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ABSTRACT

Sequential learning of multiple tasks in artificial neural networks using gradient
descent leads to catastrophic forgetting, whereby previously learned knowledge
is erased during learning of new, disjoint knowledge. Here, we propose a new
approach to sequential learning which leverages the recent discovery of adversarial
examples. We use adversarial subspaces from previous tasks to enable learning of
new tasks with less interference. We apply our method to sequentially learning
to classify digits 0, 1, 2 (task 1), 4, 5, 6, (task 2), and 7, 8, 9 (task 3) in MNIST
(disjoint MNIST task). We compare and combine our Adversarial Direction (AD)
method with the recently proposed Elastic Weight Consolidation (EWC) method
for sequential learning. We train each task for 20 epochs, which yields good initial
performance (99.24% correct task 1 performance). After training task 2, and then
task 3, both plain gradient descent (PGD) and EWC largely forget task 1 (task 1
accuracy 32.95% for PGD and 41.02% for EWC), while our combined approach
(AD+EWC) still achieves 94.53% correct on task 1. We obtain similar results with
a much more difficult disjoint CIFAR10 task (70.10% initial task 1 performance,
67.73% after learning tasks 2 and 3 for AD+EWC, while PGD and EWC both
fall to chance level). We confirm qualitatively similar results for EMNIST with 5
tasks and under 3 variants of our approach. Our results suggest that AD+EWC can
provide better sequential learning performance than either PGD or EWC.

1 INTRODUCTION

Continual learning central to designing general A.I. systems that can learn new tasks sequentially
without forgetting old tasks. However, current deep learning models based on stochastic gradient
descent severely suffer from catastrophic forgetting (French, 1999; McCloskey & Cohen, 1989), in
that they often forget all old tasks after training each new one. Inspired by the mammalian neocortex,
which relies on processes of task-specific synaptic consolidation to enable continual learning (Cichon
& Gan, 2015; Hayashi-Takagi et al., 2015; Yang et al., 2009; 2014), several concepts have been
proposed, based on sequential Bayesian learning, which consist of applying a regularization function
to a network trained by an old task to learn a new task. Many of these approaches work by finding a
local minimum of the loss function for task B around the local region in the parameter space that
was optimized for task A, such as learning without forgetting (Li & Hoiem, 2017), elastic weight
consolidation (EWC) (Kirkpatrick et al., 2017), and incremental moment matching (Lee et al., 2017).
Consider a model trained to perform task A: for input XtaskA and probability distribution p(taskA),
it produces outputs f(XtaskA,W

∗
taskA) by minimizing loss Lp(taskA)(f(XtaskA,W )). Training

a second task B with input XtaskB and probability distribution p(taskB) on the same network
involves minimizing loss Lp(taskB)(f(XtaskB ,W

∗
taskA)). Previous approaches mentioned above

attempt to restrict the parameters for task B to the local region around the optimum of task A, so
as to minimally disturb what had been learned for task A. However, this might prevent the neural
network from finding other regions in remote areas of the parameter space, which could contain a
better local minimum of the loss function for the joint probability distribution of tasks A and B. To
find this better local minimum, (Sprechmann et al., 2018) stores most of the data from old tasks into
a working memory and replays it while training a new task. However, the working memory requires
potentially large storage for the data from old tasks, and extra training time to replay that data.

Here, we introduce task-dependent memory units Mtask and memory weights Wtask to overcome
catastrophic forgetting. Consider a two-task scenario, with an output function:
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H(X,Mtask,W ,Wtask) = f(X,W ) + 1taskA(gtaskA(MtaskA,WtaskA)) + 1taskB(gtaskB(MtaskB ,WtaskB)) (1)

with input X , task-dependent memory units Mtask, task-independent network weights W , task-
dependent memory weights Wtask, indicator function 1taskA(), indicator function 1taskB(), task-
dependent function gtaskA() and gtaskB() and task-independent function f(). We update W in the
EWC direction, update memory units Mtask in an adversarial direction (further explained below),
and update Wtask in the gradient direction. Without any replaying of previous data, we can achieve a
high accuracy on new tasks while minimally decreasing accuracy on old tasks. Our approach is not
constrained to the local region around the parameters (W ∗) that are optimal for the old tasks. Instead,
we create new parameter spaces (W ∗,Mtask,Wtask) that are good for both old and new tasks.

In the experimental results section, we show, using disjoint MNIST, disjoint EMNIST, and disjoint
CIFAR10, that our Adversarial Memory Net (AMN) can be trained sequentially on multiple tasks
while minimally decreasing accuracy on old tasks. Beyond these results which use a 5-layer fully
connected network, we show that our approach can also apply to CNNs, although more research
is necessary to enable EWC constraints to apply to convolutional and pool layers. We discuss
complexity analysis, mathematical implications, and EWC in the discussion section.

2 BACKGROUND AND RELATED WORK

Memory formation and retrieval in Hippocampus (HPC): In the human brain, the hippocampus
(Bakker et al., 2008) encodes detailed information in Cornu Ammonis 3 (CA3), which does pattern
separation and transforms this information into abstract high-level information, then relayed to Cornu
Ammonis 1 (CA1), which does pattern completion. During weight consolidation (Lesburguères
et al., 2011; Squire & Alvarez, 1995; Frankland & Bontempi, 2005), the HPC fuses different features
from different tasks into a coherent memory trace. Over days to weeks, as memories mature, HPC
progressively stores permanent abstract high-level long-term memories to remote memory storage
(neocortical areas). HPC can maintain and mediate their retrieval independently when the specific
memory is in need.

Adversarial examples, directions, subspaces, & programs, and long term memory: Artificial
neural networks are vulnerable to adversarial examples (Szegedy et al., 2013). By adding a carefully
computed “noise” to an input picture, without changing the neural network, one can force the
network into misclassification. The noise is usually computed by backpropagating the gradient in a
so-called “adversarial direction” (Tramèr et al., 2017). Going to an adversarial direction, such as by
using the fast gradient sign method (FGSD) (Goodfellow et al.), can help us generate adversarial
examples that span a continuous subspace of large dimensionality (adversarial subspace). Because
of “excessive linearity” in many neural networks (Tramèr et al., 2017; Goodfellow), due to features
including Rectified linear units and Maxout, the adversarial subspace often takes a large portion of
the total input space. Once an adversarial input lies in the adversarial subspace, nearby inputs also
tend to lie in it.

Attack and defense researchers usually view adversarial examples as a curse of neural networks, but
we view it as a gift to solve catastrophic forgetting. Input points that lie inside the adversarial subspace
of each class lead the neural network to misclassify input images into that class. By extension, inputs
which lie in the intersection of several adversarial subspaces that each belong to a different class may
be misclassified into any of the underlying classes. Instead of adding input "noise" that lies inside the
adversarial subspace calculated from other classes to force the network into misclassification, we can
add "noise" calculated by the input’s own correct class to assist correct classification. Our approach
is to compute, in a task-dependent manner, this helpful "noise", and to store it into long-term memory
units which are activated by different tasks. Thus, we propose that the intersection of the adversarial
subspaces of all known classes is a representation of long term memory in neural network, although,
we do not know how our brain represents permanent long-term memories. In essence, by storing
task-dependent data into memory units, we add new dimensions to the original parameter space and
create new spaces that are good for both old and new tasks.

Indeed, after we submit our paper to ArXiv for one month, a nice followup work (Elsayed et al., 2018)
shows how a carefully computed adversarial program embedded in the input space can repurpose
machine models to perform a new task without changing the parameters. This paper confirms that the
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Figure 1: The structure of Adversarial Memory Network. N: dimensions of the normal neurons
and normal weights (black), DA: dimensions of the memory units and memory weights for task A
(yellow),DB : dimensions of the memory units and memory weights for task B (red), M: number of
memory units, H: hidden dimension of a memory unit.

adversarial program (carefully computed noise), formed by finding the intersection of adversarial
subspaces in our paper, is a good way to represent abstract information.

3 METHODS

In biological brains, during consolidation, abstract high-level memory is believed to be transferred
from HPC to remote memory storage, such as the olfactory cortex(Lesburguères et al., 2011). Inspired
by this idea, to achieve sequential learning with minimal interference, we add memory units into
our network. We propose that one can designate and switch from task to task using dedicated
task-dependent memory units. The intersection of the adversarial subspaces which represent the
long-term memory in the network is stored in the memory units. The memory units, that store these
long-term memory independently for each task, add additional dimension (Mtask,Wtask) to our old
parameter spaces (W ) and form new parameter spaces (W ,Mtask,Wtask) that are good for both
old and new tasks (Fig. 1 ).

3.1 EMBEDING ADVERSARIAL SUBSPACES INTO PARAMETER SPACE (Mtask,Wtask,W )

We want to embed the adversarial subspaces that have been found in the input space into our neural
network, so that the parameters in our neural network behave like input images and span adversarial
subspaces in the parameter space. Thus, we add task-dependent memory units (float tensors Mtask,
Fig. 1) and memory weights (Wtask, Fig. 1) in each layer of the neural network. We update memory
units in the adversarial direction. Each memory unit is a float tensor that can hold a float value.
Memory units play a role similar to adversarial input images, capture the essence of each class, and
span an intersection of adversarial subspaces in network parameter space.

3.2 ADVERSARIAL MEMORY NETWORK (AMN)

Task-dependent memory units (Mtask ∈ RM×H , M is the number of memory units, H is the hidden
size of a memory unit) store the intersection of adversarial subspaces in it which plays a role of
long-term memory in our network, leading to the adversarial memory network structure (Fig. 1).
During training and testing, the output function for 2 tasks is shown in Eqn. 1. Only memory units
corresponding to the current task (yellow for task A or red for task B, chosen by indicator function
in Eqn.1) and normal neurons (black) will be activated. The weights for memory units are called
memory weights (Wtask) and the weights for normal neurons are called normal weights (W ).

Forward rules for each layer:
1. Deactivate the memory units not for the current task.
2. Output = Wtask ∗Mtask +W ∗Xnormal_neurons + bias.

3



Under review as a conference paper at ICLR 2019

What abstract long-term memory should we write into the memory units? The intersection of
adversarial subspaces. How can we formulate it? We update memory units with gradients following
an adversarial direction which can help us find the intersection of the adversarial subspaces in the
parameter space. Thus, we have a joint abstract long-term memory of different classes available
for each task in our neural network. In this work, we use the Fast Gradient Sign Method (FGSD)
εsign(∇ML(M ,ytarget)), where M are memory units, ytarget is current input’s true classes, as
the adversarial direction to replace the gradient direction and use it to update memory units.

Backward rules for each layer:

OGradients =

{
ε sign (OGradients) if O is memory unit

OGradients else

We use Softmax or Sigmoid cross entropy loss ( Lp(taskB)(H(X,Mtask,W ,Wtask)) the first part
in Eqn.2) to calculate the gradients for task-dependent memory units (Mtask) and memory weights
(Wtask). To keep the normal weight close to the learned parameters of old tasks, we use total loss
(Eqn. 2) with EWC constrains to calculate the gradients for normal weights (W ). Consider a 2-task
scenario, the loss function when we train task B is, where F is the fisher information matrix, λ sets
how important the old task is compared to the new one:

Total Loss = Lp(taskB)(H(X,Mtask,W ,Wtask)) +
∑

i λFi(Wi −W ∗
taskA,i)

2 (2)

4 EXPERIMENT RESULTS

We test our adversarial memory network with three datasets, 3 tasks for disjoint MINST tasks and
disjoint CIFAR-10 tasks, 5 tasks for disjoint EMINST dataset (table 1). We train tasks sequentially,
each for 20 epochs. We show that our approach can also apply to CNN (LeNet) by replacing the fully
connected layers (FC) with our adversarial memory layers, and keeping the convolution and maxpool
layers. We explore 5 different training methods:

1. EWC only: deactivate all the memory units so that our adversarial memory network becomes a
fully connected network, and use elastic weight consolidation only.

2. AD: we use the adversarial memory units only. After finishing the training of task 1, we freeze all
the normal weights, and only allow the update of memory units in adversarial direction and memory
weights in gradient direction in the latter tasks.

3. EWC + AD: normal weights are updated in EWC direction. The memory units are updated in
adversarial direction and memory weights are in gradient direction.

4. PGD: we deactivate all the memory units so that our adversarial memory network become a fully
connected network, and use plain gradient descent.

5. One Image Storage (OIS): we use the same training method as EWC + AD, except for the
following differences. In One Image Storage Big (OISB): the dimension of memory units is 1 x
(28*28). The size is the same as storing a one-channel MNIST image in each layer. In One Image
Storage Small (OISS): the dimension of memory units is 1 x (5*5).

We test 4 different networks (in table 2) with different hyperparameters. Note how the settings with 3
output neurons for MINST, CIFAR10, or with 5 outputs neurons for EMNIST (networks 1 & 2 in
Table 2) will associate several labels with each output neuron, one per task. We use these settings for
easy comparison with previous work, but we note that the settings with 9 output neurons for MINST,
CIFAR10, or with 25 outputs neurons for EMNIST (networks 3 & 4) may be preferred in practice
because they yield unambiguous classification results.

From Fig. 3 and Fig. 4, adversarial memory network has memory units to store the intersection of
adversarial subspaces and plays a role as the abstract long-term memory. It uses EWC to form a
joint probability distribution for sequential tasks represented by the normal memory (EWC + AD:
blue, OISB: black, OISS: magenta curve). It outperforms the fully connected network with EWC
(red curve) or plain gradient descent (PGD; yellow curve) by a large margin in both datasets and for
our 4 hyperparameter sets. In the disjoint MINST tasks, EWC + AD achieves high accuracy and
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Table 1: Disjoint MINST tasks, disjoint CIFAR10 tasks and disjoint EMNIST tasks. We train our
Adversarial Memory Network sequentially on disjoint tasks for each dataset.

Tasks

Datasets
Task1 Task2 Task3 Task4 Task5

MNIST Digits 0,1,2 Digits 4,5,6 Digits 7,8,9 N/A N/A

CIFAR10 Airplane Automobile Bird Deer Dog 

Frog

Horse Ship 

Truck

N/A N/A

EMNIST Letter A,B,C,D,E Letter 

F,G,H,I,J

Letter 

K,L,M,N,O

Letter 

P,Q,R,S,T

Letter 

U,V,W,X,Y

Table 2: Hyperparameters for 4 different network structures
Hyperparameters Network1 Network2 Network3 Network4

Number of hidden 

layer

4 4 4 4

Width of hidden layer 300 300 300 300

Width of Output 

layer(whether to have 

overlap output or not)

EMNIST: 5

MINST, CIFAR10: 3

EMNIST: 5

MINST, CIFAR10: 3

EMNIST: 25

MINST, CIFAR10: 9

EMNIST: 25

MINST, CIFAR10: 9

Loss function Sigmoid cross 

entropy loss

SoftMax cross 

entropy loss

Sigmoid cross 

entropy loss

SoftMax cross 

entropy loss 

Dropout Yes Yes Yes Yes

Memory units 

dimension in each 

layer

OISB: 1 x (28*28)

OISS:1 x (5*5)

OISB: 1 x (28*28)

OISS:1 x (5*5)

OISB: 1 x (28*28)

OISS:1 x (5*5)

OISB: 1 x (28*28)

OISS:1 x (5*5)

EWC,AD,EWC+AD: 

300 x 9

EWC,AD,EWC+AD: 

300 x 9

EWC, AD, EWC+AD: 

300 x 9

EWC, AD, EWC+AD: 

300 x 9

Adversarial direction Fast gradient sign 

method

Fast gradient sign 

method

Fast gradient sign 

method

Fast gradient sign 

method

Epsilon in FGSM 0.2 0.2 0.2 0.2

Optimizer SGD + 0.15 

momentum

SGD + 0.15 

momentum

SGD + 0.15 

momentum

SGD + 0.15 

momentum

barely forgets the old tasks at the same time. In the disjoint CIFAR10 tasks, we cannot achieve a
high initial accuracy because we only use a fully connected structure and do not have a convolutional
structure at all. But the overall result is the same as with the MINST tasks. The sigmoid cross entropy
loss converges slower than the SoftMax cross entropy loss and has a lower initial accuracy than the
SoftMax cross entropy loss in disjoint CIFAR10 tasks. However, from Fig. 4 c), we can see that,
in more complicated tasks such as disjoint CIFAR10, where tasks do not share similar low-level
features, the sigmoid function may be able to pass gradients only through the active tasks since the
target vector is in one-hot expression. Thus, it gives us a better accuracy for task 1 after training
task 2 and task 3. The AD alone (green curve) does not forget task 1 at all, because it is frozen. But
the tradeoff is that we cannot achieve high accuracies in the latter tasks. In contrast, EWC+AD can
learn the latter tasks very well while only minimally decreasing task 1 accuracy. The OISB and OISS
methods perform slightly worse than AD+EWC, because they use fewer memory units and the first
dimension of the memory unit tensors is one for the sake of scalability. You can view OISB as storing
a size of a 1-channel MINST image per layer and OISS as storing a size of 1-channel 5*5 image
per layer. Yet, both OISB and IOSS still perform much better than EWC and PGD. In Fig. 5 a), the
overall result for 5 disjoint EMNIST tasks (5 letters per task) is the same with the MINST tasks.

Table 3: VGG16. Complexity analysis: parameter cost, memory cost in forward and backward pass.
Duplicate a new VGG16, EWC + AD, OISB, OISS, EWC

Complexity 

Analysis

VGG 16 Duplicate a VGG16 EWC + AD OISB OISS EWC

Memory cost 

(forward and 

backward cost)

96 ∗ 2
MB / image

96 ∗ 2
MB / Image x # of task

(100% increase)

6.48 ∗ 10−2 ∗ 2
MB / Image x # of 

tasks

(0.0675 % increase)

1.88 ∗ 10−2 ∗ 2
MB / Image x # of 

tasks

(0.0196% increase)

6 ∗ 10−4 ∗ 2
MB / Image x # of 

tasks

(0.000625%  increase)

0

MB / Image x # of 

tasks (0% increase)

Parameter cost 138 M 138 M x # of tasks

(100% increase)

89.8641 M x # of tasks

(65.12% increase)

26.0939 M x # of tasks

(18.91% increase)

0.8321 M x # of tasks

(0.6% increase)

0 M x # of tasks

(0% increase)
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Figure 2: Disjoint MINST tasks in network 2. a) AD only. We update memory units with the gradient
following the adversarial direction using the Fast Gradient Sign Method (blue curve). For comparison,
we also update memory units using the normal gradient direction (red curve), but this does not work
as well. b) AD+EWC. Varying the number hidden dimension of memory units with 300 memory
units per layer. Blue curve: 300 x 1. Green curve: 300 x 3 . Red curve: 300 x 6. Yellow curve: 300 x
9. Magenta curve: 300 x 12.

In Fig. 2 a), we demonstrate that following an adversarial direction and finding the intersection of
adversarial memory subspaces is crucial, by comparing updating the memory units in the gradient
direction versus the adversarial direction (FGSD). The accuracy for adversarial memory units - FGSD
(blue curve) is much higher than Gradient memory units (red curve) and does not vary with the
number of epochs after being trained. As a result, we argue that the intersection of adversarial
subspaces in memory units is how our neural network represents the abstract long-term information.
If we store this information, we can view it as the long-term memory of our neural network. We
view the memory units as storage of the essence of a lot of input pictures from previous tasks and
it is ready to retrieve the corresponding one when we test on a specific task. From Fig. 2 b), while
keep the number of memory units as 300 (equal to the number of neurons), by varying the hidden
dimension of memory units in each task, we find that a low number hidden dimension of memory
units (1 ˜ 3) may not be sufficient to represent high-level memory information. Yet, too many hidden
dimensions (above 9) cause too much disturbance, which also decreases accuracy. Best accuracy was
obtained for 6 to 9 hidden dimensions in our experiments.

Many convolutional neural networks (CNN) have some fully connected layers (FC) at the output.
These are used to classify the features generated by convolutional layers. To test our method with
CNNs, we use the conv and pool layers from LeNet (LeCun et al., 1998) and replace its FC layers by
adversarial memory layers (300 hidden units for each layer). We use Softmax cross entropy loss with
overlapped 3 outputs. AD + EWC, OISB achieves high accuracy on new tasks, and achieves a better
accuracy than PGD on remembering old tasks (Fig. 5 b)). One difficulty with applying AD+EWC to
CNNs, which will need to be addressed in future research, is to better understand how to apply EWC
constraints to convolutional and pool layers. Once we know how to constrain convolutional and pool
layers, we may be able to fully adapt our adversarial memory network approach to a wide range of
convolutional neural network structures.

5 DISCUSSION

Complexity analysis: parameter cost, memory cost and extra training cost: One perhaps obvi-
ous approach to avoiding interference between sequential tasks might be to use a separate network
for each task. However, such method is not scalable with the number of tasks, because there is a
one-to-one mapping from network to task and it requires to duplicate every neurons to build a new
network. Although we also introduce task-dependent neurons in the FC structure, for our OISS
method, we only introduce 25 extra neurons per task per layer compared to 300 neurons increase
per task per layer if we use a separate network. The increase of memory cost is 25+25*300 (for 25
units plus the weights from those 25 units to the 300 normal neurons of the next layer) compared to
300*300 in a separate network (duplication a whole layer and its weights). In our CNN experiments,
we show that changing the last 3 FC layers(classification layers) into our AMN and keep the conv and
pool layers(feature extraction layers) in the original network to overcoming catastrophic forgetting.
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Figure 3: Disjoint MINST tasks. The red curve is using EWC alone (training method 1). The green
curve is using adversarial memory units alone (training method 2). The blue curve is EWC and
adversarial memory training (training method 3). The yellow curve is PGD (training method 4).The
black curve is OISB and the magenta cur is OSSS (training method 5). Each subfigure is a) network
1, b) network 2, c) network 3, d) network 4, in Table 2.
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Figure 4: Disjoint CIFAR10 tasks. Organization is as in Fig. 3

Adding memory units to classification layers and restricting feature extraction layers to the local
region of the old optimum is enough for us to remember old tasks. Consider a deep network such
as VGG16 in table 3 ((Simonyan & Zisserman, 2014)), if we use a separate network the increase
of parameter is 138 million parameters(100% increase)/task and (96*2) MB/(image,task) memory
(100% increase) for forward and backward pass. However, for our OISS method we only introduce
0.832 million parameters (0.6% increase)/task and 1200 B/(image,task) memory for forward and
backward (0.000625% increase). If we can find better adversarial direction than FGSM, we can use
smaller memory units per task and still achieve the same accuracy. Another interesting research
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Figure 5: a) Disjoint EMNIST tasks. The red curve is using EWC alone (training method 1). The
blue curve is EWC and adversarial memory training (training method 3). The yellow curve is PGD
(training method 4). The black curve is OISB and the magenta curve is OSSS (training method 5).
We use Sigmoid cross entropy loss with overlapped 5 outputs. b) Disjoint CIFAR10 tasks using a
convolutional network. The convolutional and pool layers are the same as LeNet, but we replace the
last 3 fully connected layers by our adversarial memory layers (300 neurons for each layer). After
training task 1, we freeze the parameters in the convolutional layers. we use AD+EWC or OISB on
adversarial memory layers (blue curve) . The yellow curve is the PGD method. We use Softmax
cross entropy loss with overlapped 3 outputs.

direction is how to find the intersection of adversarial subspaces belonging to all classes from all tasks
sequentially. This allows all tasks to share one task-independent memory units. Another advantage of
our method is that, since we do not need to replay data from old tasks while training the new task, we
save extra training cost. This gives us a good way to do online learning.

Mathematical explanation: Methods like EWC only apply a regularization function to a network
trained by old tasks, to learn a new task based on sequential Bayesian inference, by finding a sub
optimum local minima (W ∗

B around A) by minimizing Lp(taskB)(f(XtaskB ,W
∗
A)) of task B around

the local region of parameters space of task A (W ∗
A). When the sequential tasks do not share similar

low-level features, we usually cannot find a good joint probability distribution around the local
region of parameters space of task A. Even worse is that the neural network fails to traverse other
regions in the remote area of the space which might have a much better local minimum (W ∗

A,B) by
minimizing Lp(taskA,taskB)(f(XtaskA,taskB ,W )) for the joint probability distribution of tasks A
and B. Although we cannot revisit the data from earlier tasks in sequential learning, we can store
some abstract long-term features shared by the data from earlier tasks into the memory units of
our neural network and use this knowledge to classify the old test data from earlier tasks. In our
adversarial memory network case, we store the adversarial gradient into memory units, which forms
the intersection of adversarial subspaces inside the memory units Mtask. When we test on each task,
we combine the information stored in the specific memory units with our normal weights trained
by the EWC to form new spaces (W ∗,Mtask,Wtask). These new spaces usually give us a good
estimate of the current test task, even though the normal weights have been modified by the EWC
algorithm. This opens a new world for us that we build new curvature spaces which our experiments
show have better local minima of the loss function for tasks A and B, by combination of normal
weights, memory weights, and memory units.

Comments on EWC: In our experiments, EWC alone did not prevent catastrophic forgetting, though
it did perform better than PGD. Yet, our EWC implementation works well with the original permuted
MINST task used by the authors of EWC. Here, we tested networks with shared outputs and individual
outputs separately, to evaluate the influence of having different classes from different tasks share the
same label. With shared outputs, as used in the original EWC work except that our dataset is not
permuted MNIST, after finishing training of task 3, task 1 accuracy for both EWC and PGD fell to
chance level. With individual outputs, during the training of task 2 and task 3, both EWC and PGD
rapidly decreased to 0% accuracy because the neural network cannot map task 1 to the corresponding
correct outputs properly. In comparison, our EWC+AD, OISB, OISS and AD methods work well in
both output scenarios.
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