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Abstract

Medical image analysis using deep learning has become a topic of steadily growing interest.
While model capacity is continiously increasing, limited data is still a major issue for
deep learning in medical imaging. Virtually all past approaches work with a high amount
of regularization as well as systematic data augmentation. In explorative tasks realistic
data augmentation with affine transformations may not always be possible, which prevents
models from effective generalization. Within this paper, we propose inherently rotationally
invariant convolutional layers enabling the model to develop invariant features from limited
training data. Our approach outperforms classical convolutions on the CIFAR-10, CIFAR-
100, and STL-10 datasets. We show the transferability to clinical scenarios by applying
our approach on oncologic tasks for metastatic colorectal cancer treatment assessment and
liver lesion segmentation in pancreatic cancer patients.
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1. Introduction

With the rise of deep learning and its success in a wide range of applications, within the
last years (semi-)automated medical image analysis using deep learning has become a topic
of steadily growing interest (Litjens et al., 2017; Shen et al., 2017). A major reason for
the success of deep learning is its high model complexity. However, with an increasing
amount of trainable parameters, deep learning models become highly prone to overfitting.
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Most - or virtually all - medical applications of deep learning have to handle this problem,
i.e. model regularization, in one or the other way. Standard techniques involve dropout
(Srivastava et al., 2014), batch normalization (Ioffe and Szegedy, 2015), data augmenta-
tion and various forms of dimensionality or effective model complexity reduction, such as
architectural bottlenecking through sparse representations or using denoising autoencoders
(Vincent et al., 2008). Most of the mentioned techniques increase training set variance by
(effectively) introducing semi-synthetically generated samples with no additional informa-
tion, which eventually leads to a reduced model parameter variance, and thus, a reduced
effective model complexity. This process can be seen as an a-priori knowledge-guided model
regularization. However, the applied techniques differ: While dropout, batch-normalization,
and architectural regularization tackle the problem from within the models training task,
data augmentation is done from the outside. Non-augmenting model regularization induces
invariance in a form which is part of the optimization process, thus making it possible for the
model to learn more efficiently, while data augmentation assumes that semi-synthetically
generated samples are semantically following some form of invariance visually perceived by
human. This, however, might be a wrong assumption.

Neural networks apply a vast amount of non-linear projections. Meanwhile handy tools
for visualization are existent, and while they can be considered as being generally helpful
in neural network development, a) their introduction and distribution took considerably
longer than the network advancements’, and predominantly b) current visualization and
inspection tools are still just starting to be at the edge of what can genuinely be considered
as intuitive or obvious. As a consequence, there is still a lack of knowledge on the emergence
of concrete interactions within the network.

In turn, this means that while samples and their respective labels might for human
observers seem invariant to affine transformations, e.g. shearing, rotation, or scaling, these
transformations could in fact induce semantic label errors. This might be mostly assumed
irrelevant in scenarios where humans significantly outperform machines, so their sense of
invariance should be reasonable to a specific point. However, especially within the medical
field one prospective speculation is the improvement of diagnostic performance beyond the
level of human vision. Therefore, it might be advisable to optimize the network’s choice of
transformations itself for maximizing the output accuracy.

Another factor is that data augmentation can be seen as inefficient with respect to
training time. When invariance is encoded directly into the model, data augmentation can
be kept as low as possible. For example, there have been many efforts to introduce rotational
invariance into neural networks (Marcos et al., 2016; Winkels and Cohen, 2018; Cheng et al.,
2016) with some of them reaching back to non-convolutional approaches (Fasel and Gatica-
Perez, 2006). Also there have been approaches to systematically learn steerable filters for
convolutional neural networks being inherently rotationally invariant (Weiler et al., 2017)
based on the work from Jacob and Unser (2003, 2004).

While differing in their choice of concrete methods, all these approaches have in common
that they either create invariance a) by some form of rotated duplication of filters, or b) by
constraining the network to only allow special filter configurations which are rotationally
invariant themselves, e.g. via custom loss function or network constraints. While a) unin-
tentionally reduces the effective network capacity, b) prevents the network from detecting
actually non-invariant features.
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Within this paper, we demonstrate that simple transformational layers within the net-
work for invariance might significantly improve the network’s performance. We show this
by introducing an inherently rotation-invariant convolutional layer, while preserving the
input’s local pose. We show that our network outperforms classic convolutional neural net-
works which share the same model complexity, i.e. number of optimizable parameters, with
respect to the final test set performance. In our experiments, we show that this especially
holds true when data is limited, as it is typical within clinical scenarios. As a proof of
concept, we provide an exhaustive evaluation with a variety of metrics on the well-known
benchmark datasets CIFAR-10, CIFAR-100 and STL-10. We furthermore demonstrate
the transferability to the clinical context using two self-acquired medical datasets with the
tasks of oncological treatment response classification in metastatic colorectal cancer patients
(mCRC) and liver lesion segmentation in pancreatic cancer patients.

2. Material and methods

Invariance to visual distortions is often important in terms of generalization performance.
Common distortion types within visual perception comprise translation, scale, rotation, il-
lumination, and many more. Deep learning research often relies on the belief that data
amount might compensate for variance with respect to these distortions at least to some
point. Still, most top-performing neural networks apply data augmentation even when
trained on large datasets. Data augmentation induces additional variance into the training
data which in turn increases the probability of the classifier being invariant to changes
represented within the augmented data with respect to an output label. The applied trans-
formations generally rely on the a-priori knowledge of label invariance regarding specific
types of transformations based on visual-perception. More formally, the transformations
are input-variant but label-invariant, or in simple terms: transformations are generally rea-
sonable with respect to the actual label, i.e. with the example of the well-known CIFAR 10
dataset within a reasonable range of transformations the perceived class of an image of the
class ”bird” will not change into one of the class ”frog” or vice-versa.
While this is immediately comprehensible for visually perceivable classes, the situation
changes when deep learning is applied to explorative tasks where the ground-truth labels
can not directly be perceived by human visual inspection. Assessment beyond human per-
ception, however, is a major goal of many approaches within the clinical domain, e.g. by
Radiomics (Gillies et al., 2015). Instead, transformations might induce unnatural variance
in these cases and, thus, even worsen classification performance as labels might actually be
rotationally and transformationally variant. With our approach, we show that it is feasible
to make the search for invariant vs. variant features a matter of the network optimization
process.

2.1. The ORB approach

Our approach is built upon the idea of ORB - Oriented FAST and Rotational Brief from
Rublee et al. (2011). ORB was one of the most recognized approaches introducing rota-
tional invariance into actually non-invariant visual patch recognition utilizing the intensity
centroids described by Rosin (1999). For this purpose Rublee et al. determine image patch
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moments as:
mpq =

∑
x,y

xpyqI(x, y) (1)

based on normalized image intensities I at positions (x, y). Image patch moments can be
used for finding the image centroid as:

C =

(
m10

m00
,
m01

m00

)
(2)

which allows rotating the patch according to the inverse of its orientation Θ:

Θ = atan2(m01,m10) (3)

After rotation, originally non-invariant transformations can be applied to the image while
preserving rotational invariance.

Figure 1: Left: image patches with various orientations. Within convolutional neural net-
works, these patches would have to be detected with respectively equally oriented
filters. Right: Images after centroid rotation. With rotational invariance, all four
patches would be mapped to the same orientation.

2.2. Hybrid Rotation Invariant Networks

As all aforementioned operations are differentiable, it is possible to transfer these operations
to convolutional neural networks, which is reasonable as ORB was created to be applied on
image patches itself. We limit this publication to only take into account the two-dimensional
case, as the datasets we consider mostly consist of two-dimensional data only. However,
the generalization to the n-dimensional case is straightforward. Analogously to classical 2D
convolutional layers, our approach first extracts image patches parameterizable by kernel
size, strides, extraction rate and border padding. In a second step, image centroids are
derived according to Equation (2), and patches are rotated by their respective centroid ro-
tation Θ from Equation (3). The data is rotated by multiplying the homogeneous extraction
coordinates (x, y, 1) with the matrix M :

(x′, y′, z) = (x, y, 1) ·M with M =

cos Θ − sin Θ 0
sin Θ cos Θ 0

0 0 1

 (4)

When extraction coordinates (x′, y′) lie between pixels, a bilinear interpolation is applied.
While homogeneous and non-homogeneous coordinates result in the same image positions
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using the transformation matrix M , i.e. (x
′

z ,
y′

z ) = (x′, y′), this matrix format shows that
arbitrary transformations are easy to implement, making the approach feasible for invariance
to other affine transformations, e.g. scale or sheering. Further approaches could include a
learned transformation (see Section 4). Finally, the filter output is calculated analogously
to classical convolutions with:

y = W ∗ p + b (5)

for each rotated k × k image patch p, kernel size k, weight matrix W and filter bias b.

2.2.1. Rotation invariance vs. rotational equivariance

Rotation invariance might be suboptimal, as the patches’ local rotation might constrain
global relations. This is for example the case with face images, where the rotation of eyes
or mouth generally have implications for valid rotations of nose and eyebrows. Thus each
on its own is not invariant, but equivariant (invariant with knowledge on its pose), while
the patches are covariant with respect to other patches (i.e. the rotation of patches is
defining for the rotation of other patches). Rotational invariance would imply an arbitrary
rotation for each of the subfeatures, meaning that the actual rotation of eyes or nose would
have no implications for the rotation of the mouth features, etc.. To preserve rotational
equivariance (resp. the knowledge of local rotation), for every rotationally invariant layer
two additional filter maps are appended, containing the values sin Θ(x, y) and cos Θ(x, y)
for the local rotation Θ (Equation (3)) at each filter position (x, y). Still, we can not
preserve actual covariance between patches as it is possible with classical convolutions where
different rotations are represented by separate filters. To address this issue, we propose a
combination of rotationally invariant and classic convolutions called hybrid layers. We
expect this mixture to yield significantly better performance: while rotationally invariant
input image properties should fastly be covered by the rotationally invariant filters, the
non-invariant properties can be treated using standard convolutions, without the need of
learning rotated duplicates of the same filters. As we use hybrid layers, i.e. half of the filters
are rotationally invariant, while the other half is not, rotation variance and invariance can
be preserved at every abstraction stage within the network.

2.3. Working Hypotheses and Evaluation

Based on the assumptions mentioned above, we expect our approach to especially perform
well when sample size is large enough for successful formation of simple filters but not for
sufficiently developing rotated versions of these filters, or for discovering spatial covariances
within deeper layers. We hypothesize that a) our approach should reach similar results
as with classical convolutions with very small training sets, b) significantly outperform
them with medium sample sizes, and c) eventually converge to a value comparable to non-
invariant convolutions. Furthermore, we expect our approach to be especially beneficial for
difficult learning tasks, as its rotational invariance allows it to develop comparably simple
features more efficiently. To test these assumptions, we systematically modified training set
sizes S to be:

SX = {2n | n0 ≤ n ≤ log2(|X|)} ∪ {|X|} (6)

for dataset X. We chose a start value of n0 = 7 resulting in the smallest set having a
cardinality of min(SX) = 27 = 128 samples since the set with the highest amount of classes
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has exactly 100 classes, meaning that ≈ 78% of classes are represented by only one sample
within the training set.

2.3.1. Training details and sets

For training, we employed Keras (Chollet et al., 2015) using the Tensorflow backend (Abadi
et al., 2015). As a proof of concept, we tested our approach on the well-known Cifar-10
and Cifar-100 datasets from Krizhevsky and Hinton (2009), as well as the STL-10 dataset
from Coates et al. (2011). To show the impact for classification in typical clinical datasets,
we trained our model with an extended version of the metastatic colorectal cancer dataset
(mCRC) from Katzmann et al. (2018). To analyze whether our approach is transferable
to other tasks, we also employed the aproach for liver lesion segmentation in pancreas
carcinoma patients, using a newly acquired dataset. For each set size, we trained both
models (i.e. rotationally invariant and classic) for three iterations with varying random
seeds in each iteration. Within each iteration, seeds were fixed for both models for ensuring
equal initialization and training sample order. For Cifar-10, Cifar-100 and STL-10, all
results were evaluated on the respective full test set. For tumor growth prediction and
liver lesion segmentation, we chose a 4-fold grouped stratified cross-validation as a tradeoff
between training time and explanatory power, with 1/4 of the training set to be used for
validation. In every case we optimized using categorical cross entropy loss. The best model
was chosen as the one maximizing the lower bound of the 95 % bootstrapping confidence
interval of ROC area-under-curve on the validation dataset, as this also takes into account
metric variance and empirically provided clear advantages over using the validation loss with
respect to the generalizability of the results. All results were obtained using bootstrapping
until metrics convergence (Efron, 1982).

3. Results

3.1. Cifar-10, Cifar-100 and STL-10

The Cifar-10 and Cifar-100 datasets consist of 50,000 images each with a size of 32x32
from 10, respectively 100, different classes of everyday objects, e.g. planes, cars, or dogs.
The test sets comprise 10,000 samples each. STL-10 is built up similarly to Cifar-10, but
contains 5,000 images sized 96x96 pixels for training and 8,000 images for testing. As
described above, we trained our model as well as an equivalently built one with classical
convolutions while systematically varying the amount of training samples used as described
in Section 2.3. The results are shown in Figure 2.

3.2. mCRC Dataset

Using an extended version of the dataset from Katzmann et al. (2018), we trained our
model to predict disease progressions of patients with metastatic colorectal cancer based
on baseline-followup-pairs of liver lesion slices from computed tomography images, that is,
predicting growth at followup two relative to lesion size at followup one. This assesment was
already shown to be partially predictive for biological information while providing benefits
over the clinical standard Response Evaluation Criteria in Solid Tumors (RECIST v1.1)
lesion assessment from Eisenhauer et al. (2009). Our target variable definition is defined

6



Hybrid Rotation Invariant Networks

CIFAR-10

CIFAR-100

STL-10

Figure 2: Results of rotationally invariant vs. variant convolutional neural networks on the
CIFAR-10, CIFAR-100 and STL-10 datasets. Results are shown with respect to
accuracy, matthews correlation coefficient, and area under the receiver operating
curve (ROC-AUC) using multiclass-macro-averaging. The metric’s 99% confi-
dence intervals are given as shadowed areas. Expectedly, rotationally invariant
layers outperform classical convolutions with medium sample sizes but become
less significant with larger sets or lower-difficulty problems. With the more diffi-
cult problems from CIFAR-100 and STL-10, the differences between rotationally
invariant and non-invariant layers become more significant.
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as the RECIST lesion progressive disease status, thus a lesion growth of ≥ 20% is assumed
progression. The dataset contains 592 baseline followup pairs of 320 lesions in 138 scans
from 75 patients. The test results are shown in Table 1.

Our approach CI 95 Classic CI 95

Accuracy .636 [.598, .674] .724 [.689, .760]
F1 .335 [.273, .402] .313 [.232, .390]

Sensitivity .671 [.569, .774] .463 [.360, .577]
Specificity .631 [.587, .671] .765 [.727, .801]
Matthews .211 [.132, .291] .177 [.089, .264]

AUC .717 [.659, .776] .639 [.561, .713]

Table 1: Results on the mCRC dataset for tumor growth prediction. Label distribution was
81 positive vs. 511 negative samples. While classifiers focused on different classes,
the balanced Matthews correlation coefficient indicates superiority of rotation-
invariant convolutions with significantly higher ROC AUC with p < .05 (two-tailed
z-test).

3.3. Liver lesion segmentation in pancreatic cancer patients

We applied our approach for liver lesion segmentation using a modified 2D version of the U-
Net architecture from Ronneberger et al. (2015). The model is trained on a newly acquired
dataset of pancreatic cancer patients. Segmenting liver lesions in pancreatic cancer patients
can be seen as particulary difficult as one patient may suffer from more than a houndred liver
lesions. The dataset consisted of 3481 samples from 135 volumes of 87 pancreas carcinoma
patients with fully-volumetrically segmented livers and liver lesions. Metrics were tested
with and without outlier detection. When applying outlier detection, surface distances
≥ 5 cm were expected to be misclassifications. The obtained results can be found in Table
2. An examplary segmentation result is shown in Figure 3.

Our approach Classic

Metric w w/o w w/o

Mean SD 8.36 [8.16, 8.60] 26.6 [25.0, 28.6] 8.42 [8.16, 8.68] 27.6 [25.8, 29.6]
Median SD 2.98 [2.82, 4.00] 4.70 [4.48, 5.66] 2.82 [2.82, 4.00] 4.76 [4.48, 5.66]

Dice .552 [.536, .566] .542 [.526, .559]

Table 2: Results for the pancreatic cancer dataset with hybrid (left) vs. classical convolu-
tions (right). Surface metrics (in mm) were calculated with (w) and without (w/o)
outlier removal. When applying outlier removal, both models performed similarly,
while without outlier removal our model outperformed classical convolutions with
respect to mean and median surface distance (SD).
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Figure 3: Examplary segmentation result using rotationally invariant filters. Left: original
image; middle: segmentation result; right: overlay. True positives, false positives
and false negatives are respectively marked as green, blue, and red.

4. Discussion

As shown in Section 3, our approach mostly outperformed classical convolutions for all
tested datasets. As expected, this especially holds true when working with medium train-
ing set sizes and/or difficult problems, as shown on the example of Cifar-100 and STL-10
with the resulting differences being highly significant for all tested metrics (p ≤ .01). How-
ever, more simple problems like Cifar-10 do not neccessarely benefit from the approach
when large training sets are available. On medical data, our approach performed superior
to classical convolutions, both, for classification (pAUC ≤ .05) as well as for segmentation
tasks. Though there generally is some understanding on how rotational invariance can
be realized by rotationally non-invariant networks (Sauder, 2006), the introduction of in-
herently rotationally invariant networks might provide major benefits for various training
problems especially within the medical domain, where training data is rare and models can
easily suffer from overfitting. While deep neural networks are thought to develop even ro-
tationally invariant features on their own, their capabilities are limited due to training data
amount, training time and model complexity. Especially these issues major arguments for
directly encoding invariance into the model itself.

In future work, the proposed approach should be expanded to explicitly learn invari-
ance when needed, as the choice of using invariant vs. non-invariant features within this
publication was realized by statically mixing both layer types only. Extending the given
approach, the general form of the transformational matrices like shown in Section 2.2 could
be used for making models inherently invariant to other affine transformations, e.g. scale
or sheering.
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Appendix A. Detailed dataset description

A.1. Tumor growth dataset

The classification goal was defined analogously to the RECIST guideline (Eisenhauer et al.,
2009) as a lesion having ≥ 20% growth at the next followup after the input timepoints. Each
lesion was masked using fully-volumetric segmentations created by radiologists. All lesions
were isotropically rescaled with a target voxel size of 1mm × 1mm × 1mm using bicubic
interpolation. For all lesions a lesion-centered window of 64mm × 64mm × 64mm due to
lesion diameter quantiles of (∅Pr(∅)≤.1,∅Pr(∅)≥.9) = (10.5 mm, 55.2 mm). For each lesion,
only the middle slice was classified. In total the dataset contained 592 valid samples, with
81 being positive (growth) vs. 511 being negative (non-growth). All samples underwent
histogram equalization. Examplary data is shown in Figure 4.

Figure 4: Example images of the CRC dataset after histogram equalization.

A.2. Pancreas dataset

The complete dataset consisted of 135 volumes from 87 patients. Classification was done in
2D using single slices of masked livers. Isotropic resampling to 1mm×1mm×1mm voxel size
was applied using bicubic interpolation. All slices had a size of 512× 512 voxels. Although
only venous phases were used, data heterogeneity was high due to various treatments,
kernels, scanners and comorbidities, such as fatty liver and cholestasis. All samples were
resized to 256 × 256 pixels. All samples having at least one voxel of lesion tissue were
involved in the dataset, resulting in a total quantity of 3536 valid liver slices. Again, all
samples underwent histogram equalization. An example image is shown in Figure 3.

Appendix B. Architectures

Following we list the architectures used to calculate the results from Section 3. The networks
are given as convolutional networks. The respective hybrid networks are created by simply
replacing the convolutional layers with hybrid layers as described in Section 2.2.
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B.1. Cifar-10, Cifar-100, STL-10

The architectures used for the classification results from Section 3.1 on CIFAR-10, CIFAR-
100 and STL-10 are shown in Table 3.

Description CIFAR-10/-100 STL-10 filter size

input (32,32,1) (96,96,1) -

conv + BN + leaky ReLU (32,32,32) (96,96,32) (3,3)
max pooling (16,16,32) (48,48,32)

conv + BN + leaky ReLU (16,16,48) (48,48,48) (3,3)
max pooling (8,8,48) (24,24,48) -

conv + BN + leaky ReLU (8,8,64) (24,24,64) (3,3)
conv + BN + leaky ReLU (8,8,96) (24,24,96) (3,3)

flatten (6144,) (55296,) -
dense + BN + leaky ReLU (512,) (512,) -

softmax (10,)/(100,) (10,) -

Table 3: For CIFAR-10, CIFAR-100 and STL-10, a very simple network architecture was
chosen. It is based on a sequence of blocks of convolutional layers (conv), batch
normalization (BN), leaky ReLU activation and max pooling, followed by one
fully-connected as well as one softmax-output layer and is inspired by the keras
example network for the CIFAR-10 dataset.

B.2. Tumor growth

Tumor growth (Section 3.2) was classified using a two-laned convolutional neural network
built analogously to the model from Katzmann et al. (2018) with baseline and followup
being processed in one lane each. The network weights were initialized using autoencoder
pretraining. The complete architecture is shown in Table 4.

B.3. Liver lesion segmentation

The architecture for liver lesion segmentation (Section 3.3) is based on the U-Net approach
from Ronneberger et al. (2015) with minor modifications. The full architecture is shown in
Table 5.
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Hybrid Rotation Invariant Networks

Description shape filter size

input (2,64,64,1) -

2×

conv + BN + leaky ReLU (64,64,8) (5,5)
max pooling (32,32,8) -

conv + BN + leaky ReLU (32,32,16) (5,5)
max pooling (16,16,16) -

conv + BN + leaky ReLU (16,16,24) (5,5)
max pooling (8,8,24) -

conv + BN + leaky ReLU (8,8,32) (5,5)
max pooling (4,4,32) -

conv + BN + leaky ReLU (4,4,40) (5,5)
flatten (640,) -

dense + BN + leaky ReLU (8,) -

dense + BN + leaky ReLU (4,) -
dense + BN + leaky ReLU (4,) -

softmax (2,) -

Table 4: Classifier architecture for tumor growth classification consisting of blocks of convo-
lutional layers (conv), batch normalization (BN), leaky ReLU activation and max
pooling layers, followed by two fully-connected as well as a softmax-output layer.
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Hybrid Rotation Invariant Networks

Description shape filter size

input (256,256,1)

1 conv + BN + leaky ReLU (256,256,4) (3,3)
max pooling (128,128,4)

2 conv + BN + leaky ReLU (128,128,16) (3,3)
max pooling (64,64,16)

3 conv + BN + leaky ReLU (64,64,32) (3,3)
max pooling (32,32,32)

conv + BN + leaky ReLU (32,32,64) (3,3)
4 upsampling (64,64,64)

concat (3,4) (64,64,96)
conv + BN + leaky ReLU (64,64,32) (3,3)

5 upsampling (128,128,32)

concat (2,5) (128,128,48)
conv + BN + leaky ReLU (128,128,16) (3,3)

6 upsampling (256,256,16)

concat(1,6) (256,256,20)
conv + BN + sig. (256,256,1) (3,3)

Table 5: Segmentation network architecture used for liver lesion segmentation based on
U-Net (Ronneberger et al., 2015). As in U-Net, the network convolves and down-
samples the image with blocks of convolutional layers (conv), batch normalization
(BN), and leaky ReLU activation. Afterwards the image is upsampled again and
convolved with the information of the horizontal shortcuts (concat). The final
output is generated using a sigmoid function (sig.).
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