
Under review as a conference paper at ICLR 2019

DEEPSTRÖM NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent work has focused on combining kernel methods and deep learning. With
this in mind, we introduce Deepström networks – a new architecture of neural
networks which we use to replace top dense layers of standard convolutional
architectures with an approximation of a kernel function by relying on the Nyström
approximation. Our approach is easy highly flexible. It is compatible with any
kernel function and it allows exploiting multiple kernels. We show that Deepström
networks reach state-of-the-art performance on standard datasets like SVHN and
CIFAR100. One benefit of the method lies in its limited number of learnable
parameters which make it particularly suited for small training set sizes, e.g. from
5 to 20 samples per class. Finally we illustrate two ways of using multiple kernels,
including a multiple Deepström setting, that exploits a kernel on each feature map
output by the convolutional part of the model.

1 INTRODUCTION

Kernel machines and deep learning have mostly been investigated separately. Both have strengths and
weaknesses and appear as complementary family of methods with respect to the settings where they
are most relevant. Deep learning methods may learn from scratch relevant features from data and
may work with huge quantities of data. Yet they actually require large amount of data to fully exploit
their potential and may not perform well with limited training datasets. Moreover deep networks are
complex and difficult to design and require lots of computing and memory resources both for training
and for inference. Kernel machines are powerful tools for learning nonlinear relations in data and are
well suited for problems with limited training sets. Their power comes from their ability to extend
linear methods to nonlinear ones with theoretical guarantees. However, they do not scale well to the
size of the training datasets and do not learn features from the data. They usually require a prior
choice of a relevant kernel amongst the well known ones, or even require defining an appropriate
kernel for the data at hand.

Although most research in the field of deep learning seems to have evolved as a “parallel learning
strategy” to the field of kernel methods, there are a number of studies at the interface of the two
domains which investigated how some concepts can be transferred from one field to another. Mainly,
there are two types of approaches that have been investigated to mix deep learning and kernels.
Few works explored the design of deep kernels that would allow working with a hierarchy of
representations as the one that has been popularized with deep learning (2; 14; 7; 6; 20; 23). Other
studies focused on various ways to plug kernels into deep networks (13; 24; 5; 12; 25). This
paper follows this latter line of research, it focuses on convolutional networks. Specifically, we
propose Deepström networks which are built by replacing dense layers of a convolutional neural
network by an adaptive approximation of a kernel function. Our work is inspired from Deep Fried
Convnets (24) which brings together convolutional neural networks and kernels via Fastfood (9), a
kernel approximation technique based on random feature maps. We revisit this concept in the context
of Nyström kernel approximation (22). One key advantage of our method is its flexibility that enables
the use of any kernel function. Indeed, since the Nyström approximation uses an explicit feature map
from the data kernel matrix, it is not restricted to a specific kernel function and not limited only to
RBF kernels, as in Fastfood approximation. This is particularly useful when one wants to use or learn
multiple different kernels instead of a single kernel function, as we demonstrate here. In particular we
investigate two different ways of using multiple kernels, one is a straightforward extension to using
multiple kernels while the second is a multiple Deepström variant that exploits a Nyström kernel
approximation for each of the feature map output by the convolutional part of the neural network.

1

Under review as a conference paper at ICLR 2019

Furthermore the specific nature of our architecture makes it use only a limited number of parameters,
which favours learning with small training sets as we demonstrate on targeted experiments.

Our experiments on four datasets (MNIST, SVHN, CIFAR10 and CIFAR100) highlight three impor-
tant features of our method. First our approach compares well to standard approaches in standard
settings (using ful training sets) while requiring a reduced number of parameters compared to full
deep networks and of the same order of magnitude as Deep Fried Convnets. This specific feature of
our proposal makes it suitable for dealing with limited training set sizes as we show by considering
experiments with tens or even fewer training samples per class. Finally the method may exploit
multiple kernels, providing a new tool with which to approach the problem of multiple kernel learn-
ing (MKL) (4), and enabling taking into account the rich information in multiple feature maps of
convolution networks through multiple Deepström layers.

The rest of the paper is organized as follows. We provide background on kernel approximation via the
Nyström and the random Fourier features methods and describe the Deep Fried Convnet architecture
in Section 2. The detailed configuration of the proposed Deepström network is described in Section 3.
We also show in Section 3 how Deepström networks can be used with multiple kernels. Section 4
reports experimental results on MNIST, SVHN, CIFAR10 and CIFAR100 datasets to first provide a
deeper understanding of the behaviour of our method with respect to the choice of the kernels and the
combination of these, and second to compare it to state of the art baselines on classification tasks
with respect to accuracy and to complexity issues, in particular in the small training set size setting.

2 BACKGROUND ON KERNEL APPROXIMATION AND DEEP FRIED CONVNETS

Kernel approximation methods have been proposed to make kernel methods scalable. Two popular
methods are Nyström approximation (22) and random features approximation (16). The former
approximates the kernel matrix by an efficient low-rank decomposition, while the latter is based on
mapping input features into a low-dimensional feature space where dot products between features
approximate well the kernel function.

Nyström approximation (22) It computes a low-rank approximation of the kernel matrix by
randomly subsampling a subset of instances. Let consider a training set of n training samples,{
xi ∈ Rd, i = 1, .., n

}
, K be the kernel matrix defined as K(i, j) = k(xi, xj),∀ i, j ∈ [1, . . . , n]

and L be a subset of examples L = {xi}mi=1 which is selected from the training set. Assuming the
subset includes the first samples, or rearranging the training samples this way, K may be rewritten as:

K =

[
K11 KT

21
K21 K22

]
,

where K11 is the Gram matrix on subset L. Nyström approximation is obtained as follows

K ' K̃ =

[
K11

K21

]
K−111

[
K11 KT

21

]
.

From this approximation the Nyström nonlinear representation of a single example x is given by

φnys(x) = kx,LK
− 1

2
11 , (1)

where kx,L = [k(x, x1), . . . , k(x, xm)]T with xi ∈ L.

Random features approximation (16) It computes a low-dimensional feature map φ̃ of dimension
q such that 〈φ̃(·), φ̃(·)〉 = k̃(·, ·) ' k(·, ·). Two instances of this method are Random Kitchen Sinks
(RKS) and Fastfood (17; 9). RKS approximates a Radial Basis Function (RBF) kernel using a random
feature map defined as

φrks(z) =
1
√
p
[cos(Qz) sin(Qz)]T , (2)

where z ∈ Rp, Q ∈ Rq×p and Qi,j are drawn randomly. If Qi,j are drawn according to a Gaussian
distribution then the method is shown to approximate the Gaussian kernel, i.e. 〈φrks(x1), φrks(x2)〉 ≈

2

Under review as a conference paper at ICLR 2019

exp(− ||x1−x2||2
σ) where σ is the hyper-parameter of the kernel. Note that σ is related to the parameters

of the Gaussian distribution that generate the random features.

The Fastfood method (9) is a variant of RKS with reduced computational cost for the Gaussian
kernel. It is based on approximating the matrix Q in Eq. 2, when q = p, by a product of diagonal and
hadamard matrices according to

V =
1

σ
√
p

SHGΠHB,

where S,G and B are diagonal matrices of size p× p, Π ∈ {0, 1}p×p is a random permutation matrix,
H is a Hadamard matrix which does not requite to be stored, and σ is an hyperparameter.

Matrix V may be used in place of Q in Eq. 2 to define the Fastfood nonlinear representation map

φff (x) =
1
√
p
[cos(Vx) sin(Vx)]T . (3)

Note that this definition requires p to be a power of 2 to take advantage of the recursive structure of
the Hadamard matrix. Note also that to reach a representation dimension q > p one may compute
multiple V and concatenate the corresponding φff .

Deep Fried Convnets (24) Our attention in this work is especially focused on combining kernel
approximation with deep learning architecture. Deep Fried Convnets is a deep learning architecture
that replaces dense layers of a convolutional neural architecture by a Fastfood approximation of
a kernel. This allows to take advantage of the low complexity cost in terms of computation and
memory of Fastfood to reduce significantly the computation cost and the number of parameters of
the fully-connected layers of the deep convolutional neural network. More formally, let conv(x)
be the representation of the data sample x learned by a convolutional neural network. It may
include a number of convolution blocks, each including convolution and pooling layers, batch
normalization and nonlinear activation. In Deep Fried Convnets, an input x ∈ Rd is mapped to
the representation spaces conv(x) ∈ Rp and then the Fastfood feature map φff is applied to the
convolutional representation conv(x) instead of the fully-connected layers. The feature representation
of x with Deep Fried Convnets is then (φff ◦conv)(x) ∈ Rq . It is of note that this method is dedicated
to RBF kernels. In (24), wo architectures have been proposed. The first one relies on the Fastfood
kernel approximation method as described above. The second one is a variant of Fastfood called
Adaptive-Fastfood. It involves learning the weights of matrices S, G and B through gradient descent
rather than setting them randomly, while matrices Π and H are kept unchanged.

In the next section we introduce Deepström Networks as an alternative to Deep Fried Convnets. They
are based on Nyström approximation and are not limited to RBF kernels. They also allow the use of
multiple different kernels and find an appropriate kernel function.

3 Deepström NETWORKS

In this section, we describe our new Deepström model which combines the desirable characteristics
of Nyström approximation and convolutional neural networks. First, we start by revisiting the concept
of Nyström kernel approximation from a feature map perspective.

Nyström approximation from an empirical kernel map perspective The empirical kernel map
is an explicit n-dimensional feature map that is obtained by applying the kernel function on the
training data xi (18). It is defined as

φemp : Rd → Rn (4)

x 7→
(
k(x, x1), . . . , k(x, xn)

)
. (5)

An interesting feature of the empirical kernel map is that if we consider the inner product in Rn
〈·, ·〉M = 〈·,M ·〉 with a positive semi-definite (psd) matrix M , we can recover the kernel matrix
K using the empirical kernel map by setting M equals to the inverse of the kernel matrix. In other
words, Kemp :=

(
〈φemp(xi), φemp(xj)〉K−1

)n
i,j=1

= K. Since K is a psd matrix, one can consider

the feature φ′emp : x → K−1/2φemp(x) as an explicit feature map that allows to reconstruct the

3

Under review as a conference paper at ICLR 2019

Figure 1: The Deepström network architecture involves a usual convolutional part, conv , including
multiple convolutional blocks, and a Deepström layer which is then fed to (eventually multiple)
standard dense layers up to the classification layer. The Deepström layer computes the kernel between
the output of the conv block for a given input and the corrsponding representations of the trains
samples in the subsample L.

kernel matrix. This feature map is of dimension n and then is not interesting when the number of
example is large. The feature map of the Nyström approximation is given by

φnys(x) = kx,LK
− 1

2
11 ,

where kx,L = [k(x, x1), . . . , k(x, xm)]T with xi ∈ L. From an empirical kernel map point of

view,φnys(x) can be seen as an “empirical kernel map” (18) and K
− 1

2
11 as a metric in the “empirical

feature space”. From this viewpoint, we think that it could be useful to learn a metric W in the
empirical feature space instead of assuming it to be equal to K

− 1
2

11 . In a sense, this should allow to
learn a kernel by learning its Nyström feature representation. In the following, we call the setting
where W is learned by the network Adapative Deepström Network.

Principle Deepström networks we propose are an alternative to Deep Fried Convnets. They are
based on using the Nyström approximation rather than the Fastfood one to integrate any kernel
function on top of convolutional layers of a deep net. Indeed, although Deep Fried Convnets yield
state-of-the-art results with a significant gain with respect to memory resource and to inference
complexity, it is restricted to the Gaussian kernel Fastfood, which may not be always the best
choice in practice. In addition, our method can deal with multiple kernels. Deepström nets are
Neural Networks that make use of a nonlinear representation function computed with the Nyström
approximation (see Figure 1). Starting from Deep Fried Convnets we replace φff with φnys so that a
Deepström net implements a function f(x) = (lc ◦ φnys ◦ conv)(x). In order to compute the above
Nyström representation of a sample x one must consider a subsample L of training instances. Since
the kernel k is computed on the representations given by convolutional layers, the samples in L must
be represented in the same space, and hence must be processed by the convolutional layers as well.
Once convolutional representations are calculated, the kernel function may be computed with an
input sample and each instance in L in order to get the kx,L, which is then linearly transformed by W
before the linear classification layer (see Figure 1).

Two main structural differences between Deep Fried Convnets and our Deepström nets: (I) Nyström
has the flexibility to use different kernel functions and to combine multiple kernels, and (II) in contrast
to Fastfood the Nyström approximation is data dependent. However, one problem arises with the
computation of K−

1
2

11 which requires the computation of the Singular Value Decomposition (SVD)
of K11. In the case where the size of the subsample L, m, is large, the computational complexity
of the SVD is O(m3).This issue can be at least partially settled via Adaptative-Deepström network
where, instead of setting the weights W as in Eq. 3, we learn these weights as parameters of the

4

Under review as a conference paper at ICLR 2019

Dataset Input shape # classes Training set size Validation set size Test set size
MNIST (28× 28× 1) 10 40 000 10 000 10 000
SVHN (32× 32× 3) 10 63 257 10 000 26 032

CIFAR10 (32× 32× 3) 10 50 000 10 000 10 000
CIFAR100 (32× 32× 3) 100 50 000 10 000 10 000

Table 1: Datasets statistics

network via stochastic gradient descent. In the case of multiple kernels, k1, . . . , kl, l Deepström
layers can be computed in parallel then merged to encode the information provided by the different
kernel representations. Learning the weights W1, . . . ,Wl in this case is, in a way, related to multiple
kernel learning. Alternatively one may exploit a Deepström layer on top of each of the output feature
map by the convolutional part conv and concatenate these as input to a classification layer, we call
this a multiple Deepström architecture hereafter.

4 EXPERIMENTS

We present a series of experimental results that explore the potential of Deepström networks with
respect to various classification settings. First we consider a rather standard setting and compare our
approach with standard models on image classification tasks. We explore in particular the behaviour
of Deepström networks with various kernels and stress the very limited subsample size needed to
reach state-of-the-art accuracy. Next we investigate the use of Deepström networks in a small training
set setting, which shows that our approach may allow to learn new classes with only very few training
samples, taking advantage of the reduced number of parameters learned by our model. Before
describing all these results we detail the datasets used. Finally we investigate first the multiple kernel
architecture and illustrate its interest when learning with RBF kernel to overcome the hyperparameter
selection, and second we demonstrate the benefit of a multiple Deepström approach, combining
kernels computed from individual feature maps.

4.1 EXPERIMENTAL SETTINGS

We conducted experiments on four well known image classification datasets: MNIST (11), SVHN
(15), CIFAR10 and CIFAR100 (8), details on these datasets are provided in Table 1. We pretrained
the convolutional layers using standard architectures on both datasets: Lenet (10) for MNIST and
VGG19 (19) for SVHN, CIFAR10 and CIFAR100. We slightly modified the filters’ sizes in Lenet
network to ensure that the dimension of data after the convolution blocks is a power of 2 (needed for
the Deep Fried Convnets architecture).

We compare three convolutional architectures in all conducted experiments. Pretrained convolutional
parts are shared by the three architectures, which differ from the layers on top of it: (1) Dense
architectures use dense hidden layers, i.e. these are classical convnets architectures ; (2) Deep Fried
implements the Fastfood approximation (Equation 3) ; (3) Deepstrom stands for our proposal.

For Dense architectures, we considered one hidden layer with relu activation function, and varied the
output dimension as {2, 4, 8, 16, 32, 64, 128, 1024} in order to highlight accuracies as a function of
the number of parameters. For the Fastfood approximation in Deep Fried Convnets we consider that
φff is gained with one stack of random features to form V in equation 3, except in the experiments
of section 4.3 which yields a representation dimension up to 5 times larger. Regarding our approach
φnys, we varied the subset size L ∈ {2, 4, 8, 16, 32, 64, 128}, we tested with the linear, the RBF, and
the Chi2 kernels, and we chose as output dimension the same size as the subset sample size. Finally
we explored the adaptive as well as non-adaptive variants.

Models were learned to optimize the cross entropy criterion with Adam optimizer and a gradient step
fixed to 1e−4. Dropout was used on representation layers with probability equal to 0.5. By default
the RBF bandwidth was set to the inverse of the mean distance between the representations, after the
convolutional part, of pairs of training samples. All experiments were performed with Keras (3) and
Tensorflow (1).

5

Under review as a conference paper at ICLR 2019

Figure 2: Accuracy of models as a function of the number of parameters (conv part not included)
for various kernels on MNIST (top-left), SVHN (top-right), CIFAR10 (bottom-left) and CIFAR100
(bottom-right) datasets.

Note that the aim of all the experiments below is to investigate the potential of out architecture, not to
reach or beat state of the art results on the datasets considered. We then compare results gained with
our architecture and with state-of-the-art models, given a shared convolutional model. Consequently,
we did not use tricks such as data augmentation and extensive tuning and, in particular, we did not
use the best known convolutional architecture for each of the dataset, we rather used a reasonable
deep architecture, VGG19, for the three datasets CIFAR10, CIFAR100 and SVHN.

4.2 EXPLORING THE POTENTIAL OF THE METHOD

We compare now Deepström networks to two similar architectures, Deep Fried Convnets and classical
convolutional networks (inspired from VGG19 and Lenet depending on the dataset). We vary the
number of parameters of each architecture in order to highlight classification accuracy with respect to
needed memory space.

Figure 2 shows the compared networks accuracy with respect to the number of parameters, and
ignore parameters for convolutions layers to ease the readability. We repeated each experiments 10
times and plot average scores with standard deviations. Deepström models of increasing complexity
(number of parameters) correspond to the use of subsample of increasing size from 2 (leftmost point)
to 128 (rightmost point). One may see that there is no need of a large subsample here. This may be
explained since the convolutional part of the network has been learned to yield quite robust and stable
representations of input images. We provide a figure in the Appendix that illustrates this.

The Deepström network is able to reach state-of-the-art performance using much fewer parameters
than both classical networks and Deep Fried Convnets. Moreover, we also observe smaller variations
that points out the robustness of our model. The flexibility in the choice of the kernel function is a clear

6

Under review as a conference paper at ICLR 2019

advantage of out method. The best kernel is clearly dependent on the dataset (linear on MNIST, Chi2
on SVHN and CIFAR100, RBF on CIFAR10). While Random Features in DeepFried are restricted to
RBF kernels, we show for instance a gain by using the Chi2 Kernel (k(x1, x2) = ||x1−x2||2/(x1+x2))
that had been used for image classification (21). We also notice the benefit of adaptive variants of
Deepström model, suggesting that our model is able to learn and adapt useful Kernel function.

Finally, note that we obtained very similar results with neural architectures exploiting two hidden
layers instead of one after the convolution module conv.

4.3 LEARNING WITH SMALL TRAINING SETS

Here we explore the ability of our model to work with few training samples, from very few to tens
of samples per class. It is an expected benefit of the method since the use of kernels could take
advantage of small training samples.

Note that we do not exactly deal with a real small training set setting. These preliminary experiments
aim to show how the final layers of a convolutional model may be learned from very few samples,
given a frozen convolutional model. We actually performed the following experiments by exploiting
a trained convolution model conv that has been learned on the full CIFAR100 training set and
investigate the performance of Deepström architectures as a function of the training set used to
learn the classification layers. One perspective of this work is to exploit such a strategy for domain
adaptation settings where the convolutional model is trained on a training set within a different
domain as the classes to be recognized.

Having at our disposal such a trained convolution model conv, we leverage on the additional
information that one may easily include in our models, which is brought by the subsample set. Notice
that this subsample may include unlabeled samples since their labels are not used for optimizing
the model. Table 2 reports the comparison of network architectures on four datasets. We consider
Adaptive Deepström using Linear, RBF or Chi2 kernels and compare with Dense and Adaptive
Deepfried for training set sizes of 5, 10 and 20 samples per class. We only consider here adaptive
variants since they brought better results than their non adaptive counterparts. We obtain models
with different complexities: by increasing the hidden layer size in standard convolutional models,
or by stacking the number of matrices V in DeepFried (up to 8 times, more was untractable on our
machines), and by increasing the subset size in Deepström. Reported results are averaged over 30
runs.

MNIST SVHN CIFAR10 CIFAR100
5 20 5 20 5 20 5 20

D 49.7 (4) 94.4 (0.5) 65.6 (11.6) 81.7 (3.9) 39.1 (3.3) 87.1 (3.7) 19.2 (2.2) 35.7 (2.7)
ADF 12.4 (3.3) 12.4 (1.4) 16.7 (5) 21.0 (6.4) 28.3 (9.2) 41.2 (3.6) 3.9 (1.2) 6.4 (0.8)
ADSL 48.1 (5.5) 95.0 (0.5) 22.4 (6.9) 29.6 (13.5) 12.0 (5.6) 27.8 (7.6) 1.2 (0.6) 1.9 (0.8)
ADSR 41.2 (7.7) 95.5 (0.3) 42.1 (29.6) 53.5 (33.6) 70.8 (4.4) 92.2 (0.1) 24.7 (2.6) 62.1 (1.2)
ADSC 26.4 (7.7) 92.3 (1.8) 89.6 (3.1) 93.3 (1.3) 67.1 (4.7) 92.2 (1) 20.2 (2.2) 55.4 (1.9)

Table 2: Classification accuracy of Dense layers architectures (D); Adaptive DeepFried (ADF),
Adaptive Deepström with linear (ADSL), RBF (ADSR), Chi2 (ADSC) kernels, on small training
sets with 5 and 20 training samples per class. Variance of results, computed on 30 runs, are given in
brackets.

One may see first that Deepstrom architectures outperfom baselines on every setting except for 5
training samples per class on MNIST. The linear kernel performs well on MNIST but is significantly
worse than baselines on harder datasets. At the opposite, both ADSR and ADSC significantly
outperfom Adaptive DeepFried for any dataset and perform on par or significantly better than Dense
architectures on the hardest CIFAR100 dataset. Moreover one sees that no single kernel based
Deepstrom architecture dominate on all settings, showing the potential interest of combining multiple
kernels as following experiments will show.

4.4 MULTIPLE KERNEL LEARNING

We report here results gained using multiple kernels in two different ways.

7

Under review as a conference paper at ICLR 2019

Model Accuracy (std) Architecture
Dense 68.0 (0.7) 1 hidden layer 1024 neurons
Deepfried 67.6 (0.5) 5 stacks
Deepström 69.1 (0.2) 256 subsamples + 512 Linear Kernels
Deepström 67.6 (0.2) 16 subsamples + 512 Chi2 Kernels

Table 3: Multiple Deepström experiments on CIFAR100 obtained on top of VGG19 convolutions.

First we exploited the Multiple Kernels strategy that we described in section 3 for exploiting multiple
kernels in the output of the convolutional blocks, conv. Figure 3 reports results gained when using
a combination of RBF kernels with various bandwidths and for different subsample sizes. Our
multiple kernel strategy, exploiting kernels defined with various values of the hyperparameter allows
automatically handling this hyper-parameter which usually requires to be tuned either through cross
validation or to be manually chosen. The plots show the accuracy on the CIFAR10 dataset as a
function of σ value, where the performance of the multiple kernel Deepström is shown as a horizontal
line. Plots report results for various subsample size equal to 2 (left), 4 (middle) and 8 (right),
averaged over 10 runs. As may be seen, using our Multiple kernel strategy allows adapting the
kernel combination optimally from the data without requiring any prior choice on the RBF bandwith
hyper-parameter.

Figure 3: Comparison of Multiple Kernels that combines RBF kernels with various values of the
bandwidth hyper-parameter. Multiple kernels performance is shown as an horizontal line while single
kernel using one specific value of the bandwidth hyper-parameter σ. Plots correspond to a subsample
size equal to 2 (left), 4 (middle) and 8 (right).

Second, we investigated another architecture that exploits Multiple Deepström approximations as
presented in section 3. Here we use in parallel multiple Nyström approximations where kernels
are dedicated to deal each with the output of a single feature map of the conv part. Table 3 reports
results on CIFAR100. We show the best performances obtained for each method by grid-searching on
various hyper-parameters depending on the models, within a similar range of number of parameters.
For Dense model, we considered one or two hidden layers of 16, 64, 128, 1024, 2048 or 4096 neurons.
Deepfried is the adaptive variant where we varied the number of stacks in 1, 3, 5, 7. Deepström is
also the adaptive variant where the subsample size is in 16, 64, 128, 256, 512. We observe that both
Deepström models outperform the considered baselines, demonstrating the interest in combining
Deepström approximations.

5 CONCLUSION

We proposed Deepström, a new hybrid architecture that mixes deep networks and kernel methods. It is
based on the Nyström approximation that allow considering any kind of kernel function in contrast to
Deep Fried Convnets. Our proposal allows reaching state of the art results while significantly reducing
the number of parameters on various datasets, enabling in particular learning from few samples.
Moreover the method allows to easily deal with multiple kernels and with multiple Deepström
architectures.

8

Under review as a conference paper at ICLR 2019

REFERENCES

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-
scale machine learning. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI’16, pages 265–283, Berkeley, CA, USA, 2016. USENIX
Association.

[2] Youngmin Cho and Lawrence K. Saul. Kernel methods for deep learning. In Y. Bengio,
D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural
Information Processing Systems 22, pages 342–350. Curran Associates, Inc., 2009.

[3] François Chollet et al. Keras. https://keras.io, 2015.

[4] Mehmet Gönen and Ethem Alpaydın. Multiple kernel learning algorithms. Journal of machine
learning research, 12(Jul):2211–2268, 2011.

[5] Tamir Hazan and Tommi Jaakkola. Steps toward deep kernel methods from infinite neural
networks. arXiv preprint arXiv:1508.05133, 2015.

[6] Uri Heinemann, Roi Livni, Elad Eban, Gal Elidan, and Amir Globerson. Improper deep kernels.
In Artificial Intelligence and Statistics, pages 1159–1167, 2016.

[7] Cijo Jose, Prasoon Goyal, Parv Aggrwal, and Manik Varma. Local deep kernel learning for
efficient non-linear svm prediction. In International Conference on Machine Learning, pages
486–494, 2013.

[8] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

[9] Quoc V. Le, Tamas Sarlos, and Alex Smola. Fastfood-computing hilbert space expansions in
loglinear time. In International Conference on Machine Learning, 2013.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

[11] Yann Lecun and Corinna Cortes. The MNIST database of handwritten digits.

[12] Julien Mairal. End-to-end kernel learning with supervised convolutional kernel networks. In
Advances in neural information processing systems, pages 1399–1407, 2016.

[13] Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid. Convolutional kernel
networks. In Advances in neural information processing systems, pages 2627–2635, 2014.

[14] GréŠgoire Montavon, Mikio L Braun, and Klaus-Robert M utller. Kernel analysis of deep
networks. Journal of Machine Learning Research, 12(Sep):2563–2581, 2011.

[15] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng.
Reading digits in natural images with unsupervised feature learning. 2011.

[16] Ali Rahimi and Ben Recht. Random features for large-scale kernel machines. In In Neural
Infomration Processing Systems, 2007.

[17] Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing minimiza-
tion with randomization in learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
editors, Advances in Neural Information Processing Systems 21, pages 1313–1320. Curran
Associates, Inc., 2009.

[18] Bernhard Scholkopf, Sebastian Mika, Chris JC Burges, Philipp Knirsch, K-R Muller, Gunnar
Ratsch, and Alex J Smola. Input space versus feature space in kernel-based methods. IEEE
transactions on neural networks, 10(5):1000–1017, 1999.

[19] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

9

https://keras.io

Under review as a conference paper at ICLR 2019

[20] Ingo Steinwart, Philipp Thomann, and Nico Schmid. Learning with hierarchical gaussian
kernels. arXiv preprint arXiv:1612.00824, 2016.

[21] Andrea Vedaldi and Andrew Zisserman. Efficient additive kernels via explicit feature maps.
IEEE Trans. Pattern Anal. Mach. Intell., 34(3):480–492, March 2012.

[22] Christopher Williams and Matthias Seeger. Using the nyström method to speed up kernel
machines. In Advances in Neural Information Processing Systems 13, pages 682–688. MIT
Press, 2001.

[23] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel
learning. In Artificial Intelligence and Statistics, pages 370–378, 2016.

[24] Z. Yang, M. Moczulski, M. Denil, N. d. Freitas, A. Smola, L. Song, and Z. Wang. Deep fried
convnets. In 2015 IEEE International Conference on Computer Vision (ICCV), volume 00,
pages 1476–1483, Dec. 2015.

[25] Shuai Zhang, Jianxin Li, Pengtao Xie, Yingchun Zhang, Minglai Shao, Haoyi Zhou, and Mengyi
Yan. Stacked kernel network. arXiv preprint arXiv:1711.09219, 2017.

10

Under review as a conference paper at ICLR 2019

APPENDIX

Figure 4 plots the 2-dimensional φnys representations of some CIFAR10 test samples obtained with
a subsample of size equal to 2 (while the number of classes is 10) and two different kernels. One
may see here that the 10 classes are already significantly well separated in this low dimensional
representation space, illustrating that a very small sized subsammple is already powerfull. Beside,
we experienced that designing Deepström Convnets on lower level features output by lower level
convolution blocks may yield state-of-the-art performance as well while requiring larger subsamples.

Figure 4: 2-dimensional φnys representation of 1000 randomly selected test set samples, obtained
with a subsample set of size 2 and a linear kernel (left) or Chi2 kernel (right).

11

	Introduction
	Background on Kernel Approximation and Deep Fried Convnets
	Deepström Networks
	Experiments
	Experimental settings
	Exploring the potential of the method
	Learning with small training sets
	Multiple kernel learning

	Conclusion

