint arXiv:1704.04567, 2017.

11



Published as a conference paper at ICLR 2020

SUPPLEMENTARY MATERIAL
A ALGORITHM DETAILS FOR WU-UCT

The pseudo-code of WU-UCT is provided in Algorithm 1. Specifically, it provides the workflow of
the master process. When the number of completed updates (tcomplete) has not exceeded the max-
imum simulation step Tmax (a pre-defined hyperparameter), the main process repeatedly performs
a modified rollout that consists of the following steps: selection, expansion, simulation, and back-
propagation. The selection and backpropagation steps are performed in the main process, while the
two others are assigned to the workers. The backpropagation step is divided into two sub-routines
incomplete update (Algorithm 2) and complete update (Algorithm 3). The former is executed before
simulation starts, while the latter is called after receiving simulation results. Task index τ is added to
help the main process to track different tasks returned from the workers. To maximize efficiency, the
master process keeps assigning expansion and simulation tasks until all workers are fully occupied.

Communication overhead of WU-UCT The choice for centralized game-state storage stems
from the following observations: (i) size of the game-state is usually small, which allows efficient
inter-process transformation, and (ii) each game-state is used at most |A| + 1 times,7 thus is ineffi-
cient to store in multiple processes. Although this design may not be ideal for all tasks, it is at least
a reasonable choice. During rollouts, game-states generated by any expansion worker may be later
used by any other expansion and simulation workers. Therefore, either a per-task transformation
or decentralized storage is needed. For the latter case, however, since a game-state will be used at
most |A|+ 1 times, most workers will not need it, which results in inefficiency of the decentralized
storage.

Another possible solution is to store the game-states in shared memory. However, to receive benefit
from it, the following conditions should be satisfied: (i) each process can access (read/write) the
memory relatively fast even if some collisions may happen, and (ii) the shared memory is big enough
to hold all game-states that may be accessed. If the two conditions hold, we may be able to reduce the
communication overhead. Since the communication overhead is negligible even with 16 simulation
and expansion workers (as shown in Figures 2(b) and 2(c)), we should consider using more workers
to speedup the algorithm.

B ALGORITHM OVERVIEW OF BASELINE APPROACHES

We give an overview of three baseline parallel UCT algorithms: Leaf Parallelization (LeafP), Tree
Parallelization (TreeP) with virtual loss, and Root Parallelization (RootP), with the objective of
providing a comprehensive view to the readers. We refer readers interested in the details of these al-
gorithms to Chaslot et al. (2008). As suggested by their names, LeafP, TreeP, and RootP parallelized
different parts of the search tree. Specifically, LeafP (Algorithm 4) parallelizes only the simulation
process: whenever a node (state) is selected to query, all workers perform simulations individually to
evaluate it. The main process (master) then waits for all workers to complete simulation and return
their respective cumulative rewards, which are used to update the traversed nodes’ statistics.

TreeP (Algorithm 5) parallelizes the whole tree search algorithm by allowing different workers to
access a shared search tree simultaneously. Each worker individually performs the selection, ex-
pansion, simulation, and back-propagation steps and update the nodes’ statistics. To discourage
querying the same node, individual workers subtract a virtual loss rV L (rV L is a hyper-parameter
of the algorithm) to each of its traversed node during the selection process, and add it back (+rV L)
during back-propagation. This allows nodes currently being evaluated by some workers to have
lower utility scores (4) and will be less likely to be chosen by other workers, which improves the
diversity of the node visited by different workers simultaneously.

Silver et al. (2017) and Segal (2010) introduced an additional way to add pseudo reward into the
traversed nodes. See Appendix E for details of this variant of TreeP and more experiments of it on
Atari games.

7In our setup, the game state will only be used for 1 time to start simulation and |A| times to initialize
expansion.
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Algorithm 1 WU-UCT
Input: environment emulator E , root tree node sroot, maximum simulation step Tmax, maximum simulation
depth dmax, number of expansion workers Nexp, and number of simulation workers Nsim

Initialize: expansion worker pool Wexp, simulation worker pool Wsim, game-state buffer B, t ← 0, and
tcomplete ← 0
while tcomplete < Tmax do

Traverse the tree top down from root node sroot following (4) until (i) its depth greater than dmax, (ii) it
is a leaf node, or (iii) it is a node that has not been fully expanded and random() < 0.5
if expansion is required then
s̄← shallow copy of the current node
Assign expansion task (t, s̄) to poolWexp // t is the task index

else
assign simulation task (t, s) to poolWsim if episode not terminated
Call incomplete update(s); if episode terminated, call complete update(t, s, 0.0)

end if
ifWexp fully occupied then

Wait for a expansion task with return: (task index τ , game state s, reward r, terminal signal d, task
index τ ); expand the tree according to s, τ , r, and d; assign simulation task (τ, s) to poolWsim

Call incomplete update(t, s)
else continue
ifWsim fully occupied then

Wait for a simulation task with return: (task index τ , node s, cumulative reward r̄)
Call complete update(τ, s, r̄); tcomplete ← tcomplete + 1

else continue
t← t+ 1

end while

Algorithm 2 incomplete update
input: node s
while n 6= null do
Os ← Os + 1
s ← PR(s) // PR(s) denotes the parent
node of s

end while

Algorithm 3 complete update
input: task index t, node s, reward r̄
while n 6= null do
Ns ← Ns + 1; Os ← Os − 1
Retrieve reward r according to task index t
r̄ ← r + γr̄; Vs ← Ns−1

Ns
Vs + 1

Ns
r̄

s ← PR(s) // PR(s) denotes the parent
node of s

end while

As hinted by its name, RootP (Algorithm 6) parallelizes the root node. Specifically, in an initializa-
tion step, all children of the root node is expanded, and different workers are assigned to perform
rollouts using the expanded child nodes as the root node of the search tree. The algorithm evenly
distribute the workload such that the number of rollouts starting from all child nodes is Tmax/M ,
where M is the number of workers. After the job assignment, all workers construct search trees in
their own local memories and perform sequential tree search until their assigned tasks are finished.
Finally, the main process collects statistics from all workers and return the predicted best action of
the state represented by the root node of the search tree.

C EXPERIMENT DETAILS AND SYSTEM DESCRIPTION OF THE JOY CITY TASK

This section describes the basic rules of the Joy City game (Appendix C.1) as well as details about
the deployed user pass-rate prediction system (Appendix C.2).

C.1 DESCRIPTION OF THE JOY CITY GAME

This section serves as an introduction to the basic rules of the tap game. Figure 7 depicts several
screenshots of the game. In the main frame, there is a 9 × 9 grid, where each cell contains an
item. We can click cells with connected color regions to eliminate them (i.e., if the cell represented
by the purple dot in the first screenshot of Figure 6(a) is tapped, the region contains blue boxes
will be “eliminated”). The remaining cells then collapse to fill in the gaps of exploded ones. To
goal is to fulfill all level requirements (goals) within a fixed number of clicks. Figure 6(a) provides
consecutive snapshots for playing level 10 of the game. The goal of this level is depicted on the
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(a) A demonstrated game play in level 10 of the tap game. Purple dots refers to the tapped cell, and red regions
indicate directly eliminated cells.

A “boss level” Small initial connectivity Various kinds of hard-to-remove obstacles and spiral layout

(b) Examples of levels with different rule, difficulty, and layout.

Figure 6: Snapshots of the Tap-elimination game.

top, which is 3 “cats” and 24 “balloons”. The top-left corner represents the number of remaining
steps. Players have to accomplish all given goals before the step runs out. Figure 6(a) demonstrates
successful gameplay, where only 6 steps are used to complete the level. In each of the three left
frames, the cell noted by the purple circle is clicked. Immediately, the same-color region marked
with a red frame is eliminated. Different goal objects/obstacle objects react differently. For instance,
when some cell is exploded beside a balloon, it will also explode. Frame two demonstrates the use
of props. Tapping regions with connectivity above a certain threshold will provide prop as a bonus.
They have special effects that can help players pass the level faster. Finally, in the last screenshot,
all goals are completed and we pass the level.

Figure 6(b) further demonstrates the variety of levels. Specifically,
the left-most frame depicts a special “boss level”, where the goal is
the “defeat” the evil cat. The cat will randomly throw objects to the
cells, adding additional randomness. Three other frames illustrate
relatively hard levels, which is revealed from their low-connectivity,
abundance and complexity of the obstacles, and special layout.

C.2 DETAILS OF THE LEVEL PASS-RATE PREDICTION SYSTEM

During a game design cycle, to achieve the desired game pass-rates,
a game designer needs to hire many human testers to extensively test
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new levels (inference)
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A3C learner
Perform multiple
game plays
using P-UCT
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Predicted user pass rate
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Figure 7: Our deployed user pass-rate prediction system.

all the levels before its release, which generally takes a long time and is inaccurate. Therefore,
it would greatly reduce the game design cycle if we can develop a testing system that is able to
provide quick and accurate feedback about the user pass-rates. Figure 7 gives an overview of our
deployed user pass-rate prediction system, where WU-UCT is used to mimic average user perfor-
mance and provide features for predicting the human pass-rate. As we have shown in the main
paper, it can achieve significant speedup without significant performance loss,8 allowing the game
designer to get the feedback in 20 minutes instead of 12 hours. Specifically, we use WU-UCT with
different numbers of rollouts to mimic players with different skill levels, where WU-UCT with 10
rollouts is used to represent average players while the agent with 100 rollouts mimics skillful play-
ers. This is verified by the pair-wise sample t-test result provided in Table 2. With 10 simulations,
the WU-UCT agent performs statistically similar (p-value > 5%) to human players, while with 100-
simulation, the agent performs statistically better (p-value < 5%). Besides, Figure 8 shows that our
pass-rate prediction system achieves 8.6% mean absolute error (MAE) on 130 released game-levels,
with 93% of them having MAE less than 20%.

The system consists of two working phases, i.e., training and inference. Specifically, training and
validation are done on 300 levels that have been released in a test version of the game. In the training
phase, the system has access to both the level and players’ pass-rate, while only levels are available in
the inference phase, and the system needs to give quick and accurate feedback about the (predicted)
user pass-rate. In both phases, the levels are first fed into an asynchronous advantage actor-critic
(A3C) (Mnih et al., 2016) learner for a base policy π. It is then used by the WU-UCT agent as a
prior to select expand action as well as the default policy for simulation. We then use WU-UCT to
perform multiple gameplays. The maximum depth and width (maximum number of child nodes
for each node) of the search tree is 10 and 5, respectively. The number of simulations is set to 10
and 100 to get AI bots with different skill levels. Six features (three for both the 10-simulation and
100-simulation agent) are extracted from the gameplay results. Specifically, the features are AI’s
pass-rate, average used step divided by the provided step (the number at the top-left corner in the
screenshots in Figure 6), and median used step divided by the provided step. During training, the
features, as well as the players’ pass-rate, is used to learn a linear regressor, while in the inference
phase, the regression model is used to predict user pass-rate.

C.3 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we list the additional experimental results. In Table 3, we report the specific speedup
number for different numbers of expansion worker and simulation workers.

8Due to the complexity the tap game, model-free RL algorithms such as A3C (Mnih et al., 2016) and PPO
(Schulman et al., 2017) fail to achieve satisfactory performance and thus cannot perform an accurate prediction.
On the other hand, MCTS could achieve good performance but takes a long time in testing.
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Table 2: Pair-wise sample t-test of pass-rate across 130
levels between two AI bots (different number of MCTS
rollouts) and the players. “Avg. diff” means the average
difference between the pass-rate of the bot and that of
the human players. p-value measures the likelihood that
two sets of paired samples are statistically similar (i.e.
larger means similar). Effect size measures the strength
of the difference (larger means greater difference).

AI bot # rollouts Avg. diff. Effect size p-value

WU-UCT 10 -1.54 0.07 0.4120
WU-UCT 100 22.18 0.88 0.0000

67%
84%
93%

MAE: 8.6%

Figure 8: Distribution of the pass-rate
prediction error on 130 game-levels.

Table 3: Speedup on two levels of the tap game. Me is the number of expansion workers and Ms is
the number of simulation workers.

Lv. Level 35 Level 58

Me

Ms 1 2 4 8 16 1 2 4 8 16

1 1.0 2.0 2.8 3.6 4.5 1.0 1.8 4.1 4.8 5.1
2 1.4 2.2 4.1 5.7 6.3 1.1 3.1 5.3 6.7 8.4
4 1.7 2.5 4.5 8.4 8.8 1.1 3.4 6.1 10.1 12.8
8 2.3 3.0 5.1 10.1 12.8 1.2 3.6 6.7 13.2 16.1
16 2.9 3.7 5.7 11.2 15.5 1.2 3.8 7.6 16.1 20.9

D EXPERIMENT DETAILS OF THE ATARI GAMES

This section provides the implementation details of the experiments on Atari games. Specifically,
we first describe the training pipeline of the default policy. We then illustrate how the default policy
is connected with MCTS algorithm to perform simulation.

Training default policy for MCTS To allow better overall performance, we used the Proximal
Policy Gradient (PPO) (Schulman et al., 2017), one of the state-of-the-art on-policy model-free re-
inforcement learning (RL) algorithms. We adopted the highest-starred third-party code of PPO on
GitHub. The implementation uses the same hyper-parameters with the original paper. The architec-
ture of the policy network is shown in Figure 9. The original PPO network is trained on 10 million
frames for each task. To reduce computation count, we reduce the network size using network

Table 4: Performance of the original PPO policy and our distilled policy on 15 Atari games.
Environment Origin PPO policy Distilled policy

Alien 1850 850
Boxing 94 7

Breakout 274 191
Centipede 4386 1701
Freeway 32 32
Gravitar 737 600

MsPacman 2096 1860
NameThisGame 6254 6354

RoadRunner 25076 26600
Robotank 5 13

Qbert 14293 12725
SpaceInvaders 942 1015

Tennis -14 -10
TimePilot 4342 4400
Zaxxon 5008 3504
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State input

Conv2d (out-filters: 32, kernel size: 8×8, stride: 4)

ReLU

Conv2d (out-filters: 64, kernel size: 4×4, stride: 2)

ReLU

Conv2d (out-filters: 64, kernel size: 4×4, stride: 2)

ReLU

Dense (fan-out: 512)

ReLU

Policy output Value output

(a) Full-size PPO network.

State input

Conv2d (out-filters: 16, kernel size: 3×3, stride: 4)

ReLU

Conv2d (out-filters: 16, kernel size: 3×3, stride: 4)

ReLU

Dense (fan-out: 512)

ReLU

Policy output Value output

(b) Distilled network.

Figure 9: Architecture of the original PPO network (left) and the distilled network (right).

distillation (Hinton et al., 2015). Specifically, it is a teacher-student training framework where the
student (distilled) network mimics the output of the teacher network. Samples are collected by the
PPO network with the ε-greedy strategy (ε = 0.1). The student network optimizes its parameters
to minimize the mean square error of the policy’s logits as well as the value. Performance of the
original PPO policy network as well as the distilled network is provided in Table 4.

MCTS simulation Both the policy output and the value output of the distilled network is used
in the simulation phase. Particularly, if a simulation is started from state s, rollout is performed
using the policy network with an upper bound of 100 steps and reaches the leaf state s′. If the
environment does not terminate, the full return is computed by the intermediate rewards plus the
value function at state s′. Formally, the cumulative reward provided by the simulation is Rsimu =∑99
i=0 γ

iri + γ100V (s′), where V (s) denotes the value of state s. To reduce the variance of Monte
Carlo sampling, we average it with the value function V (s) at state s. The final simulation return is
then R = 0.5Rsimu + 0.5V (s).

Hyperparameters and experiment details for WU-UCT For all tree search based algorithms
(i.e., WU-UCT, TreeP, LeafP, and RootP), the maximum depth of the search tree is set to 100. The
search width is limited by 20 and the maximum number of simulations is 128. The discount factor
γ is set to 0.99 (note that the reported score is not discounted). When performing gameplays, a tree
search subroutine is called to plan for the best action in each time step. The sub-routine iteratively
constructs a search tree from its initialization with a root node only. Experiments are deployed on
4 Intelr Xeonr E5-2650 v4 CPUs and 8 NVIDIAr GeForcer RTX 2080 Ti GPUs. To minimize
the speed fluctuation caused by different workloads on the machine, we ensure that the total number
of simulation workers is smaller than the total number of CPU cores, allowing each process to fully
occupy each single core. The WU-UCT is implemented with multiple processes, with an inter-
process pipe between the master process and each worker process.

Hyperparameters and experiments for baseline algorithms Being unable to find appropriate
third-party packages for baseline algorithms (i.e., tree parallelization, leaf parallelization, and root
parallelization), we built our implementation of them based on the corresponding papers. Building
all algorithms in the same package additionally allows us to accurately conduct speed-tests as it elim-

10The task “Tennis” is not included in the calculation of the average percentile improvement due to the
average episode return 0 in RootP.

17



Published as a conference paper at ICLR 2020

Figure 10: Relative performance between WU-UCT and three baseline approaches on 15 Atari
benchmarks. Relative performance is calculated according to the mean episode reward in 3 trials.
The average percentile improvement of WU-UCT on TreeP, LeafP, and RootP is 49%, 104%, and
82%, respectively.10

Table 5: Comparison between WU-UCT and three TreeP variants on 12 Atari games. Average
episode return (± standard deviation) over 10 runs are reported. The best average scores among
listed algorithms are highlighted in boldface. Hyper-parameter rV L refers to the virtual loss added
before each simulation starts, and nV L similarly denotes the number of virtual visit counts added
before each simulation starts.

Environment WU-UCT TreeP
(rV L = nV L = 1)

TreeP
(rV L = nV L = 2)

TreeP
(rV L = nV L = 3)

Alien 5938±1839 4850±357 4935±60 5000±0
Boxing 100±0 99±1 99±0 99±1

Breakout 408±21 379±43 265±50 463±60
Freeway 32±0 32±0 32±0 32±0
Gravitar 5060±568 3500±707 4105±463 4950±141

MsPacman 19804±2232 13160±462 12991±851 8640±438
RoadRunner 46720±1359 29800±282 28550±459 29400±494

Qbert 13992±5596 17055±353 13425±194 9075±53
SpaceInvaders 3393±292 2305±176 3210±127 3020±42

Tennis 4±1 1±0 1±0 1±0
TimePilot 55130±12474 52500±707 49800±212 32400±1697
Zaxxon 39085±6838 24300±2828 24600±424 37550±1096

inates other factors (e.g. different language) that may bias the result. Specifically, leaf parallelization
is implemented with a master-worker structure: when the main process enters the simulation step,
it assigns the task to all workers. When return from all workers is available, the master process
performs backpropagation according to these statistics and begin a new rollout.

As suggested by Browne et al. (2012), tree parallelization is implemented using a decentralized
structure, i.e., each worker performs rollouts on a shared search tree. At the selection step, each
traversed node is added a fixed virtual loss −rV L to guarantee diversity of the tree search. When
performing backpropagation, rV L is added back to the traversed nodes. rV L is chosen from 1.0 and
5.0 for each particular task. In other words, we ran TreeP with rV L = 1.0 and rV L = 5.0 for each
task, and report the better result.

Root parallelization is implemented according to Chaslot et al. (2008). Similar to leaf parallelization,
root parallelization consists of sub-processes that do not share information with each other. At the
beginning of the tree search process, each sub-process is assigned several actions of the root node to
query. They then perform sequential UCT rollouts until reaches a pre-defined maximum number of
rollouts. When all sub-processes complete the jobs, statistics from them are gathered by the main
process, and are used to choose the best action.
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E ADDITIONAL EXPERIMENTS ON THE ATARI GAMES

This section provides additional experiment results to compare WU-UCT with another variant of the
Tree Parallelization (TreeP) algorithm. As suggested by Silver et al. (2016), besides pre-adjusting
the value V with virtual loss rV L, pre-adjusted visit count can also be used to penalize V . In this
variant of TreeP, both the virtual loss rV L and a hand-crafted count correction nV L (termed the
virtual pseudo-count) is added to adjust V . Specifically, the value of node s is adjusted as

V ′s
def
=

NsVs − rV L
Ns + nV L

, (7)

which is used in the UCT selection phase. Table 5 compares WU-UCT with this TreeP variant using
both virtual loss and virtual pseudo-count (i.e., Eq. 7). Three sets of hyper-parameters are used in
TreeP, which are described in the caption of the table (i.e., rV L = nV L = 1, rV L = nV L = 2,
and rV L = nV L = 3). All other experiment setups are the same as Section 5.2 and Appendix D.
Table 5 indicates that on 9 out of 12 tasks, WU-UCT out-performs this new baseline (with its best
hyper-parameters). Furthermore, we also observe that TreeP does not have an optimal set of hyper-
parameters that performs uniformly well on all tasks. In other words, to perform well, TreeP needs
to conduct per-task hyper-parameter tuning. On the other hand, WU-UCT performs consistently
well across different tasks.

Conceptually, WU-UCT is designed based on the fact that on-going simulations (unobserved sam-
ples) will eventually return the results, so their number should be tracked and used to adaptively
adjust the UCT selection process. On the other hand, TreeP uses artificially designed virtual loss
rV L and virtual pseudo-count nV L to discourage other threads from simultaneously exploring the
same node. Therefore, WU-UCT achieves a better exploration-exploitation tradeoff in paralleliza-
tion, which leads to better performance as confirmed by the experimental results given in Table 5.

19



Published as a conference paper at ICLR 2020

Algorithm 4 Leaf Parallelization (LeafP)
Input: environment emulator E , prior policy π, root tree node sroot, maximum simulation step Tmax,
maximum simulation depth dmax, and number of workers Nsim

Initialize: tcomplete ← 0
while tcomplete < Tmax do

Traverse the tree top down from root node sroot following (2) until (i) its depth greater than dmax, (ii) it
is a leaf node, or (iii) it is a node that has not been fully expanded and random() < 0.5
s′ ← expand(s, E , π)
Each of the simulation workers perform roll-out beginning from s′

Wait until all workers completed simulation and returned cumulative reward {r̄i}Nsim
i=1 (r̄i is returned by

worker i)
for i = 1 : Nsim do

Call back propagation(s, r̄i)
end for
tcomplete ← tcomplete +Nsim

end while

Algorithm 5 Tree Parallelization (TreeP)
Input: environment emulator E , prior policy π, root tree node sroot, virtual loss rV L, maximum simulation
step Tmax, maximum simulation depth dmax, and number of workers Nsim

Initialize: tcomplete ← 0
Initialize: Nsim processes, each with access to the environment emulator, the prior policy, and the search
tree
Perform asynchronously in each of the Nsim workers

Traverse the tree top down from root node sroot following (2) until (i) its depth greater than dmax, (ii) it
is a leaf node, or (iii) it is a node that has not been fully expanded and random() < 0.5
Add virtual loss to each of the traversed node: Vs ← Vs − rV L for each traversed s
s′ ← expand(s, E , π)
Perform roll-out beginning from s′

r̄ ← the returned cumulative reward of the roll-out
Call back propagation(s, r̄i)
Remove virtual loss from each of the traversed node: Vs ← Vs + rV L for each traversed s
tcomplete ← tcomplete + 1
if tcomplete ≥ Tmax

Terminate current process
end if

end

Algorithm 6 Root Parallelization (RootP)
Input: environment emulator E , prior policy π, root tree node sroot, maximum simulation step Tmax,
maximum simulation depth dmax, and number of workers Nsim

Initialize: tcomplete,i ← 0 for i = 1 : Nsim

Initialize: Nsim processes, each with access to the environment emulator, the prior policy, and the search
tree
Expand all child nodes of sroot
Tavg ← ceil(Tmax/|A|) (|A| is the number of actions)
Averagely distribute the workload (perform tree search Tavg times on each child of sroot) to the Nsim

workers, and copy the corresponding child nodes to the worker’s local memory.
Perform asynchronously in each of the Nsim workers (i denotes the thread ID)

sroot,i ← Select a child of sroot according to its allocated budget
Traverse the tree top down from root node sroot,i following (2) until (i) its depth greater than dmax,
(ii) it is a leaf node, or (iii) it is a node that has not been fully expanded and random() < 0.5
Add virtual loss to each of the traversed node: Vs ← Vs − rV L for each traversed n
s′ ← expand(s, E , π)
Perform roll-out beginning from s′

r̄ ← the returned cumulative reward of the roll-out
Call back propagation(s, r̄i)
Remove virtual loss from each of the traversed node: Vs ← Vs + rV L for each traversed n
tcomplete,i ← tcomplete,i + 1
if tcomplete,i ≥ Tavg

Terminate current process
end if

end
Gather child nodes’ statistics from all workers
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Algorithm 7 expansion
input: node s, environment emulator E , prior policy π
a← random action drawn from π(· | s)
while s has expanded a do
a← random action drawn from π(· | s)

end while
s′, r, d ← performing a in s according to E (d: terminal
signal)
s′ ← a new node constructed according to s
Store reward signal r and termination indicator d in s′

Link s′ as the child of s by the node corresponding to a

Algorithm 8 back propagation
input: node s, cumulative reward r̄
while s 6= null do
Ns ← Ns + 1
Retrieve the reward r in the current node s
(which is collected during its expansion)
r̄ ← r + γr̄
Vs ← Ns−1

Ns
Vs + 1

Ns
r̄

s ← PR(s) // PR(s) denotes the parent
node of s

end while
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